Elevated Tropospheric Ozone Concentration Alters Soil CO2 Emission: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Analysis
3. Results and Discussion
3.1. Effect of O3 Exposure Duration
3.2. Effect of Soil pH
3.3. Difference between Agricultural and Nonagricultural Ecosystems
3.4. Effect of O3 Fumigation Method
3.5. Effect of Climate Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Pregitzer, K.S.; Burton, A.J.; King, J.S.; Zak, D.R. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytol. 2008, 180, 153–161, doi:10.1111/j.1469-8137.2008.02564.x.
- King, J.S.; Pregitzer, K.S.; Zak, D.R.; Sober, J.; Isebrands, J.G.; Dickson, R.E.; Hendrey, G.R.; Karnosky, D.F. Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 2001, 128, 237–250, doi:10.1007/s004420100656.
- Kou, T.; Hang, X.; Lam, S.K.; Chen, D.; He, J. Ozone pollution increases CO2 and N2O emissions in ozone-sensitive wheat system. Agron. J. 2018, 110, 496–502, doi:10.2134/agronj2017.09.0514.
- Shi, K. Effects of elevated ozone concentration on soil respiration, nitrification and denitrification in a farmland. Clim. Chang. Res. Lett. 2017, 6, 11–21, doi:10.12677/ccrl.2017.61002 (In Chinese).
- Zhang, Y.; Chen, S.; Wang, L.; Shen, X.; Hu, Z.; Shi, Y. Effects of elevated ozone concentration on soil respiration, nitrification and denitrification in a winter wheat farmland. Environ. Sci. 2010, 31, 2988–2994, doi:10.13227/j.hjkx.2010.12.039 (In Chinese).
- Hu, E.; Yuan, Z.; Zhang, H.; Zhang, W.; Wang, X.; Jones, S.B.; Wang, N. Impact of elevated tropospheric ozone on soil C, N and microbial dynamics of winter wheat. Agric. Ecosyst. Environ. 2018, 253, 166–176, doi:10.1016/j.agee.2017.11.010.
- Sánchez-Martín, L.; Bermejo-Bermejo, V.; García-Torres, L.; Alonso, R.; Cruz, A.D.L.; Calvete-Sogo, H.; Vallejo, A. Nitrogen soil emissions and belowground plant processes in Mediterranean annual pastures are altered by ozone exposure and N-inputs. Atmos. Environ. 2017, 165, 12–22, doi:10.1016/j.atmosenv.2017.06.030.
- Decock, C.; Chung, H.; Venterea, R.; Gray, S.B.; Leakey, A.D.B.; Six, J. Elevated CO2 and O3 modify N turnover rates, but not N2O emissions in a soybean agroecosystem. Soil Bio. Biochem 2012, 51, 104-114, doi:10.1016/j.soilbio.2012.04.015.
- Chen, S.; Zhang, Y.; Chen, H.; Hu, Z. Effects of elevated O3 on soil respiration in a winter wheat-soybean rotation cropland. Soil Res. 2012, 50, 500–506, doi:10.1071/sr11296.
- Kou, T.J.; Cheng, X.H.; Zhu, J.G.; Xie, Z.B. The influence of ozone pollution on CO2, CH4, and N2O emissions from a Chinese subtropical rice–wheat rotation system under free-air O3 exposure. Agric. Ecosyst. Environ. 2015, 204, 72–81, doi:10.1016/j.agee.2015.02.013.
- Wang, J.; Hayes, F.; Chadwick, D.R.; Hill, P.W.; Mills, G.; Jones, D.L. Short-term responses of greenhouse gas emissions and ecosystem carbon fluxes to elevated ozone and N fertilization in a temperate grassland. Atmos. Environ. 2019, 211, 204–213, doi:10.1016/j.atmosenv.2019.05.027.
- Kasurinen, A.; Kokko-Gonzales, P.; Riikonen, J.; Vapaavuori, E.; Holopainen, T. Soil CO2 efflux of two silver birch clones exposed to elevated CO2 and O3 levels during three growing seasons. Global Change Biol. 2004, 10, 1654–1665, doi:10.1111/j.1365-2486.2004.00841.x.
- Nikolova, P.S.; Andersen, C.P.; Blaschke, H.; Matyssek, R.; Haberle, K.H. Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environ. Pollut. 2010, 158, 1071–1078, doi:10.1016/j.envpol.2009.07.036.
- Yu, Y.; Lin, X.; Zhang, J.; Li, Q.; Zhu, J. Effect of elevated surface O3 concentration on soil microbial functional diversity in wheat field. Chin. J. Appl. Environ. Biol. 2012, 18, 309–314, doi:10.3724/sp.J.1145.2012.00309 (In Chinese).
- Pregitzer, K.; Loya, W.; Kubiske, M.; Zak, D. Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 2006, 148, 503–516, doi:10.1007/s00442-006-0381-8.
- Wang, Y.; Hu, Z.; Islam, A.R.M.T.; Chen, S.; Shang, D.; Xue, Y. Effect of warming and elevated O3 concentration on CO2 emissions in a wheat-soybean rotation cropland. Int. J. Env. Res. Public Health 2019, 16, doi:10.3390/ijerph16101755.
References
- Krupa, S.V.; Manning, W.J. Atmospheric ozone: Formation and effects on vegetation. Environ. Pollut. 1988, 50, 101–137. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Arden Pope, I.C.; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M. Long-term ozone exposure and mortality. N. Engl. J. Med. 2009, 360, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.; Haywood, J.; Lean, J.; Lowe, D.; Myhre, G.; et al. Changes in Atmospheric Constituents and in Radiative Forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Chapter 2; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2008; p. 212. [Google Scholar]
- Ainsworth, E.A.; Serbin, S.P.; Skoneczka, J.A.; Townsend, P.A. Using leaf optical properties to detect ozone effects on foliar biochemistry. Photosynth. Res. 2014, 119, 65–76. [Google Scholar] [CrossRef]
- Andersen, C.P. Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol. 2003, 157, 213–228. [Google Scholar] [CrossRef]
- Kou, T.; Wang, L.; Zhu, J.; Xie, Z.; Wang, Y. Ozone pollution influences soil carbon and nitrogen sequestration and aggregate composition in paddy soils. Plant Soil 2014, 380, 305–313. [Google Scholar] [CrossRef]
- McCrady, J.K.; Andersen, C.P. The effect of ozone on below-ground carbon allocation in wheat. Environ. Pollut. 2000, 107, 465–472. [Google Scholar] [CrossRef]
- Andersen, C.P.; Scagel, C.F. Nutrient availability alters belowground respiration of ozone-exposed ponderosa pine. Tree Physiol. 1997, 17, 337–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, R.L.; Zak, D.R.; Holmes, W.E.; White, D.C. Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 2002, 131, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Maltz, M.R.; Cao, J.; Yu, H.; Shang, H.; Aronson, E. Elevated O3 alters soil bacterial and fungal communities and the dynamics of carbon and nitrogen. Sci. Total Environ. 2019, 677, 272–280. [Google Scholar] [CrossRef]
- Hu, E.; Yuan, Z.; Zhang, H.; Zhang, W.; Wang, X.; Jones, S.B.; Wang, N. Impact of elevated tropospheric ozone on soil C, N and microbial dynamics of winter wheat. Agric. Ecosyst. Environ. 2018, 253, 166–176. [Google Scholar] [CrossRef]
- Kanerva, T.; Regina, K.; Ramo, K.; Ojanpera, K.; Manninen, S. Fluxes of N2O, CH4 and CO2 in a meadow ecosystem exposed to elevated ozone and carbon dioxide for three years. Environ. Pollut. 2007, 145, 818–828. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; Burton, A.J.; King, J.S.; Zak, D.R. Soil respiration, root biomass, and root turnover following long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. New Phytol. 2008, 180, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Kou, T.; Hang, X.; Lam, S.K.; Chen, D.; He, J. Ozone pollution increases CO2 and N2O emissions in ozone-sensitive wheat system. Agron. J. 2018, 110, 496–502. [Google Scholar] [CrossRef]
- Kou, T.J.; Cheng, X.H.; Zhu, J.G.; Xie, Z.B. The influence of ozone pollution on CO2, CH4, and N2O emissions from a Chinese subtropical rice–wheat rotation system under free-air O3 exposure. Agric. Ecosyst. Environ. 2015, 204, 72–81. [Google Scholar] [CrossRef]
- Nikolova, P.S.; Andersen, C.P.; Blaschke, H.; Matyssek, R.; Haberle, K.H. Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environ. Pollut. 2010, 158, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Y.; Chen, H.; Hu, Z. Effects of elevated O3 on soil respiration in a winter wheat-soybean rotation cropland. Soil Res. 2012, 50, 500–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Hayes, F.; Chadwick, D.R.; Hill, P.W.; Mills, G.; Jones, D.L. Short-term responses of greenhouse gas emissions and ecosystem carbon fluxes to elevated ozone and N fertilization in a temperate grassland. Atmos. Environ. 2019, 211, 204–213. [Google Scholar] [CrossRef]
- Scagel, C.F.; Andersen, C.P. Seasonal changes in root and soil respiration of ozone-exposed ponderosa pine (Pinus ponderosa) grown in different substrates. New Phytol. 1997, 136, 627–643. [Google Scholar] [CrossRef]
- Wang, J.; Hayes, F.; Turner, R.; Chadwick, D.R.; Mills, G.; Jones, D.L. Effects of four years of elevated ozone on microbial biomass and extracellular enzyme activities in a semi-natural grassland. Sci. Total Environ. 2019, 660, 260–268. [Google Scholar] [CrossRef]
- Morgan, P.B.; Ainsworth, E.A.; Long, S.P. How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ. 2003, 26, 1317–1328. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Hu, F.; Shi, W. Soil nitrous oxide emissions following crop residue addition: A meta-analysis. Glob. Chang. Biol. 2013, 19, 2956–2964. [Google Scholar] [CrossRef]
- Liao, C.; Peng, R.; Luo, Y.; Zhou, X.; Wu, X.; Fang, C.; Chen, J.; Li, B. Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytol. 2008, 177, 706–714. [Google Scholar] [CrossRef]
- de Graaff, M.-A.; van Groenigen, K.-J.; Six, J.; Hungate, B.; van Kessel, C. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Glob. Chang. Biol. 2006, 12, 2077–2091. [Google Scholar] [CrossRef]
- Treseder, K.K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 2004, 164, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, M.S.; Adams, D.C.; Gurevitch, J. MetaWin: Statistical Software for Meta-Analysis; Version 2.1; Sinauer Associates, Inc.: Sunderland, MA, USA, 2000. [Google Scholar]
- Ainsworth, E.A. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob. Chang. Biol. 2008, 14, 1642–1650. [Google Scholar] [CrossRef]
- Dieleman, W.I.; Luyssaert, S.; Rey, A.; de Angelis, P.; Barton, C.V.; Broadmeadow, M.S.; Broadmeadow, S.B.; Chigwerewe, K.S.; Crookshanks, M.; Dufrene, E.; et al. Soil [N] modulates soil C cycling in CO2-fumigated tree stands: A meta-analysis. Plant Cell Environ. 2010, 33, 2001–2011. [Google Scholar] [CrossRef]
- Huedo-Medina, T.; Sanchez-Meca, J.; Marin-Martinez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I² index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Auge, R.M.; Toler, H.D. Arbuscular mycorrhiza formation and its function under elevated atmospheric O3: A meta-analysis. Environ. Pollut. 2017, 226, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Wittig, V.E.; Ainsworth, E.A.; Naidu, S.L.; Karnosky, D.F.; Long, S.P. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis. Glob. Chang. Biol. 2009, 15, 396–424. [Google Scholar] [CrossRef]
- Gurevitch, J.; Hedges, L.V. Statistical issues in ecological meta-analyses. Ecology 1999, 80, 1142–1149. [Google Scholar] [CrossRef]
- Rosenthal, R. The file drawer problem and tolerance for null results. Psychol. Bull. 1979, 86, 638–641. [Google Scholar] [CrossRef]
- Jones, T.G.; Freeman, C.; Lloyd, A.; Mills, G. Impacts of elevated atmospheric ozone on peatland below-ground DOC characteristics. Ecol. Eng. 2009, 35, 971–977. [Google Scholar] [CrossRef] [Green Version]
- von Arnold, K.; Nilsson, M.; Hanell, B.; Weslien, P.; Klemedtsson, L. Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Bio. Biochem. 2005, 37, 1059–1071. [Google Scholar] [CrossRef]
- Samuelson, L.; Kelly, J.M. Scaling ozone effects from seedlings to forest trees. New Phytol. 2001, 149, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Changey, F.; Bagard, M.; Souleymane, M.; Lerch, T.Z. Cascading effects of elevated ozone on wheat rhizosphere microbial communities depend on temperature and cultivar sensitivity. Environ. Pollut. 2018, 242, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Jiang, Y.; Guo, L.; Burkey, K.O.; Zobel, R.W.; Shew, H.D.; Hu, S. Contrasting warming and ozone effects on denitrifiers dominate soil N2O emissions. Environ. Sci. Technol. 2018, 52, 10956–10966. [Google Scholar] [CrossRef]
- Xu, S.; Fu, W.; He, X.; Chen, W.; Zhang, W.; Li, B.; Huang, Y. Drought alleviated the negative effects of elevated O3 on Lonicera maackii in Urban Area. Bull. Environ. Contam. Toxicol. 2017, 99, 648–653. [Google Scholar] [CrossRef] [PubMed]
Number of observations | 77 |
QT | 1131.41 *** |
I2 | 93 |
QB (O3 level) | 0.43 |
QB (Exposure duration) | 35.96 *** |
QB (Soil pH) | 28.46 *** |
QB (Ecosystem) | 12.49 ** |
QB (Fumigation method) | 18.01 *** |
Index | k | Kendall’s Tau | Spearman’s Rho | Rosenthal’s Fail-Safe Number | |
---|---|---|---|---|---|
Overall | 77 | 0.56 | 0.54 | NS b | |
O3 level | Low | 57 | 0.44 | 0.49 | NS |
High | 20 | 0.80 | 0.89 | NS | |
Exposure duration | Short | 23 | 0.62 | 0.78 | 935.3 |
Medium | 28 | 0.87 | 0.83 | 751.1 | |
Long | 26 | 0.88 | 0.92 | 732.1 | |
Soil pH | pH ≤ 6 | 56 | 0.88 | 0.99 | 2520.9 |
pH > 6 | 21 | 0.95 | 0.90 | 669.3 | |
Ecosystem | Nonagricultural | 54 | 0.89 | 0.99 | 1595.4 |
Agricultural | 23 | 0.73 | 0.64 | NS | |
Fumigation method | FACE | 45 | 0.64 | 0.73 | 2355.8 |
OTC | 32 | 0.06 | 0.03 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, E.; Ren, Z.; Xu, S.; Zhang, W. Elevated Tropospheric Ozone Concentration Alters Soil CO2 Emission: A Meta-Analysis. Sustainability 2021, 13, 4571. https://doi.org/10.3390/su13084571
Hu E, Ren Z, Xu S, Zhang W. Elevated Tropospheric Ozone Concentration Alters Soil CO2 Emission: A Meta-Analysis. Sustainability. 2021; 13(8):4571. https://doi.org/10.3390/su13084571
Chicago/Turabian StyleHu, Enzhu, Zhimin Ren, Sheng Xu, and Weiwei Zhang. 2021. "Elevated Tropospheric Ozone Concentration Alters Soil CO2 Emission: A Meta-Analysis" Sustainability 13, no. 8: 4571. https://doi.org/10.3390/su13084571
APA StyleHu, E., Ren, Z., Xu, S., & Zhang, W. (2021). Elevated Tropospheric Ozone Concentration Alters Soil CO2 Emission: A Meta-Analysis. Sustainability, 13(8), 4571. https://doi.org/10.3390/su13084571