Nutrient Use Efficiency as a Strong Indicator of Nutritional Security and Builders of Soil Nutrient Status through Integrated Nutrient Management Technology in a Rice-Wheat System in Northwestern India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Treatment Description
2.3. Collection of Soil Samples
2.4. Analysis of Soil Samples
2.5. Nutrient Use Efficiency
- Gf is the grain yield in the fertilized plot (kg ha−1),
- Gu is the grain yield in the control (kg ha−1),
- Yf is the biological yield of the fertilized plot (kg ha−1),
- Yu is the biological yield of the control (kg ha−1),
- Na is the quantity of nutrients applied (kg ha−1),
- Nf is the nutrient uptake in the fertilized plot (kg ha−1), and
- Nu is the nutrient uptake in the control (kg ha−1).
2.6. Statistical Analysis
3. Results
3.1. Impact of Integrated Nutrient Management Approach on Physicochemical Properties of Soil
3.2. Impact of Integrated Nutrient Management Approach on Buildup of Nutrient Status of Soil
3.2.1. Available Macronutrients (N, P, and K)
3.2.2. Total Macronutrients (N, P, and K)
3.2.3. DTPA-Extractable Micronutrients (Zn, Cu, Fe, and Mn)
3.2.4. Total Micronutrients (Zn, Cu, Fe, and Mn)
3.3. Impact of Integrated Nutrient Management Approach on Nutrient Use Efficiency
3.3.1. N-Use Efficiency in Wheat
3.3.2. P-Use Efficiency in Wheat
3.4. Relationship between Soil Organic Carbon and Available Soil Nutrients
4. Discussion
4.1. Impact of Integrated Nutrient Management Approach on Physicochemical Properties of Soil
4.2. Impact of Integrated Nutrient Management Approach on Buildup of Nutrient Status of Soil
4.2.1. Available Macronutrients (N, P, and K)
4.2.2. Total Macronutrients (N, P, and K)
4.2.3. DTPA-Extractable Micronutrients (Zn, Cu, Fe, and Mn)
4.2.4. Total Micronutrients (Zn, Cu, Fe, and Mn)
4.3. Impact of Integrated Nutrient Management Approach on Nutrient Use Efficiency
4.3.1. N-Use Efficiency in Wheat
4.3.2. P-Use Efficiency in Wheat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajneesh Sharma, R.P.; Snakhyan, N.K.; Kumar, R. Long-Term Effect of Fertilizers and Amendments on Depth-Wise Distribution of Available NPK, Micronutrient Cations, Productivity and NPK Uptake by Maize-Wheat System in an Acid Alfisol of North-Western Himalayas. Commun. Soil Sci. Plant. Anal. 2017, 48, 2193–2209. [Google Scholar]
- Kemal, Y.O.; Abera, M. Contribution of Integrated Nutrient Management Practices for Sustainable Crop Productivity, Nutrient Uptake and Soil Nutrient Status in Maize Based Cropping Systems. J. Nutr. 2015, 3, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Aulakh, M.S.; Khurana, M.P.S.; Singh, D. Water Pollution Related to Agricultural, Industrial and Urban Activities, and its effects on Food Chain, Case Studies from Punjab. J. New Seeds 2009, 10, 112–137. [Google Scholar] [CrossRef]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/Fertilizer Use Efficiency, Measurement, Current Situation and Trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification, 1st ed.; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI): Paris, France, 2015; Chapter 1; ISBN 979-10-92366-02-0. [Google Scholar]
- Kakraliya, S.K.; Jat, R.D.; Kumar, S.; Choudhary, K.K.; Prakadh, J.; Singh, L.K. Integrated Nutrient Management for Improving, Fertilizer Use Efficiency, Soil Biodiversity and Productivity of Wheat in Irrigated Rice Wheat Cropping System in Indo-Gangetic Plains of India. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 152–163. [Google Scholar] [CrossRef]
- Ghosh, B.N.; Singh, R.J.; Mishra, P.K. Soil and Input Management Options for Increasing Nutrient Use Efficiency. In Nutrient Use Efficiency, from Basics to Advances; Rakshit, A., Singh, H.B., Sen, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Kumar, A.; Meena, R.N.; Yadav, L.; Gilotia, Y.K. Effect of Organic and Inorganic Sources of Nutrient on Yield, Yield Attributes and Nutrient Uptake of Rice Cv. PRH-10. Bioscan 2014, 9, 595–597. [Google Scholar]
- Kumar, B.; Mukhopadhyay, S.K. Effect of Integrated Nutrient Management on System Productivity, Nutrient Uptake, Nitrogen Balance, Soil Structural Properties and Nitrogen Use Efficiency Under Wheat-Rice Cropping System. J. Pharmacogn. Phytochem. 2017, 1, 1030–1033. [Google Scholar]
- Singh, J.P.; Kaur, J.; Mehta, D.S.; Narwal, R.P. Long Term Effect of Nutrient Management on Soil Health and Crop Productivity Under Rice (Oryza Sativa)-wheat (Triticum Aestivum) Cropping System. Indian J. Fertil. 2012, 8, 28–48. [Google Scholar]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Walia, M.K.; Gupta, R.K.; Singh, R.; Dhaliwal, M.K. Effect of Manures and Fertilizers on Soil Physical Properties, Build-Up of Macro and Micronutrients and Uptake in Soil Under Different Cropping Systems, a Review. J. Plant. Nutr. 2019, 42, 2873–2900. [Google Scholar] [CrossRef]
- Mahmood, F.; Khan, I.; Ashraf, U.; Shahzad, T.; Hussain, S.; Shahid, M.; Abid, M.; Ullah, S. Effects of Organic and Inorganic Manures on Maize and Their Residual Impact on Soil Physico-Chemical Properties. J. Soil Sci. Plant. Nutr. 2017, 17, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, M.; Narwal, R.P. Effect of Long-Term Application of Farmyard Manure on Soil Micronutrient Status. Arch. Agron. Soil Sci. 2005, 51, 351–359. [Google Scholar] [CrossRef]
- Jamil, M.; Qasim, M.; Zia, M.S. Utilization of Pressmud as Organic Amendment to Improve Physico-Chemical Characteristics of Calcareous Soils Under Two Legume Crops. J. Chem. Soc. Pak. 2008, 30, 577–583. [Google Scholar]
- Havlin, J.L.; Beaton, J.D.; Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers: An Introduction to Nutrient Management; Pearson Education: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Sharma, S.; Dhaliwal, S.S. Effect of Sewage Sludge and Rice Straw Compost on Yield, Micronutrient Availability and Soil Quality Under Rice-Wheat System. Commun. Soil Sci. Plant. Anal. 2019, 50, 1943–1954. [Google Scholar] [CrossRef]
- Sidhu, B.S.; Beri, V. Rice Residue Management: Farmers’ Perspective. Indian J. Air Pollut. Control. 2008, 8, 61–67. [Google Scholar]
- Dhiman, D.; Sharma, R.; Sankhyan, N.K.; Sepehya, S.; Sharma, S.K.; Kumar, R. Effect of Regular Application of Fertilizers, Manure and Lime on Soil Health and Productivity of Wheat in an Acid Alfisol. J. Plant. Nutr. 2019, 42, 2507–2521. [Google Scholar] [CrossRef]
- Jackson, M.L. A Manual of Methods Useful for Instruction and Research in Soil Chemistry, Physical Chemistry, Soil Fertility and Soil Genesis. In Soil Chemical Analysis-Advanced Course, 2nd ed; Department of Science, University of Wisconsin Madison: Madison, WI, USA, 1973. [Google Scholar]
- Richard, L.A. Diagnosis and Improvement of Saline and Alkali Soils. In Agriculture Hand Book No. 60; USDA: Washington, DC, USA, 1954; pp. 7–33. [Google Scholar]
- Walkley, A.; Black, C.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 27–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A Rapid Procedure for Estimation of Available Nitrogen in Soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanable, F.S.; Dean, L.A. Estimation of Available Phosphorus by Extraction with Sodium Bicarbonate. U S Dep. Agric. 1954, 939, 19. [Google Scholar]
- Merwin, H.D.; Peech, M. Exchangeability of Soil Potassium in Sand, Silt and Clay Fractions as Influenced by the Nature of the Complimentary Exchangeable Cations. Soil Sci. Soc. of Am. Proc. 1950, 15, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test Method for Zinc, Iron, Manganese and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis, 2nd ed.; American Society of Agronomy (Publ.): Madison, WI, USA, 1982. [Google Scholar]
- Fageria, N.K.; Baligar, V.C. Methodology for Evaluation of Lowland Rice Genotypes for Nitrogen Use Efficiency. J. Plant. Nutr. 2003, 26, 1315–1333. [Google Scholar] [CrossRef]
- Singh, N.J.; Athokpam, H.S.; Devi, K.N.; Chongtham, N.; Singh, N.B.; Sharma, N.B.; Sharma, P.T.; Dayananda, S. Effect of Farm Yard Manure and Press Mud on Fertility Status of Alkaline Soil Under Maize-Wheat Cropping Sequence. Afr. J. Agric. Res. 2015, 10, 2421–2431. [Google Scholar]
- Sarwar, G.; Hussain, N.; Schmeisky, H.; Suhammad, S.; Ibrahim, M.; Ahmad, S. Efficiency of Various Organic Residues for Enhancing Rice-Wheat Production Under Normal Soil Conditions. Pak. J. Bot. 2008, 40, 2107–2113. [Google Scholar]
- Mohrana, P.C.; Sharma, B.M.; Biswas, D.R. Changes in the Soil Properties and Availability of Micronutrients After Six-Year Application of Organic and Chemical Fertilizers Using Stcr-Based Targeted Yield Equations Under Pearl Millet-Wheat Cropping System. J. Plant. Nutr. 2016, 34, 56–65. [Google Scholar]
- Kundu, S.; Bhaacharyya, R.; Parkash, V.; Gupta, H.S.; Pathak, H.; Ladha, J.K. Long-Term Yied Rend and Sustainability of Rainfed Soybean-Wheat System Through Farmyard Manure Application in a Sandy Loam Soil of the Indian Himalayas. Biol. Fertil. Soils 2007, 43, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Mishra, B.; Sharma, A.; Singh, S.K.; Prasad, J.; Singh, B.P. Influence of Continuous Application of Amendments to Maize-Wheat Cropping System on Dynamics of Soil Microbial Biomass in Alfisol of Jharkhand. J. Indian Soc. Soil Sci. 2008, 56, 71–85. [Google Scholar]
- Sharma, U.; Paliyal, S.S.; Sharma, S.P.; Sharma, G.D. Effects of Continuous Use of Chemical Fertilizers and Manures on Soil Fertility and Productivity of Maize-Wheat Under Rainfed Conditions of Western Himalayas. Commun. in Soil Sci. Plant. Anal. 2014, 45, 647–659. [Google Scholar] [CrossRef]
- Hemalatha, S.; Chellamuthu, S. Impacts of Long-Term Fertilization on Soil Nutritional Quality Under Finger Millet-Maize Cropping Sequence. J. Environ. Res. Dev. 2013, 7, 1571–1576. [Google Scholar]
- Sharma, T. Response of Integrated Nutrient Supply on Yield of Wheat and Physical-Chemical Properties of Soil. Bioscan 2015, 10, 77–80. [Google Scholar]
- Verde, B.S.D.; Oginga, B.; Njeri, M.J. Effect of Manure, Lime and Mineral P Fertilizer on Soybean Yields and Soil Fertility in a Humic Nitisol in the Central Highlands of Kenya. Int. J. Agric. Sci. Res. 2013, 2, 283–291. [Google Scholar]
- Rathod, D.D.; Rathod, P.H.; Patel, K.P.; Patel, K.C. Integrated Use of Organic and Inorganic Inputs in Wheat-Fodder Maize Cropping Sequence to Improve Crop Yields and Soil Properties. Arch. Agron. Soil Sci. 2013, 59, 1439–1455. [Google Scholar] [CrossRef]
- Walia, M.K.; Walia, S.S.; Dhaliwal, S.S. Long Term Effect of Integrated Nutrient Management on Properties of Typic Ustochrept After 23 Cycles of an Irrigated Rice (Oryza Sativa L.)-Wheat (Triticum Aestivum L.) System. J. Sustain. Agric. 2010, 34, 724–742. [Google Scholar] [CrossRef]
- Mazumdar, S.P.; Kundu, D.K.; Ghosh, D.; Saha, A.R.; Majumdar, B.; Ghorai, A.K. Effect of Long-Term Application of Inorganic Fertilizers and Organic Manure on Yield, Potassium Uptake and Distribution of Potassium Fractions in the New Gangetic Alluvial Soil Under Jute-Rice-Wheat Cropping System. Int. J. Agric. Food Sci. Technol. 2014, 5, 297–306. [Google Scholar]
- Sathish, A.; Gowda, G.V.; Chandrappa, H.; Kusagur, N. Long Term Effect of Integrated Use of Organic and Inorganic Fertilizers on Productivity, Soil Fertility and Uptake of Nutrients in Rice and Maize Cropping System. Int. J. Sci. Nat. 2011, 2, 84–88. [Google Scholar]
- Kaur, K.; Kapoor, K.K.; Gupta, A.P. Impact of Organic Manures with and Without Mineral Fertilizers on Soil Chemical and Biological Properties Under Tropical Conditions. J. Plant. Nutr. Soil Sci. 2005, 168, 117–122. [Google Scholar] [CrossRef]
- Mitran, T.; Mani, P.K.; Basak, N.; Majumder, D.; Roy, M. Long-Term Manuring and Fertilization Influences Soil Inorganic Phosphorus Transformation vis-à-vis Rice Yield under Rice-Wheat Cropping System. Arch. Agron. Soil Sci. 2015, 62, 1–18. [Google Scholar] [CrossRef]
- Kaur, N.; Benipal, D.S. Effect of Crop Residue and Farmyard Manure on K Forms on Soils of Long Term Fertility Experiment. Indian J. Crop. Sci. 2006, 1, 161–164. [Google Scholar]
- Soremi, A.O.; Adetunji, M.T.; Adejuyigbe, C.O.; Bodunde, J.G.; Azeez, J.O. Influence of Organic Manure on Phosphorus and Potassium Fractions in Soil Planted with Soybean. Int. J. Plant. Soil Sci. 2017, 14, 1–11. [Google Scholar] [CrossRef]
- Benke, M.B.; Indraratne, V.; Hao, X.Y.; Chang, C.; Goh, T.B. Trace Element Changes in Soil after Longterm Cattle Manure Applications. J. Environ. Qual. 2008, 37, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Nikoli, T.; Matsi, T. Influence of Liquid Cattle Manure on Micronutrient Content and Uptake by Corn and their Availability in a Calcareous Soil. Agron. J. 2011, 103, 113–118. [Google Scholar] [CrossRef]
- Parven, H.; Kumar, S.; Shambhavi, S.; Kumar, S.; Kumar, R.; Kumari, D. Long Term Effect of Integrated Nutrient Management on Secondary and Micronutrient of Alluvial Soils. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1990–1999. [Google Scholar] [CrossRef]
- Rutkowska, B.; Szulc, W.; Sosulski, T.; Stepien, W. Soil Micronutrient Availability to Crops Affected by Long-Term Inorganic and Organic Fertilizer Applications. Plant. Soil Environ. 2014, 60, 198–203. [Google Scholar] [CrossRef]
- Singh, A.K.; Sarkar, A.K.; Kumar, A.; Singh, B.P. Effect of Long-Term Use of Mineral Fertilizers, Lime and Farmyard Manure on the Crop Yield, Available Plant Nutrient and Heavy Metal Status in an Acidic Loam Soil. J. Indian Soc. Soil Sci. 2009, 57, 362–365. [Google Scholar]
- Chauhan, N.; Sankhyan, N.K.; Sharma, R.P.; Singh, J. Effect of Long-Term Application of Fertilizers and Amendments on Productivity and DTPA Extractable Micronutrients in an Acid Alfisol. Himachal J. Agric. Res. 2018, 44, 36–42. [Google Scholar]
- Thakur, R.; Kauraw, D.L.; Muneshwar, S. Profile Distribution of Micronutrient Cations in a Vertisol as Influenced by Long-Term Application of Manure and Fertilizers. J. Indian Soc. Soil Sci. 2011, 59, 239–244. [Google Scholar]
- Dhaliwal, S.S.; Singh, B.; Sharma, B.D.; Khera, K.L. Soil Quality and Yield Trends of Different Crops in Low Productive Submontaneous Tract and Highly Productive Area in Punjab, India. Indian J. Dryland Agric. Res. Dev. 2009, 24, 39–45. [Google Scholar]
- Mandal, A.; Toor, A.S.; Dhaliwal, S.S. Effect of Land-Uses on Physico-Chemical Properties and Nutrient Status of Surface (0–15cm) and Sub-Surface (15–30cm) Layers in Soils of South-Western Punjab, India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2659–2671. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Manchanda, J.S.; Walia, S.S.; Dhaliwal, M.K. Differential Response of Manures in Transformation of DTPA and Total Zinc and Iron in Rice Transplanted on Light Textured Soils of Punjab. Int. J. Sci. Environ. Technol. 2013, 2, 300–312. [Google Scholar]
- Shahid, M.; Shukla, A.K.; Bhattacharyya, P.; Tripathi, R.; Mohanty, S.; Kumar, A.; Lal, B.; Gautam, P.; Raja, R.; Panda, B.B.; et al. Micronutrients (Fe, Mn, Zn and Cu) Balance Under Long-Term Application of Fertilizer and Manure in a Tropical Rice-Rice System. J. Soils Sediments 2015, 16, 737–747. [Google Scholar] [CrossRef]
- Ram, M.S.; Shankar, T.; Maitra, S.; Adhikary, R.; Swamy, G.V.V.S.N. Productivity, Nutrient Uptake and Nutrient Use Efficiency of Summer Rice (Oryza Sativa) as Influenced by Integrated Nutrient Management Practices. Crop. Res. 2020, 55, 65–72. [Google Scholar]
- Kumar, S.; Saha, B.; Saha, S.; Das, A.; Poddar, P.; Prabhakar, M. Integrated Nutrient Management for Enhanced Yield, Nutrients Uptake and Their Use Efficiency in Rice Under Intensive Rice-Wheat Cropping System. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1958–1972. [Google Scholar] [CrossRef]
Treatment No. | Treatment Details |
---|---|
T1 | Control |
T2 | Farmyard manure |
T3 | Poultry manure |
T4 | Press mud |
T5 | Rice straw compost |
T6 | 75% RDF |
T7 | 75% RDF * + farmyard manure |
T8 | 75% RDF + poultry manure |
T9 | 75% RDF + press mud |
T10 | 75% RDF + rice straw compost |
T11 | 100% RDF |
T12 | 100% RDF + farmyard manure |
T13 | 100% RDF + poultry manure |
T14 | 100% RDF + press mud |
T15 | 100% RDF + rice straw compost |
Organic Manure | N | P | K | Zn | Cu | Fe | Mn |
---|---|---|---|---|---|---|---|
% | mg kg−1 | ||||||
Farmyard manure | 1.93 | 0.76 | 2.10 | 116.1 | 64.3 | 648.7 | 148.9 |
Poultry manure | 2.18 | 1.79 | 1.63 | 136.3 | 56.7 | 521.5 | 432.0 |
Press mud | 3.19 | 0.82 | 0.65 | 143.8 | 94.7 | 485.6 | 294.5 |
Rice straw compost | 1.71 | 0.38 | 1.62 | 133.4 | 51.4 | 521.2 | 202.9 |
Treatments | pH | EC (dS m−1) | OC (%) |
---|---|---|---|
T1 | 6.74 a | 0.13 a | 0.13 g |
T2 | 6.51 a | 0.15 a | 0.34 bcd |
T3 | 6.61 a | 0.15 a | 0.28 e |
T4 | 6.67 a | 0.16 a | 0.33 bcd |
T5 | 6.62 a | 0.12 a | 0.30 de |
T6 | 6.68 a | 0.15 a | 0.21 f |
T7 | 6.47 a | 0.13 a | 0.35 abcd |
T8 | 6.54 a | 0.14 a | 0.33 bcde |
T9 | 6.42 a | 0.14 a | 0.33 bcde |
T10 | 6.41 a | 0.14 a | 0.32 cde |
T11 | 6.66 a | 0.14 a | 0.21 f |
T12 | 6.39 a | 0.14 a | 0.39 a |
T13 | 6.47 a | 0.19 a | 0.36 abc |
T14 | 6.57 a | 0.22 a | 0.38 ab |
T15 | 6.46 a | 0.18 a | 0.35 abcd |
Initial status | 6.69 | 0.17 | 0.18 |
LSD (0.05) | NS | NS | 0.044 |
Treatments | Available Macronutrients (kg ha−1) | DTPA-Extractable Micronutrients (mg kg−1) | |||||
---|---|---|---|---|---|---|---|
N | P | K | Zn | Cu | Fe | Mn | |
T1 | 185.1 j | 20.67 g | 148.8 e | 0.772 d | 0.390 j | 16.32 fd | 2.983 m |
T2 | 251.6 g | 41.46 de | 218.4 ab | 1.829 abc | 0.665 c | 26.97 abcd | 4.446 f |
T3 | 256.9 f | 39.27 de | 200.0 bc | 1.302 bcd | 0.599 e | 28.49 abcd | 3.401 l |
T4 | 237.7 h | 35.45 def | 200.2 bc | 1.730 abc | 0.656 c | 21.91 bcd | 5.491 a |
T5 | 229.4 i | 25.42 fg | 206.8 bc | 1.461 abcd | 0.532 h | 24.66 abcd | 4.152 i |
T6 | 259.1 f | 24.33 fg | 163.1 de | 0.907 d | 0.399 j | 17.73 cd | 3.515 k |
T7 | 333.1 d | 43.46 cd | 225.4 a | 2.059 ab | 0.703 b | 32.67 ab | 4.332 g |
T8 | 329.2 d | 66.73 a | 196.7 c | 2.101 ab | 0.580 f | 28.93 abcd | 4.741 e |
T9 | 333.1 d | 39.14 de | 207.1 bc | 1.889 ab | 0.656 c | 26.20 abcd | 4.931 d |
T10 | 266.4 e | 29.20 efg | 205.0 bc | 1.828 abc | 0.551 g | 25.73 abcd | 4.256 h |
T11 | 255.0 fg | 29.90 efg | 167.3 d | 1.020 cd | 0.409 i | 18.52 cd | 4.152 i |
T12 | 340.4 c | 54.02 bc | 226.3 a | 2.220 a | 0.732 a | 36.87 a | 5.016 c |
T13 | 350.6 b | 56.34 ab | 217.3 ab | 1.732 abc | 0.618 d | 31.30 abc | 3.895 j |
T14 | 360.8 a | 43.73 cd | 202.1 bc | 1.803 abc | 0.656 c | 27.45 abcd | 5.130 b |
T15 | 352.8 b | 31.44 defg | 203.6 bc | 2.063 ab | 0.542 g | 26.31 abcd | 4.399 f |
Initial status | 150.0 | 24.40 | 133.0 | 0.480 | 0.260 | 1.400 | 4.270 |
LSD (0.05) | 4.886 | 11.29 | 16.16 | 0.705 | 0.010 | 11.68 | 0.061 |
Treatments | Total Macronutrients (%) | Total Micronutrients (mg kg−1) | |||||
---|---|---|---|---|---|---|---|
N | P | K | Zn | Cu | Fe | Mn | |
T1 | 0.056 i | 0.032 j | 0.290 k | 28.05 d | 287.5 a | 12,333.3 d | 198.8 g |
T2 | 0.070 g | 0.034 i | 0.710 d | 46.20 bc | 340.0 a | 20,552.5 ab | 339.5 ab |
T3 | 0.080 e | 0.036 g | 0.537 f | 44.25 bc | 335.0 a | 18,475.0 abc | 302.5 bcd |
T4 | 0.076 f | 0.040 f | 0.496 h | 46.18 bc | 281.7 a | 18,437.5 abc | 266.7 de |
T5 | 0.066 h | 0.033 ij | 0.382 j | 41.45 c | 360.0 a | 17,580.0 abc | 288.4 bcde |
T6 | 0.071 g | 0.035 h | 0.430 i | 33.35 d | 292.5 a | 13,750.0 cd | 206.3 fg |
T7 | 0.085 c | 0.044 d | 0.855 a | 45.78 bc | 332.5 a | 21,645.0 a | 357.1 a |
T8 | 0.093 c | 0.045 c | 0.696 d | 50.02 ab | 355.0 a | 18,370.0 abc | 312.5 abcd |
T9 | 0.085 d | 0.047 b | 0.494 h | 47.80 ab | 312.5 a | 18,953.8 ab | 322.5 abc |
T10 | 0.080 e | 0.040 f | 0.556 e | 42.02 c | 288.3 a | 17,682.5 abc | 250.0 ef |
T11 | 0.085 d | 0.036 g | 0.515 g | 33.25 d | 287.5 a | 13,755.0 cd | 212.5 fg |
T12 | 0.106 b | 0.047 b | 0.857 a | 49.65 ab | 361.7 a | 20,320.0 ab | 320.0 abc |
T13 | 0.133 a | 0.045 c | 0.774 c | 45.10 bc | 355.0 a | 19,985.0 ab | 291.3 bcde |
T14 | 0.133 a | 0.051 a | 0.808 b | 53.70 a | 320.0 a | 19,555.0 ab | 315.0 abcd |
T15 | 0.093 c | 0.043 e | 0.703 d | 44.20 bc | 320.0 a | 16,047.3 bcd | 276.3 cde |
Initial status | 0.060 | 0.028 | 0.310 | 40.20 | 289.0 | 15,615.0 | 265.0 |
LSD (0.05) | 0.002 | 0.001 | 0.016 | 6.226 | NS | 4406.2 | 45.99 |
Treatments | AE (kg kg−1) | PE (kg kg−1) | APE (kg kg−1) | ARE (%) | UE (kg kg−1) |
---|---|---|---|---|---|
T1–T5 | - | - | - | - | - |
T6 | 16.67 e | 94.22 cd | 31.87 e | 51.93 e | 49.11 f |
T7 | 40.82 a | 103.67 a | 41.93 a | 96.84 ab | 100.47 ab |
T8 | 41.83 a | 96.28 bcd | 39.30 b | 106.06 a | 102.55 a |
T9 | 32.72 bc | 97.95 bc | 36.48 c | 89.62 bc | 87.90 bcd |
T10 | 34.01 bc | 99.30 ab | 40.84 ab | 83.24 c | 82.78 cd |
T11 | 24.58 d | 92.83 d | 35.04 cd | 70.11 d | 65.14 e |
T12 | 37.55 ab | 93.20 cd | 36.58 c | 102.61 a | 95.71 abc |
T13 | 33.89 bc | 83.25 e | 34.20 cde | 98.98 ab | 82.49 cd |
T14 | 30.13 c | 86.43 e | 33.47 de | 90.23 bc | 78.16 de |
T15 | 35.44 bc | 92.18 d | 36.30 c | 97.57 ab | 90.16 abcd |
LSD (0.05) | 5.369 | 5.024 | 2.396 | 11.26 | 14.40 |
Treatments | AE (kg kg−1) | PE (kg kg−1) | APE (kg kg−1) | ARE (%) | UE (kg kg−1) |
---|---|---|---|---|---|
T1–T5 | - | - | - | - | - |
T6 | 33.30 f | 388.27 a | 131.69 ab | 25.81 e | 98.1 f |
T7 | 81.55 ab | 302.47 bc | 122.61 ab | 66.23 abc | 200.7 ab |
T8 | 83.57 a | 298.60 c | 121.77 ab | 68.68 ab | 204.9 a |
T9 | 65.36 cd | 305.58 bc | 113.84 b | 57.40 bcd | 175.6 bcd |
T10 | 67.94 cd | 314.51 abc | 129.1 ab | 53.48 d | 165.4 cd |
T11 | 49.17 e | 377.58 ab | 141.75 a | 35.94 e | 130.3 e |
T12 | 75.10 abc | 299.44 c | 117.43 ab | 64.29 bcd | 191.4 abc |
T13 | 67.78 cd | 304.44 bc | 125.08 ab | 54.47 d | 164.9 cd |
T14 | 60.27 d | 200.61 d | 77.65 c | 77.74 a | 156.3 de |
T15 | 70.89 bcd | 329.80 abc | 129.57 ab | 55.33 cd | 180.3 abcd |
LSD (0.05) | 10.73 | 76.96 | 25.97 | 11.71 | 28.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Randhawa, M.K.; Dhaliwal, S.S.; Sharma, V.; Toor, A.S.; Sharma, S.; Kaur, M.; Verma, G. Nutrient Use Efficiency as a Strong Indicator of Nutritional Security and Builders of Soil Nutrient Status through Integrated Nutrient Management Technology in a Rice-Wheat System in Northwestern India. Sustainability 2021, 13, 4551. https://doi.org/10.3390/su13084551
Randhawa MK, Dhaliwal SS, Sharma V, Toor AS, Sharma S, Kaur M, Verma G. Nutrient Use Efficiency as a Strong Indicator of Nutritional Security and Builders of Soil Nutrient Status through Integrated Nutrient Management Technology in a Rice-Wheat System in Northwestern India. Sustainability. 2021; 13(8):4551. https://doi.org/10.3390/su13084551
Chicago/Turabian StyleRandhawa, Mehakpreet Kaur, Salwinder Singh Dhaliwal, Vivek Sharma, Amardeep Singh Toor, Sandeep Sharma, Manpreet Kaur, and Gayatri Verma. 2021. "Nutrient Use Efficiency as a Strong Indicator of Nutritional Security and Builders of Soil Nutrient Status through Integrated Nutrient Management Technology in a Rice-Wheat System in Northwestern India" Sustainability 13, no. 8: 4551. https://doi.org/10.3390/su13084551
APA StyleRandhawa, M. K., Dhaliwal, S. S., Sharma, V., Toor, A. S., Sharma, S., Kaur, M., & Verma, G. (2021). Nutrient Use Efficiency as a Strong Indicator of Nutritional Security and Builders of Soil Nutrient Status through Integrated Nutrient Management Technology in a Rice-Wheat System in Northwestern India. Sustainability, 13(8), 4551. https://doi.org/10.3390/su13084551