Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies
Abstract
:1. Introduction
2. Big Data in Agricultural Management
2.1. Big Data Application in Agriculture
- Volume (V1): The size of data collected for analysis.
- Velocity (V2): The time window is beneficial and relevant to the data.
- Variety (V3): Multi-technology application (for example, images, videos, remote sensing, and sensors), multi-temporal (differentiation of dates/times of data collection), and multi-resolution (differentiation of spatial resolution of data).
2.2. Techniques and Tools for Big Data Analysis in Agriculture Practice
NO | Techniques and Tools | Related Sustainable Aspect | Ref |
---|---|---|---|
1 | Wireless sensor networks (WSN) | Economic | Kassim et al. (2014) [12], Biradar and Shabadi (2017) [13], Ojha et al. (2015) [111], Shinghal and Srivastava (2017) [112], Rathinam et al. (2019) [113] |
2 | Cloud computing | Economic | Kassim et al. (2014) [12], Mekala and Viswanathan, (2017) [15], Mocanu et al. (2015) [114], Goraya and Kaur (2015) [115] |
3 | Internet of Things (IoT) | Environment | Biradar and Shabadi (2017) [13], Li (2012) [18], Elijah et al. (2018) [116], Yoon et al. (2018) [117] |
4 | Image processing | Economic | Pinto et al. (2017) [21], Chi et al. (2016) [20], Manickavasagan et al. (2005) [21], Umamaheswari et al. (2018) [118], Khirade et al. (2015) [119] |
5 | Convolutional neural networks | Economic | Pinto et al. (2017) [21], Barbosa et al. (2020) [120], Nevavuori et al. (2019) [121], Adhitya et al. (2019) [122] |
6 | Remote sensing | Environment | Chemura et al. (2017) [9], Takahashi and Todo (2014) [10], Hochrainer-Stigler (2014) [11], Asfaw et al. (2018) [123], Huang et al. (2018) [124] |
3. Big Data and Modern Technologies Used in Coffee Supply Chain
4. Towards Sustainable Growth with Big Data and Modern Agricultural Technologies
5. Discussion and Suggestions for Future Works
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges; Annual Report; FAO: Rome, Italy, 2017. [Google Scholar]
- Spanaki, K.; Adams, R.; Mulligan, C.; Lupu, E. Data Supply Chain (DSC): Development and validation of a measurement instrument. Engineering 2016. [Google Scholar] [CrossRef]
- He, M.; Ji, H.; Wang, Q.; Ren, C.; Lougee, R. Big data fueled process management of supply risks: Sensing, prediction, evaluation and mitigation. In Proceedings of the Winter Simulation Conference 2014, Savannah, GA, USA, 7–10 December 2014; pp. 1005–1013. [Google Scholar]
- Bibby, L.; Dehe, B. Defining and assessing industry 4.0 maturity levels–case of the defence sector. Prod. Plan. Control 2018, 29, 1030–1043. [Google Scholar] [CrossRef]
- ODI. Technology and Its Contribution to Pro-Poor Agricultural Development; Pakistan Statistical Year Book; ODI: London, UK, 2016. [Google Scholar]
- Gifford, R. Agricultural Mechanization in Development: Guidelines for Strategy Formulation; FAO: Rome, Italy, 1981. [Google Scholar]
- Rahman, H.; Pamidimarri, D.S.; Valarmathi, R.; Muthurajan, R. Genomics, Proteomics and Metabolomics: Tools for Crop Improvement under Changing Climatic Scenarios. In OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Molden, D.J.; Makin, I.W. Remote sensing for irrigated agriculture: Examples from research and possible applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Chemura, A.; Mutanga, O.; Dube, T. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests. Phys. Chem. Earth Parts A/B/C 2017, 100, 317–324. [Google Scholar] [CrossRef]
- Takahashi, R.; Todo, Y. The impact of a shade coffee certification program on forest conservation using remote sensing and household data. Environ. Impact Assess. Rev. 2014, 44, 76–81. [Google Scholar] [CrossRef]
- Hochrainer-Stigler, S.; van der Velde, M.; Fritz, S.; Pflug, G. Remote sensing data for managing climate risks: Index-based insurance and growth related applications for smallhold-farmers in Ethiopia. Clim. Risk Manag. 2014, 6, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Kassim, M.R.M.; Mat, I.; Harun, A.N. Wireless Sensor Network in precision agriculture application. In Proceedings of the 2014 International Conference on Computer, Information and Telecommunication Systems (CITS), Jeju, Korea, 7–9 July 2014; pp. 1–5. [Google Scholar]
- Biradar, H.B.; Shabadi, L. Review on IOT based multidisciplinary models for smart farming. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017; pp. 1923–1926. [Google Scholar]
- Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Khan, S.U. The rise of “big data” on cloud computing: Review and open research issues. Inf. Syst. 2015, 47, 98–115. [Google Scholar] [CrossRef]
- Mekala, M.S.; Viswanathan, P. A Survey: Smart agriculture IoT with cloud computing. In Proceedings of the 2017 International Conference on Microelectronic Devices, Circuits and Systems (ICMDCS), Vellore, India, 10–12 August 2017; pp. 1–7. [Google Scholar]
- Weber, R.H. Internet of things: Privacy issues revisited. Comput. Law Secur. Rev. 2015, 31, 618–627. [Google Scholar] [CrossRef]
- Tyagi, A.C. Towards a second green revolution. Irrig. Drain. 2016, 4, 388–389. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Wang, X.; Wang, J. Integration of hybrid wireless networks in cloud services oriented enterprise information systems. Enterp. Inf. Syst. 2012, 6, 165–187. [Google Scholar] [CrossRef]
- Pinto, C.; Furukawa, J.; Fukai, H.; Tamura, S. Classification of Green coffee bean images basec on defect types using convolutional neural network (CNN). In Proceedings of the 2017 International Conference on Advanced Informatics, Concepts, Theory, and Applications (ICAICTA), Denpasar, Indonesia, 16–18 August 2017; pp. 1–5. [Google Scholar]
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Manickavasagan, A.; Jayas, D.S.; White, N.D.; Paliwal, J. Applications of thermal imaging in agriculture—A review. In Proceedings of the CSAE/SCGR 2005 Meeting, Winnipeg, MB, Canada, 26–29 June 2005; pp. 26–29. [Google Scholar]
- Sisang, K.; Jamieson, I.; Wongwatcharapaiboon, J.; Chulerk, R. SATI (Smarter Agriculture Thai Initiative): A Smarter Organic Farming Model for Thai Farmers. In Proceedings of the 11th Built Environment Research Associates Conference (BERAC2020), Bangkok, Thailand, 25 June–2 July 2020. [Google Scholar]
- Senanayake, R. Sustainable agriculture: Definitions and parameters for measurement. J. Sustain. Agric. 1991, 1, 7–28. [Google Scholar] [CrossRef] [Green Version]
- Bongiovanni, R.; Lowenberg-DeBoer, J. Precision agriculture and sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural sustainability: Concepts, principles and evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiteerakul, S.; Sopadang, A.; Tippayawong, K.Y.; Tamvimol, K. The Role of Smart Technology in Sustainable Agriculture: A Case Study of Wangree Plant Factory. Sustainability 2020, 12, 4640. [Google Scholar] [CrossRef]
- Ribarics, P. Big Data and its impact on agriculture. Ecocycles 2016, 2, 33–34. [Google Scholar] [CrossRef] [Green Version]
- Goodland, R. The concept of environmental sustainability. Annu. Rev. Ecol. Syst. 1995, 26, 1–24. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Gupta, M.C.; Lee, A.C.; Lee, C.F. Sustainable growth rate, optimal growth rate, and optimal payout ratio: A joint optimization approach. In Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning; World Scientific: Singapore, 2021; pp. 3413–3464. [Google Scholar]
- Kongsom, C.; Panyakul, V. Production and market of certified organic products in Thailand. Int. J. Econ. Manag. Eng. 2016, 10, 2723–2727. [Google Scholar]
- Ditlevsen, K.; Sandøe, P.; Lassen, J. Healthy food is nutritious, but organic food is healthy because it is pure: The negotiation of healthy food choices by Danish consumers of organic food. Food Qual. Prefer. 2019, 71, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, P.; Venkatachalapathy, N. Processing and drying of coffee—A review. Int. J. Eng. Res. Technol. 2014, 3, 784–794. [Google Scholar]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Angkasith, P. Coffee production status and potential of organic Arabica coffee in Thailand. In Proceedings of the First Asian Regional Round-table on Sustainable, Organic and Speciality Coffee Production, Processing and Marketing, Chiang Mai, Thailand, 26–28 February 2001; pp. 26–28. [Google Scholar]
- Dowding, T.J. The Coffee Bean: A Value Chain and Sustainability Initiatives Analysis Melissa Murphy; University of Connecticut: Stamford, CT, USA, 2017. [Google Scholar]
- Lilavanichakul, A. The Economic Impact of Arabica Coffee Farmers’ Participation in Geographical Indication in Northern Highland of Thailand. J. Rural Probl. 2020, 56, 124–131. [Google Scholar] [CrossRef]
- Noppakoonwong, U.; Khomarwut, C.; Hanthewee, M.; Jarintorn, S.; Hassarungsee, S.; Meesook, S.; Daoruang, C.; Naka, P.; Lertwatanakiat, S.; Satayawut, K. Research and development of Arabica coffee in Thailand. In Proceedings of the 25th International Conference on Coffee Science (ASIC), Armenia, Colombia, 8–13 September 2014. [Google Scholar]
- Lezoche, M.; Hernandez, J.E.; Díaz, M.D.M.E.A.; Panetto, H.; Kacprzyk, J. Agri-food 4.0: A survey of the supply chains and technologies for the future agriculture. Comput. Ind. 2020, 117, 103187. [Google Scholar] [CrossRef]
- Contreras-Medina, D.I.; Contreras-Medina, L.M.; Pardo-Nuñez, J.; Olvera-Vargas, L.A.; Rodriguez-Peralta, C.M. Roadmapping as a Driver for Knowledge Creation: A Proposal for Improving Sustainable Practices in the Coffee Supply Chain from Chiapas, Mexico, Using Emerging Technologies. Sustainability 2020, 12, 5817. [Google Scholar] [CrossRef]
- Beuchelt, T.D.; Zeller, M. The role of cooperative business models for the success of smallholder coffee certification in Nicaragua: A comparison of conventional, organic and Organic-Fairtrade certified cooperatives. Renew. Agric. Food Syst. 2013, 28, 195–211. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Apiletti, D.; Pastor, E. Correlating Espresso Quality with Coffee-Machine Parameters by Means of Association Rule Mining. Electronics 2020, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Chedad, A.; Moshou, D.; Aerts, J.-M.; Van Hirtum, A.; Ramon, H.; Berckmans, D. AP—Animal production technology: Recognition system for pig cough based on probabilistic neural networks. J. Agric. Eng. Res. 2001, 79, 449–457. [Google Scholar] [CrossRef]
- Rodriguez, D.; de Voil, P.; Rufino, M.C.; Odendo, M.; van Wijk, M.T. To mulch or to munch? Big modelling of big data. Agric. Syst. 2017, 153, 32–42. [Google Scholar] [CrossRef]
- Karmas, A.; Tzotsos, A.; Karantzalos, K. Geospatial big data for environmental and agricultural applications. In Big Data Concepts, Theories, and Applications; Springer: Berlin/Heidelberg, Germany, 2016; pp. 353–390. [Google Scholar] [CrossRef]
- Lechthaler, F.; Vinogradova, A. The climate challenge for agriculture and the value of climate services: Application to coffee-farming in Peru. Eur. Econ. Rev. 2017, 99, 5–30. [Google Scholar] [CrossRef] [Green Version]
- Gunathilaka, R.; Smart, J.C.; Fleming, C.M. Adaptation to climate change in perennial cropping systems: Options, barriers and policy implications. Environ. Sci. Policy 2018, 82, 108–116. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Quiroga, S.; Moneo, M. A regional comparison of the effects of climate change on agricultural crops in Europe. Clim. Chang. 2012, 112, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Cherrie, M.P.C.; Nichols, G.; Iacono, G.L.; Sarran, C.; Hajat, S.; Fleming, L.E. Pathogen seasonality and links with weather in England and Wales: A big data time series analysis. BMC Public Health 2018, 18, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rao, N. Big data and climate smart agriculture-status and implications for agricultural research and innovation in India. Proc. Indian Natl. Sci. Acad. 2018, 96, 625–640. [Google Scholar] [CrossRef]
- Ingale, V.B.; Jadhav, D.K. Big Data A Great Revolution in Precision Agriculture using Predictive Weather Analysis and Soil Analysis. Int. J. Agric. Innov. Res. 2016, 5. [Google Scholar] [CrossRef]
- Mitiku, F.; Nyssen, J.; Maertens, M. Can Coffee Certification Promote Land-sharing and Protect Forest in Ethiopia? Sustainability 2017. [Google Scholar] [CrossRef]
- Bosselmann, A.S. Mediating factors of land use change among coffee farmers in a biological corridor. Ecol. Econ. 2012, 80, 79–88. [Google Scholar] [CrossRef]
- Estrada, L.L.; Rasche, L.; Schneider, U.A. Modeling land suitability for Coffea arabica L. in Central America. Environ. Model. Softw. 2017, 95, 196–209. [Google Scholar] [CrossRef]
- Papaskiri, T.V.; E Kasyanov, A.; Alekseenko, N.N.; Semochkin, V.N.; Ananicheva, E.P.; Volkov, I.V. Modern technologies of digital land management. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Zeng, C.; Yang, L.; Dong, J. Management of urban land expansion in China through intensity assessment: A big data perspective. J. Clean. Prod. 2017, 153, 637–647. [Google Scholar] [CrossRef]
- Volkov, S.N.; Cherkashina, E.V.; A Shapovalov, D. Digital land management: New approaches and technologies. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- McQueen, R.J.; Garner, S.R.; Nevill-Manning, C.G.; Witten, I.H. Applying machine learning to agricultural data. Comput. Electron. Agric. 1995, 12, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Kempenaar, C.; Lokhorst, C.; Bleumer, E.; Veerkamp, R.; Been, T.; van Evert, F.; Boogaardt, M.; Ge, L.; Wolfert, J.; Verdouw, C. Big Data Analysis for Smart Farming: Results of TO2 Project in Theme Food Security; Wageningen University & Research: Wageningen, The Netherlands, 2016. [Google Scholar]
- Pierna, J.F.; Baeten, V.; Renier, A.M.; Cogdill, R.; Dardenne, P. Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds. J. Chemom. A J. Chemom. Soc. 2004, 18, 341–349. [Google Scholar] [CrossRef]
- Hipólito, J.; Boscolo, D.; Viana, B.F. Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agric. Ecosyst. Environ. 2018, 256, 218–225. [Google Scholar] [CrossRef]
- Perdoná, M.J.; Soratto, R.P. Higher yield and economic benefits are achieved in the macadamia crop by irrigation and intercropping with coffee. Sci. Hortic. 2015, 185, 59–67. [Google Scholar] [CrossRef]
- Mota, L.H.C.; Silva, W.D.; Sermarini, R.A.; Demétrio, C.G.B.; Bento, J.M.S.; Delalibera, I., Jr. Autoinoculation trap for management of Hypothenemus hampei (Ferrari) with Beauveria bassiana (Bals.) in coffee crops. Biol. Control 2017, 111, 32–39. [Google Scholar] [CrossRef]
- Van Evert, F.K.; Fountas, S.; Jakovetic, D.; Crnojevic, V.; Travlos, I.; Kempenaar, C. Big Data for weed control and crop protection. Weed Res. 2017, 57, 218–233. [Google Scholar] [CrossRef] [Green Version]
- Tseng, F.-H.; Cho, H.-H.; Wu, H.-T. Applying big data for intelligent agriculture-based crop selection analysis. IEEE Access 2019, 7, 116965–116974. [Google Scholar] [CrossRef]
- Palanivel, K.; Surianarayanan, C. An approach for prediction of crop yield using machine learning and big data techniques. Int. J. Comput. Eng. Technol. 2019, 10, 110–118. [Google Scholar] [CrossRef]
- Nzeyimana, I.; Hartemink, A.E.; Ritsema, C.; Stroosnijder, L.; Lwanga, E.H.; Geissen, V. Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena 2017, 149, 43–51. [Google Scholar] [CrossRef]
- Tumwebaze, S.B.; Byakagaba, P. Soil organic carbon stocks under coffee agroforestry systems and coffee monoculture in Uganda. Agric. Ecosyst. Environ. 2016, 216, 188–193. [Google Scholar] [CrossRef]
- Alves, G.M.; Cruvinel, P.E. Big data environment for agricultural soil analysis from CT digital images. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016. [Google Scholar]
- Kim, M.; Peng, J.-L.; Sung, K. Causality between climatic and soil factors on Italian ryegrass yield in paddy field via climate and soil big data. J. Anim. Sci. Technol. 2019, 61, 324. [Google Scholar] [CrossRef] [Green Version]
- Rajeswari, V.; Arunesh, K. Analysing soil data using data mining classification techniques. Indian J. Sci. Technol. 2016, 9, 1–4. [Google Scholar] [CrossRef]
- Martins, B.H.; Araujo-Junior, C.F.; Miyazawa, M.; Vieira, K.M.; Milori, D.M. Soil organic matter quality and weed diversity in coffee plantation area submitted to weed control and cover crops management. Soil Tillage Res. 2015, 153, 169–174. [Google Scholar] [CrossRef]
- Pires, L.; Araujo-Junior, C.; Auler, A.; Dias, N.; Junior, M.D.; de Alcântara, E. Soil physico-hydrical properties changes induced by weed control methods in coffee plantation. Agric. Ecosyst. Environ. 2017, 246, 261–268. [Google Scholar] [CrossRef]
- Jareen, B.; Anwar, P.; Yeasmin, S.; Islam, A.K.M.M.; Rashid, H.O.; Sultana, M.T.; Juraimi, A.S. Evaluation of the cultivar mixture strategy as a sustainable tool for managing weeds and enhancing rice yield. Big Data Agric. 2019, 1, 01–09. [Google Scholar] [CrossRef]
- Thorp, K.; Tian, L. A review on remote sensing of weeds in agriculture. Precis. Agric. 2004, 5, 477–508. [Google Scholar] [CrossRef]
- Frelat, R.; Lopez-Ridaura, S.; Giller, K.E.; Herrero, M.; Douxchamps, S.; Djurfeldt, A.A.; Erenstein, O.; Henderson, B.; Kassie, M.; Paul, B.K. Drivers of household food availability in sub-Saharan Africa based on big data from small farms. Proc. Natl. Acad. Sci. USA 2016, 113, 458–463. [Google Scholar] [CrossRef] [Green Version]
- Jozwiak, A.; Milkovics, M.; Lakner, Z. A network-science support system for food chain safety: A case from Hungarian cattle production. Int. Food Agribus. Manag. Rev. 2016, 19, 1–26. [Google Scholar]
- Lucas, M.T.; Chhajed, D. Applications of location analysis in agriculture: A survey. J. Oper. Res. Soc. 2004, 55, 561–578. [Google Scholar] [CrossRef]
- Mabalay, M.R.; Nelson, A.; Setiyono, T.; Quilang, E.J.; Maunahan, A.; Abonete, P.; Rala, A.; Raviz, J.; Skorzus, R.; Loro, J. Remote Sensing-Based Information and Insurance for Crops in Emerging Economies (Riice): The Philippine’s Experience. In Proceedings of the 34th Asian Conference on Remote Sensing, ACRS 2013: Bridging Sustainable Asia, Bali, Indonesia, 20–24 October 2013; pp. 1465–1470. [Google Scholar]
- Ainali, K.; Tsiligiridis, T. Remote sensing Big AgriData for food availability 2018 International Conference on Image and Video Processing, and Artificial Intelligence. In Proceedings of the 2018 International Society for Optics and Photonics, Shanghai, China, 29 October 2018. [Google Scholar]
- Hardt, E.; Borgomeo, E.; dos Santos, R.F.; Pinto, L.F.G.; Metzger, J.P.; Sparovek, G. Does certification improve biodiversity conservation in Brazilian coffee farms? For. Ecol. Manag. 2015, 357, 181–194. [Google Scholar] [CrossRef]
- Hallgren, W.; Beaumont, L.; Bowness, A.; Chambers, L.; Graham, E.; Holewa, H.; Laffan, S.; Mackey, B.; Nix, H.; Price, J.; et al. The biodiversity and climate change virtual laboratory: Where ecology meets big data. Environ. Model. Softw. 2016, 76, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Cifarelli, S.; Losavio, F.; Sonnante, G.; Elia, A. Exploring on-farm agro-biodiversity: A study case of vegetable landraces from Puglia region (Italy). Biodivers. Conserv. 2019, 29, 747–770. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, A.; Panwar, S.; Dash, S.; Sinha, K.; Ray, M. Role of big data in agriculture-A statistical prospective 2018. Agric. Res. New Ser. 2018, 39, 210–215. [Google Scholar]
- Bravo-Monroy, L.; Potts, S.G.; Tzanopoulos, J. Drivers influencing farmer decisions for adopting organic or conventional coffee management practices. Food Policy 2016, 58, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Nguyen, L.D.; Lippe, R.S.; Grote, U. Determinants of farmers’ land use decision-making: Comparative evidence from Thailand and Vietnam. World Dev. 2017, 89, 199–213. [Google Scholar] [CrossRef]
- Cabrera, V.E.; Barrientos-Blanco, J.A.; Delgado, H.; Fadul-Pacheco, L. Symposium review: Real-time continuous decision making using big data on dairy farms. J. Dairy Sci. 2020, 103, 3856–3866. [Google Scholar] [CrossRef]
- Baseca, C.C.; Sendra, S.; Lloret, J.; Tomas, J. A smart decision system for digital farming. Agronomy 2019, 9, 216. [Google Scholar] [CrossRef] [Green Version]
- Bartkowski, B.; Bartke, S. Leverage points for governing agricultural soils: A review of empirical studies of European Farmers’ decision-making. Sustainability 2018, 10, 3179. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Barnes, E. Fuzzy composite programming to combine remote sensing and crop models for decision support in precision crop management. Agric. Syst. 2000, 65, 137–158. [Google Scholar] [CrossRef] [Green Version]
- Emeana, E.M.; Trenchard, L.; Dehnen-Schmutz, K. The Revolution of Mobile Phone-Enabled Services for Agricultural Development (m-Agri Services) in Africa: The Challenges for Sustainability. Sustainability 2020, 12, 485. [Google Scholar] [CrossRef] [Green Version]
- Songa, W. (Syngenta Foundation for Sustainable Agriculture) Presentation on Seed Marketing (SEMIs), Rome, Italy. 2018. Available online: http://erepository.uonbi.ac.ke/bitstream/handle/11295/103523/Songa_%20(Syngenta%20Foundation%20for%20Sustainable%20Agriculture)%20Presentation%20on%20Seed%20Marketing%20(SEMIs).pdf?sequence=1 (accessed on 10 February 2021).
- Akinboro, B. Bringing mobile wallets to Nigerian farmers. Financial Innovation for Smallholder Families. In Digital Financial Services, Pakistan. 2014. Available online: https://www.cgap.org/blog/bringing-mobile-wallets-nigerian-farmers (accessed on 10 February 2021).
- Sufyadi, D.; Apriadi, I. Factors affecting the response of farmers insurance program for farming rice (Autp). Eur. Asian J. Biosci. 2020, 14, 7149–7157. [Google Scholar]
- Quarshie, A.M.; Salmi, A.; Leuschner, R. Sustainability and corporate social responsibility in supply chains: The state of research in supply chain management and business ethics journals. J. Purch. Supply Manag. 2016, 22, 82–97. [Google Scholar] [CrossRef]
- Aliev, K.; Pasero, E.; Jawaid, M.M.; Narejo, S.; Pulatov, A. Internet of plants application for smart agriculture. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 421–429. [Google Scholar] [CrossRef]
- Kulalvaimozhi, V.; Germanus, A.; Peter, J. Image processing in agriculture. Int. J. Adv. Eng. Technol. Manag. Appl. Sci. (IJAETMAS) 2017, 4, 142–151. [Google Scholar]
- Yao, C.; Zhang, Y.; Zhang, Y.; Liu, H. Application of convolutional neural network in classification of high resolution agricultural remote sensing images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Zhang, H.H.; Wang, X. Machine learning for Big Data analytics in plants. Trends Plant Sci. 2014, 19, 798–808. [Google Scholar] [CrossRef]
- Mucherino, A.; Papajorgji, P.; Pardalos, P.M. A survey of data mining techniques applied to agriculture. Oper. Res. 2009, 9, 121–140. [Google Scholar] [CrossRef]
- Tripathi, S.; Srinivas, V.; Nanjundiah, R.S. Downscaling of precipitation for climate change scenarios: A support vector machine approach. J. Hydrol. 2006, 330, 621–640. [Google Scholar] [CrossRef]
- Armstrong, L.; Diepeveen, D.; Maddern, R. The application of data mining techniques to characterize agricultural soil profiles. In Proceedings of the 6th Australasian Data Mining Conference (AusDM 2007), Gold Coast, QLD, Australia, 3–4 December 2007; pp. 85–100. [Google Scholar]
- Meyer, G.E.; Neto, J.C.; Jones, D.D.; Hindman, T.W. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. Comput. Electron. Agric. 2004, 42, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Galford, G.L.; Mustard, J.F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens. Environ. 2008, 112, 576–587. [Google Scholar] [CrossRef]
- Vibhute, A.; Bodhe, S.K. Applications of image processing in agriculture: A survey. Int. J. Comput. Appl. 2012, 52. [Google Scholar] [CrossRef]
- Rajeswari, S.; Suthendran, K.; Rajakumar, K. A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics. In Proceedings of the 2017 international conference on intelligent computing and control (I2C2), Coimbatore, India, 23–24 June 2017; pp. 1–5. [Google Scholar]
- Mekonnen, Y.; Namuduri, S.; Burton, L.; Sarwat, A.; Bhansali, S. Machine learning techniques in wireless sensor network based precision agriculture. J. Electrochem. Soc. 2020, 167, 037522. [Google Scholar] [CrossRef]
- King, T.; Cole, M.; Farber, J.M.; Eisenbrand, G.; Zabaras, D.; Fox, E.M.; Hill, J.P. Food safety for food security: Relationship between global megatrends and developments in food safety. Trends Food Sci. Technol. 2017, 68, 160–175. [Google Scholar] [CrossRef]
- Ahearn, M.C.; Armbruster, W.; Young, R. Big data’s potential to improve food supply chain environmental sustainability and food safety. Int. Food Agribus. Manag. Rev. 2016, 19, 155–171. [Google Scholar]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Shinghal, D.; Srivastava, N. Wireless Sensor Networks in Agriculture: For Potato Farming. Neelam, Wireless Sensor Net-works in Agriculture: For Potato Farming, Malaysia. 2017. Available online: https://ssrn.com/abstract=3041375 (accessed on 10 February 2021).
- Rathinam, D.D.K.; Surendran, D.; Shilpa, A.; Grace, A.S.; Sherin, J. Modern agriculture using wireless sensor network (wsn). In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019. [Google Scholar]
- Mocanu, M.; Cristea, V.; Negru, C.; Pop, F.; Ciobanu, V.; Dobre, C. Cloud-based architecture for farm management. In Proceedings of the 2015 20th International Conference on Control Systems and Computer Science, Bucharest, Romania, 27–29 May 2015. [Google Scholar]
- Goraya, M.S.; Kaur, H. Cloud computing in agriculture. HCTL Open Int. J. Technol. Innov. Res. (IJTIR) 2015, 16, 1814–2321. [Google Scholar]
- Elijah, O.; Rahman, T.A.; Orikumhi, I.; Leow, C.Y.; Hindia, M.N. An overview of Internet of Things (IoT) and data analytics in agriculture: Benefits and challenges. IEEE Internet Things J. 2018, 5, 3758–3773. [Google Scholar] [CrossRef]
- Yoon, C.; Huh, M.; Kang, S.-G.; Park, J.; Lee, C. Implement smart farm with IoT technology. In Proceedings of the 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon, Korea, 11–14 February 2018. [Google Scholar]
- Umamaheswari, S.; Arjun, R.; Meganathan, D. Weed detection in farm crops using parallel image processing. In Proceedings of the 2018 Conference on Information and Communication Technology (CICT), Jabalpur, India, 26–28 October 2018. [Google Scholar]
- Khirade, S.D.; Patil, A. Plant disease detection using image processing. In Proceedings of the 2015 International Conference on Computing Communication Control and Automation, Pune, India, 26–27 February 2015. [Google Scholar]
- Barbosa, A.; Trevisan, R.; Hovakimyan, N.; Martin, N.F. Modeling yield response to crop management using convolutional neural networks. Comput. Electron. Agric. 2020, 170, 105197. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar] [CrossRef]
- Adhitya, Y.; Prakosa, S.W.; Köppen, M.; Leu, J.-S. Convolutional Neural Network Application in Smart Farming. In International Conference on Soft Computing in Data Science; Springer: Singapore, 2019. [Google Scholar]
- Asfaw, E.; Suryabhagavan, K.; Argaw, M. Soil salinity modeling and mapping using remote sensing and GIS: The case of Wonji sugar cane irrigation farm, Ethiopia. J. Saudi Soc. Agric. Sci. 2018, 17, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Chen, Z.-X.; Tao, Y.; Huang, X.-Z.; Gu, X.-F. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Pereira, A.C.; Romero, F. A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf. 2017, 13, 1206–1214. [Google Scholar] [CrossRef]
- Kodali, R.K.; Soratkal, S.; Boppana, L. WSN in coffee cultivation. In Proceedings of the 2016 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 29–30 April 2016; pp. 661–666. [Google Scholar]
- Bolaños, P.; Céspedes, S.; Cuéllar, J.C. Prototype of a Wireless Sensor Network for Monitoring the Coffee Drying Process. In Proceedings of the IV School of Systems and Networks (SSN 2018), Valdivia, Chile, 29–31 October 2018; pp. 61–63. [Google Scholar]
- Rodríguez, J.P.; Corrales, D.C.; Aubertot, J.-N.; Corrales, C. A computer vision system for automatic cherry beans detection on coffee trees. Pattern Recognit. Lett. 2020. [Google Scholar] [CrossRef]
- Faridah, F.; Parikesit, G.O.; Ferdiansjah, F. Coffee bean grade determination based on image parameter. Telkomnika (Telecommun. Comput. Electron. Control) 2013, 9, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Faria, F.; Calumby, R.; Torres, R.d.S.; Lamparelli, R.A. A genetic programming approach for coffee crop recognition. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 3418–3421. [Google Scholar]
- Smith, J. Coffee Landscapes: Specialty Coffee, Terroir, and Traceability in Costa Rica. Cult. Agric. Food Environ. 2018, 40, 36–44. [Google Scholar] [CrossRef]
- Thiruchelvam, V.; Mughisha, A.S.; Shahpasand, M.; Bamiah, M. Blockchain-based technology in the coffee supply chain trade: Case of burundi coffee. J. Telecommun. Electron. Comput. Eng. (JTEC) 2018, 10, 121–125. [Google Scholar]
- Valverde, J.; Rosello, V.; Mujica, G.; Portilla, J.; Uriarte, A.; Riesgo, T. Wireless sensor network for environmental monitoring: Application in a coffee factory. Int. J. Distrib. Sens. Netw. 2011, 8, 638067. [Google Scholar] [CrossRef] [Green Version]
- Kodali, R.K.; Rawat, N.; Boppana, L. WSN sensors for precision agriculture. In Proceedings of the 2014 IEEE Region 10 Symposium, Kuala Lumpur, Malaysia, 14–16 April 2014; pp. 651–656. [Google Scholar]
- Kodali, R.K.; Rawat, N. Wireless sensor network in mango farming. In Proceedings of the 2013 Nirma University International Conference on Engineering (NUiCONE), Ahmedabad, India, 28–30 November 2013; pp. 1–6. [Google Scholar]
- Nath, B.; Chaudhuri, S. Application of cloud computing in agricultural sectors for economic development. In Interplay of Economics, Politics and Society for Inclusive Growth-International Conference organized by RTC and GNHC; UNDP: New York, NY, USA, 2012. [Google Scholar]
- Zhong, R.Y.; Lan, S.; Xu, C.; Dai, Q.; Huang, G.Q. Visualization of RFID-enabled shopfloor logistics Big Data in Cloud Manufacturing. Int. J. Adv. Manuf. Technol. 2016, 84, 5–16. [Google Scholar] [CrossRef]
- de Oliveira, E.M.; Leme, D.S.; Barbosa, B.H.G.; Rodarte, M.P.; Pereira, R.G.F.A. A computer vision system for coffee beans classification based on computational intelligence techniques. J. Food Eng. 2016, 171, 22–27. [Google Scholar] [CrossRef]
- Kılıç, K.; Boyacı, I.H.; Köksel, H.; Küsmenoğlu, İ. A classification system for beans using computer vision system and artificial neural networks. J. Food Eng. 2007, 78, 897–904. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent manufacturing in the context of industry 4.0: A review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Shams, S.; Newaz, S.H.S.; Karri, R.R. Information and Communication Technology for Small-Scale Farmers: Challenges and Opportunities. In Smart Village Technology; Springer: Cham, Switzerland, 2020; pp. 159–179. [Google Scholar]
- Rutayisire, J.; Markon, S.; Raymond, N. IoT based Coffee quality monitoring and processing system in Rwanda. In Proceedings of the 2017 International Conference on Applied System Innovation (ICASI), Sapporo, Japan, 13–17 May 2017; pp. 1209–1212. [Google Scholar]
- Shrouf, F.; Ordieres, J.; Miragliotta, G. Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management, Selangor, Malaysia, 9–12 December 2014; pp. 697–701. [Google Scholar]
- Zhong, W.; Xie, Y.; He, X. Research of the Rice Image Segmentation Based on Color Linear Array CCD. Int. J. Control Autom. 2014, 7, 223–232. [Google Scholar] [CrossRef]
- Jie, Y.; Za, K.; Ruoyu, Z.; Xiaoli, S.; Wanchao, H.; Zhangtao, Y.; Yang, L. Data acquisition system for pneumatic actuator of the Tomato Color Sorter based on virtual instrument. In Proceedings of the 2011 IEEE International Conference on Computer Science and Automation Engineering, Shanghai, China, 10–12 June 2011; pp. 671–675. [Google Scholar]
- Burugupalli, C.C.; Deekshith, D.; KR, K.B.; Kumar, D.D.; HR, M.N. Design and fabrication of coffee bean sorter machine. Int. J. Adv. Res. Ideas Innov. Technol. 2019, 5, 1531–1533. [Google Scholar]
- Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of remote sensing in agriculture-A Review. Int. J. Current Microbiol. Appl. Sci. 2019, 8, 2270–2283. [Google Scholar] [CrossRef]
- Gafesa, F.E. Aggregation for Sustainable Traceability in Smallholder Coffee Producers: Cases of Ethiopia. RAIS Collect. Vol. –Econ. Sci. 2018, 2, 47–71. [Google Scholar]
- Hameed, A.; Hussain, S.A.; Ijaz, M.U.; Ullah, S.; Pasha, I.; Suleria, H.A.R. Farm to consumer: Factors affecting the organoleptic characteristics of coffee. Ii Postharvest Process. Factors. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1184–1237. [Google Scholar] [CrossRef] [Green Version]
- Di Donfrancesco, B.; Guzman, N.G.; Chambers, I.V.E. Comparison of Results from Cupping and Descriptive Sensory Analysis of C olombian Brewed Coffee. J. Sens. Stud. 2014, 29, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.E. Coffee Quality, Land Use, and Processing in the Cajamarca Region of Peru, USA. 2017. Available online: https://www.semanticscholar.org/paper/COFFEE-QUALITY%2C-LAND-USE%2C-AND-PROCESSING-IN-THE-OF-Ferguson/c658054cab699b3db7f5b6f0585746bd043266ce#paper-header (accessed on 10 February 2021).
- Kamilaris, A.; Fonts, A.; Prenafeta-Boldύ, F.X. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 2019, 91, 640–652. [Google Scholar] [CrossRef] [Green Version]
- Hackett, R. How this startup plans to use blockchain to revolutionize the coffee supply chain. Fortune, 24 October 2017.
- Nguyen, G.N.T.; Sarker, T. Sustainable coffee supply chain management: A case study in Buon Me Thuot City, Daklak, Vietnam. Int. J. Corp. Soc. Responsib. 2018, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Van der Vossen, H. A critical analysis of the agronomic and economic sustainability of organic coffee production. Exp. Agric. 2005, 41, 449–473. [Google Scholar] [CrossRef] [Green Version]
- Kilcher, L. How organic agriculture contributes to sustainable development. J. Agric. Res. Trop. Subtrop. Suppl. 2007, 89, 31–49. [Google Scholar]
- D’Souza, M. Soil acidity and its management (liming). Indian Coffee 2011, 75, 12–14. [Google Scholar]
- Bacon, C.M.; Méndez, V.E.; Fox, J.A. Cultivating sustainable coffee: Persistent paradoxes. In Confronting the Coffee Crisis: Fair Trade, Sustainable Livelihoods and Ecosystems in Mexico and Central America; MIT Press: Cambridge, MA, USA, 2008; pp. 337–372. [Google Scholar]
- Kilian, B.; Jones, C.; Pratt, L.; Villalobos, A. Is sustainable agriculture a viable strategy to improve farm income in Central America? A case study on coffee. J. Bus. Res. 2006, 59, 322–330. [Google Scholar] [CrossRef]
- Coradi, P.C.; de Oliveira, M.B.; de Carneiro, L.; de Souza, G.A.C.; Elias, M.C.; Brackmann, A.; Teodoro, P.E. Technological and sustainable strategies for reducing losses and maintaining the quality of soybean grains in real production scale storage units. J. Stored Prod. Res. 2020, 87, 101624. [Google Scholar] [CrossRef]
- Eswaran, H.; Lal, R.; Reich, P. Land degradation: An overview. Response Land Degrad. 2019, 20–35. [Google Scholar] [CrossRef]
- Fereres, E.; Orgaz, F.; Gonzalez-Dugo, V. Reflections on food security under water scarcity. J. Exp. Bot. 2011, 62, 4079–4086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diao, X.; Pratt, A.N. Growth options and poverty reduction in Ethiopia–An economy-wide model analysis. Food Policy 2007, 32, 205–228. [Google Scholar] [CrossRef]
- Horrigan, L.; Lawrence, R.S.; Walker, P. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environ. Health Perspect. 2002, 110, 445–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, T. Hardware-based image processing for high-speed inspection of grains. Comput. Electron. Agric. 2009, 69, 12–18. [Google Scholar] [CrossRef]
- Tippayawong, N.; Tantakitti, C.; Thavornun, S. Energy efficiency improvements in longan drying practice. Energy 2008, 33, 1137–1143. [Google Scholar] [CrossRef]
- Tippayawong, N.; Tantakitti, C.; Thavornun, S. Performance Enhancement of Traditional Unpeeled Longan Dryers with Design Modification. Ama Agric. Mech. Asia Afr. Lat. Am. 2009, 40, 56. [Google Scholar]
- Pintana, P.; Thanompongchart, P.; Phimphilai, K.; Tippayawong, N. Combined effect of air temperature and velocity on drying of Thai rice cracker. Eng. Appl. Sci. Res. 2016, 43, 244–246. [Google Scholar]
- Pintana, P.; Thanompongchart, P.; Phimphilai, K.; Tippayawong, N. Improvement of Airflow Distribution in a Glutinous Rice Cracker Drying Cabinet. Energy Procedia 2017, 138, 325–330. [Google Scholar] [CrossRef]
- Patelli, N.; Mandrioli, M. Blockchain technology and traceability in the agrifood industry. J. Food Sci. 2020, 85, 3670–3678. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- El Bilali, H.; Allahyari, M.S. Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Inf. Process. Agric. 2018, 5, 456–464. [Google Scholar] [CrossRef]
- Basso, B.; Shuai, G.; Zhang, J.; Robertson, G.P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Wiseman, L.; Sanderson, J.; Zhang, A.; Jakku, E. Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. Njas-Wagening. J. Life Sci. 2019, 90, 100301. [Google Scholar] [CrossRef]
- Pretty, J.; Bharucha, Z.P. Sustainable intensification in agricultural systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef] [PubMed]
NO | Agricultural Area | Ref |
---|---|---|
1 | Weather | Lechthaler, F. and Vinogradova, A. (2016) [47], Gunathilaka R.P.D. et al. (2018) [48], and Iglesias et al. (2012) [49], Cherrie et al. (2018) [50], Rao (2018) [51], Ingale and Jadhav (2016) [52] |
2 | Land | Mitiku, F. (2017) [53], Bosselmann, A.S. (2012) [54], and Estrada et al. (2017) [55], Papaskiri et al. (2019) [56], Zeng et al. (2017) [57], Volkov et al. (2019) [58] |
3 | Animals | McQueen et al. (1995) [59], Kempenaar et al. (2016) [60], Chedad et al. (2001) [44], and Pierna et al. (2004) [61] |
4 | Crops | Hipólito, J. (2018) [62], Perdonáa M.J. and, Sorattob R.P. (2015) [63] and Mota L.H.C.(2017) [64] (Mota), Van Evert et al. (2017) [65], Tseng and Wu (2019) [66], Palanivel et al. (2019) [67] |
5 | Soil | Nzeyimana et al. (2017) [68], Tumwebaze and Byakagaba (2016) [69], Alves and Cruvinel (2016) [70], Kim et al. (2019) [71], Rajeswari and Arunesh (2017) [72], Ingale and Jadhav (2016) [52] |
6 | Weeds | Martins et al. (2015) [73], Pires, L.F. (2017) [74], Jareen et al. (2019) [75], Thorp and Tian (2004) [76] |
7 | Food security | Frelat et al. (2016) [77], Jozwiak et al. (2016) [78], Lucas and Chhajed (2004) [79], Mabalay et al. (2013) [80], Tsiligiridis and Ainali (2018) [81] |
8 | Biodiversity | Hardt et al. (2015) [82], Hallgren et al. (2016) [83], Conversa et al. (2020) [84], Kumar and Kumar (2018) [85] |
9 | Farmers’ decision making | Bravo-Monroy et al. (2016) [86], Nguyen et al. (2017) [87], Cabrera et al. (2020) [88], Cambra Baseca et al. (2019) [89], Bartkowski and Bartke (2018) [90], Jones and Barnes [91] |
10 | Farmers’ insurance | Emeana et al. (2010) [92], Martin and Clapp (2015) [73], Songa W. (2018) [93], Akinboro (2014) [94], Sufyadi and I (2020) [95] |
No | Technique and Tool | Ref. |
---|---|---|
1 | Wireless sensor networks (WSN) | Kodali et al. (2016) [126], Bolaños et al. (2018) [127] |
2 | Cloud computing | Rodríquez et al. (2020) [128] |
3 | Internet of Things (IoT) | Bolaños et al. (2018) [127] |
4 | Image processing | Faridah et al. (2013) [129] |
5 | Remote sensing | Santos et al. (2010) [130] |
6 | Traceability technology | Smith (2018) [131] |
7 | Blockchain | Thiruchelvam et al. (2018) [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kittichotsatsawat, Y.; Jangkrajarng, V.; Tippayawong, K.Y. Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies. Sustainability 2021, 13, 4593. https://doi.org/10.3390/su13084593
Kittichotsatsawat Y, Jangkrajarng V, Tippayawong KY. Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies. Sustainability. 2021; 13(8):4593. https://doi.org/10.3390/su13084593
Chicago/Turabian StyleKittichotsatsawat, Yotsaphat, Varattaya Jangkrajarng, and Korrakot Yaibuathet Tippayawong. 2021. "Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies" Sustainability 13, no. 8: 4593. https://doi.org/10.3390/su13084593
APA StyleKittichotsatsawat, Y., Jangkrajarng, V., & Tippayawong, K. Y. (2021). Enhancing Coffee Supply Chain towards Sustainable Growth with Big Data and Modern Agricultural Technologies. Sustainability, 13(8), 4593. https://doi.org/10.3390/su13084593