Forecasting Rainfed Agricultural Production in Arid and Semi-Arid Lands Using Learning Machine Methods: A Case Study
Abstract
:1. Introduction
2. Review of Literature
3. Geographical Characteristics of Kermanshah Province
4. Methodology
4.1. Crop Yield Parameters
4.1.1. Indicators of Plant Growth in the Region
4.1.2. Indicators of Environmental Conditions of Plant Growth
4.1.3. CHIRPS Data
4.1.4. Rainfed Chickpea Farming and Yield Statistics of the Area
4.2. Machine Learning (ML) Methods
4.2.1. Support Vector Machine
4.2.2. Random Forest
4.2.3. K-Nearest Neighbors
4.3. Cross Validation
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Future Study
Nomenclature
BPNN | Back-Propagation Neural Networks |
CART | Classification and Regression Trees |
CCI | Climate Change Initiative |
CHIRPS | Climate Hazards Group InfraRed Precipitation |
CC | Correlation Coefficient |
CHPclim | Climate Hazard group Precipitation climatology |
DL | Deep Learning |
DEM | Digital Elevation Model |
EVI | Enhanced Vegetation Index |
ESA | European Space Agency |
ET | Evapotranspiration |
ERT | Extremely Randomized Trees |
FPAR | Fraction of Photosynthetically Active Radiation |
GPR | Gaussian Process Regression |
GFSAD | Global Food-Support Analysis Data |
GPP | Gross Primary Production |
LAI | Leaf Area Index |
LOOCV | Leave One Out Cross Validation |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MBE | Mean Bias Error |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MLR | Multiple Linear Regression |
NASA | National Aeronautics and Space Administration |
KNN | K-Nearest Neighbors |
RF | Random Forest |
RMSE | Root Mean Square Error |
SM | Soil Moisture |
SMAP | Soil Moisture Active Passive |
SOM | Soli Organic Matter |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
NDVI | Normalized difference vegetation index |
TIR | Thermal infrared |
USDA | United States Department of Agriculture |
USGS | United States Geological Survey |
Appendix A
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 6.3 | 14.3 | 10.0 | 11.0 | 6.2 | 16.9 | 9.1 | 11.5 | 8.0 | 13.3 | 6.1 |
Temperature max (°C) | 24.0 | 30.2 | 23.5 | 24.6 | 23.6 | 31.5 | 23.9 | 24.6 | 24.4 | 30.3 | 22.8 |
Average temperature (°C) | 15.4 | 21.4 | 17.2 | 17.6 | 15.2 | 24.5 | 16.6 | 18.1 | 18.6 | 21.9 | 14.8 |
Precipitation (mm) | 2.1 | 1.8 | 2.1 | 2.2 | 1.8 | 0.7 | 2.3 | 1.7 | 2.3 | 1.2 | 1.7 |
Humidity max (g/Kg) | 76.8 | 59.9 | 59.8 | 61.7 | 81.1 | 57.1 | 68.1 | 58.4 | 69.7 | 68.7 | 71.9 |
Humidity min (g/Kg) | 29.4 | 29.1 | 27.9 | 27.4 | 30.9 | 22.6 | 26.8 | 30.0 | 28.2 | 25.8 | 29.7 |
Average humidity (g/Kg) | 52.6 | 44.2 | 42.5 | 44.3 | 54.1 | 38.7 | 45.9 | 44.1 | 44.2 | 47.0 | 49.8 |
Dry temperature (°C) | 3.5 | 6.0 | 1.7 | 2.3 | 4.0 | 4.8 | 2.3 | 3.0 | 2.9 | 7.1 | 2.0 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 |
Enhanced vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 27.2 | 28.3 | 27.9 | 30.1 | 28.6 | 22.4 | 31.3 | 25.9 | 27.7 | 28.3 | 21.7 |
Leaf area index | 5.9 | 5.9 | 6.1 | 6.5 | 6.6 | 4.3 | 7.2 | 5.4 | 6.2 | 5.8 | 4.6 |
Gross primary production (kg*C/m2) | 157.7 | 148.6 | 173.8 | 181.2 | 180.8 | 88.8 | 199.8 | 149.2 | 172.1 | 149.7 | 137.5 |
Evapotranspiration (kg/m2) | 88.2 | 75.9 | 92.5 | 99.9 | 94.0 | 36.9 | 106.3 | 94.1 | 94.3 | 73.4 | 87.2 |
Surface soil moisture (mm) | 11.7 | 10.3 | 12.9 | 12.9 | 11.4 | 7.5 | 13.0 | 11.2 | 12.3 | 8.1 | 12.6 |
Subsurface soil moisture (mm) | 57.0 | 46.0 | 57.3 | 56.9 | 50.2 | 28.4 | 62.8 | 49.7 | 64.9 | 33.6 | 55.7 |
Real value of production (Kg/ha) | 622 | 519 | 534 | 411 | 550 | 525 | 696 | 508 | 617 | 590 | 400 |
Predicted production by RF (Kg/ha) | 565 | 512 | 486 | 445 | 525 | 488 | 613 | 485 | 552 | 561 | 424 |
Predicted production by SVR (Kg/ha) | 509 | 511 | 480 | 487 | 520 | 525 | 516 | 478 | 500 | 478 | 448 |
Predicted production by KNN (Kg/ha) | 461 | 426 | 493 | 517 | 493 | 463 | 550 | 468 | 491 | 500 | 472 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 6.9 | 13.8 | 9.5 | 10.8 | 5.9 | 17.2 | 9.1 | 11.9 | 7.7 | 14.1 | 5.8 |
Temperature max (°C) | 23.4 | 28.9 | 22.9 | 23.8 | 23.2 | 31.1 | 23.2 | 24.2 | 24.0 | 30.0 | 22.2 |
Average temperature (°C) | 15.5 | 22.0 | 18.2 | 17.2 | 14.8 | 24.4 | 16.1 | 18.0 | 18.2 | 21.9 | 14.4 |
Precipitation (mm) | 1.7 | 2.0 | 2.2 | 2.3 | 2.2 | 1.7 | 2.5 | 2.0 | 2.2 | 1.3 | 1.8 |
Humidity max (g/Kg) | 78.7 | 57.7 | 62.0 | 64.7 | 83.6 | 59.5 | 72.3 | 60.5 | 72.1 | 70.7 | 74.9 |
Humidity min (g/Kg) | 30.1 | 30.0 | 29.4 | 30.1 | 31.4 | 23.2 | 29.2 | 31.2 | 28.6 | 26.9 | 30.8 |
Average humidity (g/Kg) | 54.0 | 43.1 | 41.9 | 46.9 | 55.5 | 40.1 | 50.0 | 45.8 | 44.7 | 48.7 | 51.5 |
Dry temperature (°C) | 4.2 | 6.7 | 2.8 | 3.6 | 4.1 | 6.2 | 3.6 | 4.1 | 3.3 | 8.1 | 2.7 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Enhanced vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 34.2 | 33.3 | 34.3 | 39.0 | 35.4 | 25.9 | 39.7 | 30.7 | 35.7 | 33.4 | 28.7 |
Leaf area index | 7.6 | 7.2 | 7.6 | 8.9 | 8.3 | 5.1 | 9.5 | 6.4 | 8.2 | 7.2 | 6.3 |
Gross primary production (kg*C/m2) | 230.8 | 222.6 | 239.1 | 266.9 | 245.1 | 168.1 | 284.4 | 206.2 | 248.9 | 223.4 | 191.1 |
Evapotranspiration (kg/m2) | 85.6 | 75.2 | 87.8 | 108.7 | 89.5 | 43.3 | 106.7 | 73.0 | 90.9 | 73.9 | 83.6 |
Surface soil moisture (mm) | 12.7 | 10.1 | 13.9 | 12.7 | 10.6 | 7.6 | 13.7 | 9.7 | 13.4 | 8.3 | 12.4 |
Subsurface soil moisture (mm) | 62.9 | 45.2 | 62.5 | 56.3 | 46.7 | 29.1 | 67.2 | 39.8 | 71.2 | 34.4 | 55.0 |
Real value of production (Kg/ha) | 511 | 495 | 525 | 538 | 507 | 560 | 684 | 550 | 523 | 546 | 500 |
Predicted production by RF (Kg/ha) | 523 | 503 | 525 | 557 | 517 | 469 | 631 | 528 | 542 | 533 | 487 |
Predicted production by SVR (Kg/ha) | 511 | 512 | 509 | 538 | 507 | 487 | 566 | 514 | 523 | 518 | 500 |
Predicted production by KNN (Kg/ha) | 505 | 543 | 515 | 531 | 468 | 558 | 546 | 563 | 531 | 543 | 445 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 6.8 | 15.2 | 10.6 | 10.7 | 5.9 | 17.2 | 9.2 | 11.2 | 7.2 | 13.7 | 5.9 |
Temperature max (°C) | 25.2 | 29.2 | 24.4 | 25.3 | 25.2 | 31.8 | 24.9 | 25.0 | 26.4 | 30.5 | 23.6 |
Average temperature (°C) | 16.5 | 22.5 | 19.7 | 18.4 | 16.0 | 25.0 | 17.1 | 18.3 | 17.5 | 22.5 | 15.4 |
Precipitation (mm) | 0.7 | 0.7 | 0.8 | 0.9 | 0.9 | 0.3 | 0.8 | 0.9 | 0.6 | 0.4 | 0.7 |
Humidity max (g/Kg) | 69.5 | 48.4 | 48.5 | 53.7 | 73.3 | 48.0 | 60.2 | 53.0 | 55.9 | 60.2 | 62.3 |
Humidity min (g/Kg) | 28.0 | 22.0 | 21.1 | 21.8 | 23.7 | 17.1 | 20.7 | 26.0 | 18.0 | 18.9 | 23.9 |
Average humidity (g/Kg) | 47.1 | 34.1 | 31.4 | 36.1 | 45.5 | 30.1 | 38.7 | 38.8 | 35.1 | 38.3 | 40.6 |
Dry temperature (°C) | 3.4 | 3.4 | −0.8 | 0.0 | 2.0 | 2.3 | −0.3 | 1.2 | −1.4 | 4.3 | −0.6 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Enhanced vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 26.6 | 28.4 | 30.7 | 37.6 | 33.1 | 19.4 | 37.7 | 28.9 | 28.8 | 28.6 | 24.8 |
Leaf area index | 5.3 | 5.8 | 6.6 | 8.6 | 7.5 | 3.5 | 9.0 | 6.0 | 6.2 | 5.9 | 5.1 |
Gross primary production (kg*C/m2) | 134.7 | 134.5 | 161.1 | 198.9 | 176.8 | 62.4 | 204.8 | 136.6 | 152.0 | 137.4 | 129.0 |
Evapotranspiration (kg/m2) | 46.8 | 50.3 | 59.7 | 83.3 | 63.9 | 19.4 | 79.5 | 55.6 | 54.7 | 52.1 | 50.1 |
Surface soil moisture (mm) | 4.4 | 4.0 | 4.1 | 5.1 | 4.0 | 3.3 | 4.5 | 4.1 | 4.8 | 3.3 | 5.1 |
Subsurface soil moisture (mm) | 21.7 | 18.1 | 18.4 | 23.7 | 17.6 | 13.0 | 22.4 | 17.0 | 26.5 | 14.0 | 23.7 |
Real value of production (Kg/ha) | 300 | 270 | 306 | 250 | 290 | 230 | 394 | 235 | 305 | 225 | 295 |
Predicted production by RF (Kg/ha) | 332 | 291 | 389 | 345 | 401 | 291 | 395 | 287 | 389 | 289 | 350 |
Predicted production by SVR (Kg/ha) | 367 | 341 | 477 | 402 | 460 | 371 | 406 | 343 | 447 | 357 | 349 |
Predicted production by KNN (Kg/ha) | 386 | 344 | 481 | 463 | 479 | 382 | 463 | 337 | 455 | 387 | 374 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 6.9 | 15.7 | 10.3 | 11.4 | 6.5 | 17.5 | 10.0 | 12.4 | 8.1 | 13.9 | 6.6 |
Temperature max (°C) | 24.2 | 28.7 | 23.5 | 24.9 | 24.5 | 31.7 | 24.4 | 24.9 | 24.7 | 30.6 | 23.2 |
Average temperature (°C) | 15.9 | 24.4 | 18.8 | 19.9 | 15.7 | 26.9 | 17.3 | 20.6 | 19.0 | 22.4 | 17.1 |
Precipitation (mm) | 1.4 | 1.0 | 1.1 | 0.9 | 0.7 | 0.9 | 0.9 | 1.3 | 1.0 | 1.0 | 1.0 |
Humidity max (g/Kg) | 72.4 | 47.8 | 57.3 | 54.5 | 78.9 | 49.9 | 62.6 | 51.3 | 67.4 | 65.9 | 68.1 |
Humidity min (g/Kg) | 25.2 | 25.2 | 24.5 | 22.8 | 26.0 | 19.7 | 23.3 | 26.9 | 23.4 | 23.7 | 25.9 |
Average humidity (g/Kg) | 48.1 | 33.9 | 37.3 | 35.4 | 50.5 | 30.5 | 41.7 | 36.5 | 39.9 | 44.4 | 41.6 |
Dry temperature (°C) | 2.4 | 5.1 | 1.4 | 1.3 | 3.5 | 3.8 | 1.6 | 2.8 | 2.1 | 6.7 | 1.6 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 |
Enhanced vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 31.4 | 30.0 | 29.4 | 32.8 | 30.1 | 25.0 | 35.6 | 27.0 | 31.8 | 29.2 | 23.7 |
Leaf area index | 6.8 | 6.3 | 6.2 | 6.9 | 6.8 | 5.0 | 8.1 | 5.3 | 7.0 | 6.0 | 4.9 |
Gross primary production (kg*C/m2) | 179.6 | 148.0 | 178.1 | 186.9 | 181.5 | 89.3 | 214.3 | 131.2 | 190.6 | 144.3 | 141.7 |
Evapotranspiration (kg/m2) | 78.1 | 63.6 | 75.9 | 82.9 | 76.4 | 37.7 | 88.4 | 58.2 | 80.3 | 60.2 | 70.4 |
Surface soil moisture (mm) | 6.7 | 5.8 | 8.6 | 7.1 | 6.8 | 4.5 | 7.4 | 5.4 | 7.3 | 4.9 | 7.5 |
Subsurface soil moisture (mm) | 32.2 | 28.4 | 38.4 | 34.3 | 31.3 | 17.8 | 39.0 | 22.4 | 39.0 | 20.8 | 35.7 |
Real value of production (Kg/ha) | 608 | 554 | 661 | 477 | 522 | 500 | 685 | 530 | 552 | 762 | 405 |
Predicted production by RF (Kg/ha) | 415 | 516 | 592 | 501 | 489 | 447 | 636 | 451 | 569 | 658 | 490 |
Predicted production by SVR (Kg/ha) | 454 | 469 | 483 | 461 | 462 | 500 | 470 | 358 | 475 | 418 | 435 |
Predicted production by KNN (Kg/ha) | 427 | 431 | 463 | 475 | 427 | 431 | 544 | 362 | 513 | 419 | 431 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 6.5 | 13.5 | 9.8 | 10.6 | 6.0 | 17.1 | 9.4 | 11.6 | 8.0 | 13.8 | 6.0 |
Temperature max (°C) | 23.7 | 27.8 | 22.8 | 23.8 | 23.9 | 30.9 | 23.6 | 23.8 | 24.5 | 29.7 | 22.8 |
Average temperature (°C) | 15.6 | 23.4 | 18.3 | 18.8 | 15.1 | 26.1 | 16.4 | 19.3 | 18.6 | 21.9 | 16.3 |
Precipitation (mm) | 0.5 | 0.5 | 0.8 | 1.4 | 0.6 | 0.3 | 0.8 | 0.9 | 0.7 | 0.6 | 0.8 |
Humidity max (g/Kg) | 71.3 | 49.5 | 53.3 | 57.6 | 76.4 | 47.8 | 63.5 | 55.3 | 62.9 | 65.6 | 68.7 |
Humidity min (g/Kg) | 23.7 | 24.8 | 23.7 | 25.6 | 25.8 | 17.1 | 24.8 | 26.8 | 21.9 | 21.5 | 26.3 |
Average humidity (g/Kg) | 45.8 | 33.9 | 34.7 | 38.0 | 48.8 | 28.1 | 42.8 | 37.9 | 36.9 | 41.9 | 42.1 |
Dry temperature (°C) | 1.5 | 4.4 | 0.2 | 1.8 | 2.5 | 2.9 | 1.6 | 2.2 | 1.0 | 5.7 | 0.9 |
Normalized difference vegetation index | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 |
Enhanced vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 27.2 | 26.0 | 29.3 | 36.3 | 32.1 | 20.3 | 36.5 | 25.7 | 30.1 | 26.3 | 25.0 |
Leaf area index | 5.5 | 5.1 | 6.1 | 7.9 | 7.1 | 3.7 | 8.2 | 5.0 | 6.4 | 5.1 | 5.1 |
Gross primary production (kg*C/m2) | 156.6 | 135.0 | 170.4 | 212.5 | 183.3 | 75.8 | 221.2 | 133.5 | 175.4 | 137.5 | 142.2 |
Evapotranspiration (kg/m2) | 56.3 | 48.7 | 62.0 | 86.9 | 67.1 | 25.2 | 82.6 | 53.8 | 62.6 | 50.2 | 59.8 |
Surface soil moisture (mm) | 5.4 | 5.1 | 7.1 | 7.4 | 5.6 | 5.1 | 7.9 | 5.1 | 6.1 | 4.9 | 6.9 |
Subsurface soil moisture (mm) | 25.1 | 22.0 | 30.8 | 31.5 | 24.1 | 19.5 | 37.8 | 20.5 | 30.8 | 20.2 | 29.5 |
Real value of production (Kg/ha) | 492 | 489 | 527 | 381 | 461 | 433 | 599 | 433 | 491 | 524 | 401 |
Predicted production by RF (Kg/ha) | 486 | 429 | 502 | 404 | 451 | 399 | 587 | 416 | 483 | 454 | 419 |
Predicted production by SVR (Kg/ha) | 449 | 346 | 509 | 437 | 461 | 417 | 489 | 341 | 491 | 375 | 403 |
Predicted production by KNN (Kg/ha) | 478 | 362 | 499 | 484 | 455 | 398 | 543 | 366 | 472 | 402 | 459 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 6.5 | 14.7 | 9.4 | 10.5 | 5.8 | 17.8 | 9.2 | 11.8 | 8.4 | 14.1 | 5.4 |
Temperature max (°C) | 23.7 | 28.2 | 22.3 | 23.8 | 23.4 | 31.6 | 23.0 | 23.5 | 24.4 | 30.4 | 22.0 |
Average temperature (°C) | 15.4 | 23.8 | 17.7 | 18.7 | 14.9 | 26.6 | 16.3 | 19.2 | 18.3 | 22.2 | 15.8 |
Precipitation (mm) | 0.9 | 0.9 | 0.7 | 1.3 | 0.7 | 0.6 | 0.9 | 1.3 | 0.7 | 0.7 | 0.8 |
Humidity max (g/Kg) | 69.1 | 44.8 | 50.3 | 53.8 | 74.4 | 42.5 | 58.5 | 46.1 | 65.0 | 65.0 | 68.6 |
Humidity min (g/Kg) | 24.2 | 21.6 | 23.6 | 24.5 | 24.5 | 15.9 | 25.5 | 23.0 | 22.5 | 20.0 | 27.9 |
Average humidity (g/Kg) | 45.3 | 29.9 | 34.2 | 35.9 | 47.0 | 25.2 | 36.0 | 32.6 | 34.0 | 33.0 | 43.1 |
Dry temperature (°C) | 1.3 | 2.7 | −0.5 | 0.7 | 1.7 | 1.3 | 0.6 | -0.5 | 0.5 | 5.0 | 0.9 |
Normalized difference vegetation index | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 |
Enhanced vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 21.6 | 22.5 | 25.8 | 29.0 | 28.2 | 15.2 | 31.5 | 21.6 | 25.2 | 23.1 | 21.1 |
Leaf area index | 4.2 | 4.4 | 5.3 | 6.2 | 6.2 | 2.6 | 7.2 | 4.1 | 5.3 | 4.5 | 4.4 |
Gross primary production (kg*C/m2) | 118.0 | 108.9 | 150.0 | 175.8 | 171.7 | 47.9 | 199.0 | 107.3 | 150.2 | 113.2 | 137.0 |
Evapotranspiration (kg/m2) | 48.7 | 43.1 | 61.9 | 79.5 | 70.4 | 14.6 | 83.6 | 47.8 | 61.9 | 46.6 | 64.3 |
Surface soil moisture (mm) | 5.5 | 4.9 | 6.5 | 8.3 | 5.2 | 3.2 | 7.9 | 3.8 | 6.0 | 3.5 | 6.4 |
Subsurface soil moisture (mm) | 24.3 | 20.3 | 27.6 | 35.9 | 21.7 | 12.2 | 36.7 | 15.2 | 29.8 | 14.1 | 26.7 |
Real value of production (Kg/ha) | 487 | 484 | 521 | 377 | 456 | 428 | 593 | 428 | 485 | 518 | 397 |
Predicted production by RF (Kg/ha) | 454 | 414 | 502 | 427 | 451 | 395 | 547 | 418 | 472 | 459 | 402 |
Predicted production by SVR (Kg/ha) | 426 | 437 | 460 | 478 | 456 | 428 | 475 | 428 | 448 | 466 | 397 |
Predicted production by KNN (Kg/ha) | 388 | 446 | 457 | 471 | 479 | 382 | 451 | 446 | 491 | 380 | 426 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 6.3 | 14.4 | 9.2 | 10.6 | 5.6 | 17.0 | 9.1 | 11.7 | 7.5 | 13.7 | 5.7 |
Temperature max (°C) | 23.1 | 27.2 | 22.1 | 23.8 | 23.2 | 30.8 | 22.9 | 23.3 | 23.7 | 29.6 | 22.0 |
Average temperature (°C) | 15.0 | 23.1 | 17.3 | 18.7 | 14.5 | 26.1 | 16.1 | 18.9 | 18.0 | 21.7 | 15.9 |
Precipitation (mm) | 1.3 | 1.4 | 1.5 | 1.9 | 1.2 | 0.6 | 1.7 | 1.5 | 1.4 | 0.9 | 1.7 |
Humidity max (g/Kg) | 79.0 | 50.3 | 61.3 | 57.8 | 81.0 | 47.3 | 66.0 | 51.9 | 67.8 | 66.0 | 74.4 |
Humidity min (g/Kg) | 30.0 | 25.2 | 26.2 | 26.4 | 26.9 | 17.2 | 27.7 | 25.0 | 24.9 | 21.5 | 29.2 |
Average humidity (g/Kg) | 52.6 | 34.7 | 40.6 | 38.8 | 52.9 | 27.8 | 45.6 | 36.0 | 40.9 | 43.0 | 46.0 |
Dry temperature (°C) | 3.5 | 4.6 | 1.7 | 1.9 | 3.0 | 2.5 | 2.3 | 1.0 | 1.4 | 5.8 | 2.0 |
Normalized difference vegetation index | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 |
Enhanced vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 26.4 | 25.3 | 29.6 | 30.1 | 31.5 | 17.8 | 32.5 | 24.1 | 28.7 | 25.7 | 24.7 |
Leaf area index | 5.5 | 5.1 | 6.4 | 6.5 | 7.1 | 3.2 | 7.5 | 4.7 | 6.3 | 5.0 | 5.4 |
Gross primary production (kg*C/m2) | 148.9 | 130.9 | 177.4 | 178.6 | 190.3 | 68.7 | 201.9 | 125.4 | 171.1 | 134.0 | 153.1 |
Evapotranspiration (kg/m2) | 68.7 | 54.9 | 76.0 | 83.6 | 81.5 | 21.9 | 88.7 | 54.7 | 75.4 | 52.7 | 75.9 |
Surface soil moisture (mm) | 7.8 | 6.7 | 10.3 | 10.0 | 8.0 | 4.3 | 10.1 | 6.7 | 8.6 | 7.1 | 7.7 |
Subsurface soil moisture (mm) | 35.2 | 27.9 | 42.9 | 41.2 | 31.9 | 15.0 | 46.6 | 25.6 | 42.0 | 28.3 | 31.4 |
Real value of production (Kg/ha) | 374 | 372 | 401 | 490 | 351 | 329 | 456 | 329 | 373 | 398 | 305 |
Predicted production by RF (Kg/ha) | 480 | 392 | 424 | 477 | 409 | 353 | 477 | 368 | 439 | 432 | 331 |
Predicted production by SVR (Kg/ha) | 445 | 372 | 479 | 472 | 461 | 381 | 493 | 354 | 473 | 398 | 436 |
Predicted production by KNN (Kg/ha) | 439 | 362 | 463 | 463 | 473 | 382 | 527 | 366 | 465 | 432 | 439 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 7.0 | 15.1 | 10.6 | 11.5 | 7.1 | 18.5 | 10.0 | 12.7 | 8.3 | 14.7 | 7.2 |
Temperature max (°C) | 24.7 | 28.1 | 23.4 | 24.6 | 24.3 | 32.5 | 24.1 | 24.3 | 24.9 | 30.2 | 22.9 |
Average temperature (°C) | 16.1 | 23.9 | 18.8 | 19.6 | 15.7 | 27.7 | 16.9 | 20.0 | 18.9 | 22.4 | 17.1 |
Precipitation (mm) | 1.4 | 2.3 | 1.8 | 2.0 | 1.7 | 1.4 | 2.0 | 2.0 | 1.5 | 2.1 | 1.4 |
Humidity max (g/Kg) | 78.9 | 55.2 | 60.5 | 61.8 | 80.7 | 53.2 | 69.1 | 56.0 | 71.2 | 70.5 | 72.1 |
Humidity min (g/Kg) | 26.4 | 29.6 | 27.3 | 30.3 | 29.9 | 20.8 | 28.3 | 30.4 | 26.7 | 28.0 | 29.2 |
Average humidity (g/Kg) | 51.6 | 39.3 | 40.3 | 42.6 | 54.7 | 32.8 | 48.0 | 41.1 | 44.1 | 49.3 | 45.0 |
Dry temperature (°C) | 4.1 | 7.2 | 2.7 | 4.1 | 4.8 | 5.6 | 3.6 | 3.8 | 3.3 | 8.5 | 2.6 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 |
Enhanced vegetation index | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.1 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 35.9 | 32.7 | 39.2 | 38.5 | 39.5 | 21.3 | 42.7 | 30.0 | 39.1 | 31.3 | 33.3 |
Leaf area index | 8.1 | 7.1 | 9.2 | 9.0 | 9.7 | 3.9 | 11.0 | 6.2 | 9.5 | 6.5 | 7.6 |
Gross primary production (kg*C/m2) | 208.2 | 170.1 | 236.5 | 225.2 | 236.0 | 71.6 | 261.8 | 154.8 | 235.4 | 163.0 | 197.0 |
Evapotranspiration (kg/m2) | 87.0 | 73.9 | 97.4 | 105.5 | 95.2 | 29.8 | 113.8 | 71.7 | 98.0 | 70.9 | 95.8 |
Surface soil moisture (mm) | 7.6 | 6.7 | 7.8 | 7.9 | 7.5 | 5.5 | 9.0 | 6.9 | 7.1 | 6.8 | 7.1 |
Subsurface soil moisture (mm) | 34.1 | 27.4 | 31.8 | 31.8 | 30.9 | 19.3 | 40.9 | 25.6 | 33.7 | 26.6 | 29.1 |
Real value of production (Kg/ha) | 423 | 420 | 453 | 327 | 396 | 372 | 515 | 372 | 421 | 450 | 345 |
Predicted production by RF (Kg/ha) | 454 | 460 | 436 | 379 | 406 | 398 | 519 | 397 | 432 | 471 | 403 |
Predicted production by SVR (Kg/ha) | 450 | 447 | 437 | 394 | 422 | 411 | 515 | 449 | 426 | 450 | 424 |
Predicted production by KNN (Kg/ha) | 531 | 468 | 480 | 478 | 451 | 398 | 520 | 485 | 480 | 432 | 476 |
Appendix B
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 11.1 | 21.5 | 15.9 | 17.9 | 10.1 | 24.0 | 15.1 | 17.8 | 12.9 | 19.4 | 10.6 |
Temperature max (°C) | 27.5 | 32.5 | 27.1 | 28.3 | 26.9 | 35.8 | 27.6 | 28.2 | 27.7 | 34.7 | 26.1 |
Average temperature (°C) | 6.7 | 12.6 | 8.7 | 8.1 | 6.9 | 14.7 | 7.8 | 9.0 | 9.1 | 13.2 | 6.2 |
Precipitation (mm) | 5.5 | 4.4 | 4.7 | 5.5 | 4.0 | 1.6 | 6.0 | 4.3 | 4.8 | 3.2 | 3.2 |
Humidity max (g/Kg) | 82.9 | 76.9 | 70.9 | 76.5 | 84.6 | 76.3 | 77.0 | 71.6 | 77.8 | 86.3 | 80.9 |
Humidity min (g/Kg) | 14.8 | 13.4 | 11.9 | 10.7 | 16.6 | 7.6 | 11.1 | 11.9 | 10.9 | 12.0 | 12.4 |
Average humidity (g/Kg) | 65.2 | 60.5 | 56.5 | 60.8 | 64.4 | 58.8 | 58.7 | 61.0 | 58.5 | 63.2 | 62.4 |
Dry temperature (°C) | 4.6 | 5.9 | 2.5 | 2.8 | 5.0 | 2.7 | 3.4 | 3.0 | 4.1 | 6.8 | 3.6 |
Normalized difference vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 |
Enhanced vegetation index | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 |
Fraction of photosynthetically active radiation | 4.0 | 6.2 | 4.7 | 5.2 | 4.9 | 6.3 | 5.3 | 3.5 | 4.3 | 6.7 | 2.5 |
Leaf area index | 21.1 | 30.1 | 23.3 | 25.7 | 23.4 | 31.3 | 25.6 | 19.0 | 21.9 | 32.3 | 13.6 |
Gross primary production (kg*C/m2) | 125.0 | 170.3 | 134.2 | 147.3 | 132.3 | 150.1 | 150.5 | 109.8 | 129.7 | 182.6 | 68.4 |
Evapotranspiration (kg/m2) | 97.6 | 105.6 | 108.4 | 127.4 | 104.4 | 60.6 | 124.1 | 111.7 | 106.7 | 112.3 | 100.3 |
Surface soil moisture (mm) | 18.9 | 17.2 | 21.6 | 22.6 | 21.1 | 13.5 | 21.9 | 19.1 | 19.8 | 13.7 | 21.8 |
Subsurface soil moisture (mm) | 9.4 | 8.9 | 8.9 | 8.7 | 8.6 | 8.2 | 10.2 | 8.6 | 11.4 | 8.5 | 9.4 |
Real value of production (Kg/ha) | 622 | 519 | 534 | 411 | 550 | 525 | 696 | 400 | 508 | 617 | 590 |
Predicted production by RF (Kg/ha) | 575 | 522 | 553 | 464 | 542 | 498 | 636 | 443 | 559 | 509 | 586 |
Predicted production by SVR (Kg/ha) | 573 | 518 | 506 | 457 | 550 | 453 | 467 | 484 | 535 | 526 | 534 |
Predicted production by KNN (Kg/ha) | 520 | 561 | 522 | 500 | 530 | 418 | 500 | 539 | 581 | 550 | 548 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 12.0 | 22.6 | 16.3 | 17.9 | 11.4 | 24.9 | 15.9 | 18.9 | 14.0 | 21.3 | 11.7 |
Temperature max (°C) | 25.8 | 34.7 | 25.9 | 26.2 | 25.9 | 34.2 | 25.6 | 27.1 | 26.5 | 32.9 | 24.8 |
Average temperature (°C) | 8.4 | 14.1 | 10.3 | 9.5 | 8.2 | 15.6 | 8.7 | 10.2 | 10.3 | 14.0 | 7.4 |
Precipitation (mm) | 3.3 | 5.7 | 3.2 | 4.7 | 2.4 | 2.3 | 5.6 | 3.6 | 3.0 | 2.3 | 3.2 |
Humidity max (g/Kg) | 85.9 | 68.9 | 73.7 | 74.7 | 90.5 | 74.3 | 80.6 | 67.6 | 82.7 | 83.6 | 85.3 |
Humidity min (g/Kg) | 15.1 | 15.7 | 13.9 | 14.2 | 17.0 | 9.5 | 14.1 | 14.8 | 14.3 | 13.1 | 15.6 |
Average humidity (g/Kg) | 63.9 | 56.2 | 52.4 | 58.5 | 63.2 | 57.5 | 60.0 | 58.3 | 55.0 | 62.5 | 60.2 |
Dry temperature (°C) | 6.9 | 7.6 | 5.4 | 6.1 | 7.2 | 5.9 | 6.4 | 6.1 | 5.6 | 9.6 | 5.7 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 |
Enhanced vegetation index | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 |
Fraction of photosynthetically active radiation | 7.5 | 9.0 | 7.8 | 8.8 | 8.3 | 7.8 | 9.7 | 8.2 | 8.5 | 9.4 | 5.1 |
Leaf area index | 35.0 | 41.0 | 36.0 | 40.1 | 36.9 | 37.8 | 42.0 | 38.6 | 38.3 | 42.8 | 25.3 |
Gross primary production (kg*C/m2) | 353.2 | 382.1 | 354.4 | 393.7 | 362.4 | 322.4 | 421.3 | 353.1 | 379.4 | 385.9 | 244.4 |
Evapotranspiration (kg/m2) | 117.0 | 117.5 | 123.9 | 139.8 | 125.6 | 65.5 | 137.3 | 118.1 | 127.1 | 123.8 | 103.4 |
Surface soil moisture (mm) | 20.2 | 16.0 | 21.8 | 20.5 | 16.1 | 12.2 | 21.9 | 16.0 | 20.6 | 12.9 | 19.7 |
Subsurface soil moisture (mm) | 11.3 | 9.1 | 11.6 | 9.9 | 9.3 | 8.2 | 12.7 | 8.5 | 14.7 | 8.5 | 10.5 |
Real value of production (Kg/ha) | 511 | 495 | 525 | 538 | 507 | 560 | 684 | 500 | 550 | 523 | 546 |
Predicted production by RF (Kg/ha) | 525 | 513 | 575 | 537 | 511 | 460 | 635 | 503 | 557 | 521 | 540 |
Predicted production by SVR (Kg/ha) | 510 | 495 | 511 | 538 | 507 | 465 | 570 | 500 | 545 | 523 | 546 |
Predicted production by KNN (Kg/ha) | 514 | 519 | 514 | 549 | 514 | 514 | 549 | 514 | 521 | 521 | 511 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature Min (°C) | 13.9 | 21.8 | 18.1 | 18.4 | 11.6 | 24.4 | 17.4 | 18.2 | 13.3 | 20.6 | 11.2 |
Temperature max (°C) | 29.0 | 33.2 | 27.9 | 28.8 | 28.5 | 36.0 | 28.4 | 29.2 | 29.7 | 34.7 | 27.0 |
Average temperature (°C) | 7.8 | 13.7 | 9.9 | 9.1 | 7.6 | 15.8 | 8.2 | 9.4 | 8.6 | 13.8 | 6.6 |
Precipitation (mm) | 2.0 | 2.5 | 2.4 | 2.9 | 2.3 | 1.2 | 2.4 | 2.9 | 1.6 | 1.6 | 1.9 |
Humidity max (g/Kg) | 78.9 | 53.5 | 59.2 | 59.6 | 78.6 | 54.9 | 71.1 | 61.1 | 66.2 | 71.4 | 70.2 |
Humidity min (g/Kg) | 20.2 | 12.9 | 9.7 | 9.1 | 13.7 | 8.1 | 9.6 | 11.6 | 7.3 | 10.2 | 10.1 |
Average humidity (g/Kg) | 58.2 | 45.6 | 42.8 | 48.6 | 53.8 | 43.6 | 51.6 | 53.5 | 46.9 | 51.3 | 51.9 |
Dry temperature (°C) | 3.9 | 3.4 | 0.2 | 0.8 | 3.6 | 1.2 | 0.7 | 1.6 | −0.5 | 4.5 | 0.9 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.2 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 |
Enhanced vegetation index | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 |
Fraction of photosynthetically active radiation | 6.6 | 8.0 | 8.2 | 11.0 | 9.3 | 4.8 | 12.2 | 8.3 | 8.0 | 8.2 | 5.9 |
Leaf area index | 32.7 | 37.8 | 37.8 | 46.5 | 40.9 | 26.4 | 49.2 | 39.1 | 36.7 | 38.6 | 29.0 |
Gross primary production (kg*C/m2) | 177.8 | 199.9 | 198.5 | 243.9 | 212.8 | 112.5 | 255.9 | 203.4 | 194.3 | 205.0 | 133.8 |
Evapotranspiration (kg/m2) | 69.5 | 79.3 | 83.6 | 127.3 | 93.9 | 20.4 | 129.4 | 88.9 | 81.4 | 80.7 | 63.2 |
Surface soil moisture (mm) | 6.4 | 5.5 | 5.9 | 7.7 | 5.8 | 4.1 | 6.7 | 5.7 | 6.9 | 4.1 | 7.7 |
Subsurface soil moisture (mm) | 9.3 | 8.9 | 8.6 | 8.6 | 8.4 | 8.2 | 9.4 | 8.3 | 10.8 | 8.5 | 9.0 |
Real value of production (Kg/ha) | 300 | 270 | 306 | 250 | 290 | 230 | 394 | 295 | 235 | 305 | 225 |
Predicted production by RF (Kg/ha) | 336 | 310 | 282 | 301 | 370 | 285 | 375 | 332 | 299 | 345 | 289 |
Predicted production by SVR (Kg/ha) | 437 | 331 | 333 | 378 | 414 | 346 | 394 | 329 | 362 | 351 | 377 |
Predicted production by KNN (Kg/ha) | 445 | 386 | 386 | 412 | 448 | 350 | 418 | 398 | 375 | 375 | 358 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 12.6 | 21.9 | 16.1 | 18.7 | 11.9 | 24.0 | 17.4 | 18.5 | 13.1 | 20.1 | 12.6 |
Temperature max (°C) | 27.2 | 32.4 | 26.6 | 28.0 | 27.0 | 35.6 | 27.7 | 28.3 | 27.9 | 34.8 | 26.1 |
Average temperature (°C) | 8.3 | 15.3 | 10.6 | 11.2 | 8.6 | 17.4 | 9.3 | 11.7 | 10.8 | 14.0 | 9.0 |
Precipitation (mm) | 4.5 | 3.2 | 2.5 | 2.3 | 1.4 | 3.0 | 3.0 | 4.2 | 2.5 | 3.7 | 2.8 |
Humidity max (g/Kg) | 84.7 | 57.5 | 70.7 | 69.1 | 85.3 | 62.7 | 75.8 | 64.6 | 79.6 | 79.6 | 76.8 |
Humidity min (g/Kg) | 12.7 | 13.3 | 11.3 | 10.9 | 16.5 | 7.9 | 12.0 | 13.1 | 10.9 | 10.9 | 14.3 |
Average humidity (g/Kg) | 61.1 | 46.6 | 48.8 | 47.5 | 56.6 | 45.5 | 53.7 | 49.7 | 51.6 | 59.9 | 51.3 |
Dry temperature (°C) | 3.8 | 4.9 | 3.0 | 2.5 | 6.2 | 2.3 | 3.3 | 3.7 | 3.3 | 7.2 | 3.0 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 |
Enhanced vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 7.0 | 8.0 | 6.3 | 7.4 | 6.7 | 7.6 | 9.1 | 6.9 | 7.5 | 8.1 | 4.3 |
Leaf area index | 33.6 | 37.6 | 30.8 | 35.9 | 31.0 | 36.4 | 40.5 | 34.2 | 35.0 | 38.2 | 22.2 |
Gross primary production (kg*C/m2) | 192.0 | 194.7 | 174.6 | 196.7 | 170.6 | 154.7 | 228.3 | 175.4 | 200.8 | 198.3 | 116.0 |
Evapotranspiration (kg/m2) | 106.8 | 94.0 | 99.2 | 118.7 | 95.0 | 47.4 | 128.6 | 90.9 | 114.0 | 93.9 | 88.7 |
Surface soil moisture (mm) | 10.8 | 10.4 | 12.8 | 11.8 | 10.5 | 7.1 | 12.9 | 8.7 | 11.5 | 7.8 | 11.4 |
Subsurface soil moisture (mm) | 11.4 | 9.5 | 17.9 | 12.7 | 14.1 | 8.2 | 13.3 | 8.8 | 15.2 | 8.5 | 17.9 |
Real value of production (Kg/ha) | 608 | 554 | 661 | 477 | 522 | 500 | 685 | 405 | 530 | 552 | 762 |
Predicted production by RF (Kg/ha) | 514 | 520 | 621 | 489 | 503 | 438 | 635 | 399 | 550 | 430 | 688 |
Predicted production by SVR (Kg/ha) | 529 | 384 | 511 | 477 | 522 | 500 | 456 | 452 | 522 | 432 | 569 |
Predicted production by KNN (Kg/ha) | 517 | 361 | 517 | 485 | 501 | 399 | 416 | 444 | 500 | 416 | 529 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 12.7 | 20.4 | 16.2 | 17.8 | 11.4 | 24.1 | 16.5 | 18.2 | 13.6 | 20.6 | 10.4 |
Temperature max (°C) | 23.7 | 28.2 | 23.2 | 23.9 | 24.2 | 31.8 | 23.9 | 25.1 | 24.8 | 30.4 | 23.5 |
Average temperature (°C) | 9.0 | 16.3 | 11.5 | 12.0 | 9.1 | 18.5 | 9.8 | 12.2 | 11.6 | 14.8 | 10.0 |
Precipitation (mm) | 0.0 | 0.1 | 0.4 | 0.3 | 0.3 | 0.0 | 0.2 | 0.5 | 0.3 | 0.1 | 1.0 |
Humidity max (g/Kg) | 78.0 | 50.3 | 58.5 | 63.8 | 84.4 | 50.4 | 70.0 | 60.9 | 69.1 | 74.0 | 75.3 |
Humidity min (g/Kg) | 12.9 | 12.8 | 10.6 | 11.2 | 14.3 | 7.6 | 10.7 | 12.5 | 10.6 | 10.4 | 13.5 |
Average humidity (g/Kg) | 49.2 | 37.8 | 39.4 | 42.3 | 52.0 | 32.9 | 47.1 | 43.9 | 40.7 | 48.6 | 47.6 |
Dry temperature (°C) | 6.1 | 8.5 | 4.4 | 6.8 | 6.2 | 6.9 | 6.5 | 6.4 | 5.3 | 9.8 | 4.3 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 |
Enhanced vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 6.2 | 6.8 | 6.9 | 8.4 | 8.5 | 5.3 | 8.9 | 6.4 | 7.5 | 6.7 | 4.9 |
Leaf area index | 30.9 | 33.9 | 33.5 | 39.5 | 38.5 | 28.4 | 40.6 | 32.7 | 35.4 | 34.2 | 25.1 |
Gross primary production (kg*C/m2) | 172.6 | 178.4 | 175.9 | 213.2 | 191.8 | 122.1 | 216.3 | 172.9 | 189.4 | 181.2 | 115.2 |
Evapotranspiration (kg/m2) | 72.0 | 66.8 | 72.5 | 106.7 | 83.9 | 25.7 | 98.4 | 72.7 | 79.9 | 66.3 | 60.8 |
Surface soil moisture (mm) | 6.3 | 6.5 | 9.3 | 10.2 | 7.3 | 6.2 | 10.0 | 6.9 | 7.8 | 6.8 | 9.3 |
Subsurface soil moisture (mm) | 13.5 | 11.9 | 16.9 | 14.8 | 16.2 | 9.1 | 18.7 | 10.4 | 16.9 | 9.7 | 14.5 |
Real value of production (Kg/ha) | 492 | 489 | 527 | 381 | 461 | 433 | 599 | 401 | 433 | 491 | 524 |
Predicted production by RF (Kg/ha) | 481 | 443 | 486 | 424 | 450 | 410 | 545 | 401 | 439 | 451 | 466 |
Predicted production by SVR (Kg/ha) | 470 | 458 | 469 | 416 | 461 | 405 | 432 | 456 | 433 | 477 | 436 |
Predicted production by KNN (Kg/ha) | 441 | 393 | 430 | 450 | 407 | 350 | 463 | 441 | 425 | 441 | 433 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 14.0 | 22.8 | 17.3 | 19.1 | 12.9 | 26.1 | 19.3 | 19.9 | 16.6 | 22.2 | 12.0 |
Temperature max (°C) | 28.3 | 32.6 | 26.4 | 27.8 | 27.3 | 35.8 | 27.1 | 27.7 | 28.7 | 34.5 | 26.1 |
Average temperature (°C) | 4.4 | 11.9 | 6.5 | 6.8 | 4.9 | 14.5 | 4.7 | 7.3 | 6.9 | 10.9 | 4.7 |
Precipitation (mm) | 2.2 | 2.8 | 1.3 | 3.1 | 1.1 | 1.6 | 1.5 | 3.5 | 0.9 | 2.3 | 1.7 |
Humidity max (g/Kg) | 79.9 | 56.4 | 65.4 | 66.7 | 87.7 | 50.9 | 77.9 | 55.7 | 79.3 | 77.8 | 83.6 |
Humidity min (g/Kg) | 11.7 | 10.9 | 12.4 | 10.3 | 14.8 | 6.7 | 12.2 | 9.5 | 8.6 | 9.6 | 13.2 |
Average Humidity (g/Kg) | 57.6 | 40.7 | 45.9 | 48.1 | 55.7 | 36.2 | 53.4 | 44.8 | 49.8 | 53.6 | 55.2 |
Dry temperature (°C) | 3.6 | 4.1 | 0.3 | 3.0 | 3.6 | 1.4 | 2.7 | 1.2 | 2.3 | 6.8 | 2.8 |
Normalized difference vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.2 | 0.1 |
Enhanced vegetation index | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 |
Fraction of photosynthetically active radiation | 3.5 | 4.9 | 4.8 | 5.8 | 5.3 | 3.4 | 7.0 | 4.7 | 5.0 | 5.3 | 3.1 |
Leaf area index | 19.0 | 25.1 | 24.2 | 28.0 | 25.3 | 19.5 | 31.7 | 24.8 | 24.5 | 27.3 | 15.9 |
Gross primary production (kg*C/m2) | 115.6 | 139.5 | 142.1 | 170.7 | 146.6 | 81.6 | 194.2 | 134.3 | 147.9 | 148.6 | 94.5 |
Evapotranspiration (kg/m2) | 61.3 | 67.0 | 77.5 | 107.7 | 87.2 | 20.5 | 115.0 | 71.1 | 82.1 | 73.1 | 75.9 |
Surface soil moisture (mm) | 7.8 | 8.4 | 9.4 | 15.2 | 5.3 | 4.5 | 14.4 | 5.5 | 9.4 | 4.6 | 7.6 |
Subsurface soil moisture (mm) | 10.3 | 10.0 | 11.6 | 10.9 | 11.5 | 8.9 | 13.7 | 9.1 | 13.1 | 8.9 | 13.4 |
Real value of production (Kg/ha) | 487 | 484 | 521 | 377 | 456 | 428 | 593 | 397 | 428 | 485 | 518 |
Predicted production by RF (Kg/ha) | 457 | 408 | 482 | 420 | 456 | 386 | 566 | 379 | 436 | 379 | 499 |
Predicted production by SVR (Kg/ha) | 484 | 393 | 412 | 480 | 456 | 428 | 532 | 397 | 428 | 411 | 518 |
Predicted production by KNN (Kg/ha) | 392 | 366 | 422 | 525 | 403 | 365 | 526 | 385 | 435 | 442 | 497 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 12.3 | 22.9 | 16.6 | 18.6 | 11.3 | 25.0 | 16.8 | 19.2 | 14.0 | 21.1 | 10.8 |
Temperature max (°C) | 24.6 | 29.7 | 24.2 | 25.7 | 25.0 | 33.6 | 24.5 | 25.0 | 25.7 | 32.2 | 23.5 |
Average temperature (°C) | 6.9 | 14.0 | 8.5 | 10.3 | 6.4 | 17.0 | 8.2 | 10.3 | 9.2 | 13.0 | 7.3 |
Precipitation (mm) | 1.6 | 1.0 | 1.9 | 1.5 | 1.9 | 0.7 | 1.3 | 0.7 | 1.9 | 0.9 | 1.5 |
Humidity max (g/Kg) | 85.0 | 58.4 | 67.6 | 67.0 | 83.3 | 56.8 | 74.9 | 60.8 | 77.3 | 77.8 | 74.7 |
Humidity min (g/Kg) | 16.4 | 11.9 | 16.0 | 11.2 | 14.0 | 7.2 | 12.2 | 10.6 | 8.6 | 9.6 | 13.2 |
Average humidity (g/Kg) | 59.0 | 42.9 | 48.2 | 46.4 | 58.6 | 37.1 | 53.4 | 43.2 | 49.8 | 53.6 | 52.3 |
Dry temperature (°C) | 7.4 | 7.7 | 4.3 | 6.1 | 6.6 | 4.1 | 6.3 | 5.2 | 5.5 | 8.9 | 6.0 |
Normalized difference vegetation index | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 |
Enhanced vegetation index | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 |
Fraction of photosynthetically active radiation | 3.9 | 4.9 | 5.5 | 4.5 | 6.0 | 4.2 | 5.4 | 4.5 | 4.8 | 5.4 | 2.9 |
Leaf area index | 21.1 | 25.5 | 27.3 | 23.8 | 28.8 | 23.3 | 26.5 | 24.3 | 24.3 | 28.1 | 15.9 |
Gross primary production (kg*C/m2) | 116.2 | 133.0 | 145.7 | 121.2 | 153.3 | 106.6 | 138.6 | 125.6 | 129.2 | 145.1 | 72.1 |
Evapotranspiration (kg/m2) | 74.2 | 65.7 | 84.2 | 81.6 | 84.3 | 27.7 | 82.4 | 64.6 | 77.4 | 65.5 | 72.2 |
Surface soil moisture (mm) | 10.4 | 9.0 | 15.9 | 15.4 | 10.2 | 5.8 | 15.1 | 8.8 | 12.0 | 10.2 | 9.1 |
Subsurface soil moisture (mm) | 11.1 | 9.8 | 13.9 | 11.0 | 11.1 | 8.2 | 12.9 | 8.8 | 13.2 | 8.8 | 12.0 |
Real value of production (Kg/ha) | 374 | 372 | 401 | 490 | 351 | 329 | 456 | 305 | 329 | 373 | 398 |
Predicted production by RF (Kg/ha) | 445 | 394 | 446 | 471 | 398 | 356 | 475 | 331 | 417 | 390 | 412 |
Predicted production by SVR (Kg/ha) | 541 | 372 | 438 | 489 | 445 | 342 | 451 | 372 | 457 | 400 | 420 |
Predicted production by KNN (Kg/ha) | 535 | 385 | 414 | 477 | 436 | 350 | 414 | 385 | 464 | 421 | 541 |
Criteria | Eslamabad-e-Gharb | Gilanegharb | Harsin | Javanrud | Kangavar | Qasreshirin | Ravansar | Salas | Kermanshah | Sarpol-e-Zahab | Sonqor |
---|---|---|---|---|---|---|---|---|---|---|---|
Temperature min (°C) | 12.2 | 22.6 | 17.0 | 18.5 | 11.6 | 26.5 | 16.7 | 19.7 | 13.4 | 21.8 | 11.9 |
Temperature max (°C) | 26.2 | 29.9 | 24.5 | 25.9 | 25.5 | 35.0 | 25.3 | 25.7 | 26.1 | 32.5 | 23.9 |
Average temperature (°C) | 10.0 | 16.8 | 12.5 | 12.9 | 10.4 | 19.7 | 11.0 | 13.3 | 12.7 | 15.2 | 11.4 |
Precipitation (mm) | 2.3 | 2.8 | 2.1 | 2.8 | 1.2 | 2.1 | 2.3 | 3.1 | 2.0 | 2.4 | 1.5 |
Humidity max (g/Kg) | 86.4 | 68.4 | 75.2 | 80.8 | 88.1 | 75.7 | 86.3 | 72.8 | 88.0 | 87.6 | 83.7 |
Humidity min (g/Kg) | 14.2 | 15.4 | 12.6 | 11.4 | 15.6 | 7.1 | 11.0 | 11.4 | 9.5 | 11.7 | 12.7 |
Average humidity (g/Kg) | 59.4 | 50.4 | 49.1 | 54.7 | 61.8 | 47.1 | 59.9 | 53.8 | 54.7 | 65.1 | 54.6 |
Dry temperature (°C) | 6.4 | 8.2 | 4.3 | 5.9 | 6.4 | 5.2 | 5.4 | 5.1 | 5.7 | 8.9 | 3.7 |
Normalized difference vegetation index | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.2 | 0.4 | 0.3 | 0.4 | 0.3 | 0.3 |
Enhanced vegetation index | 0.3 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 |
Fraction of photosynthetically active radiation | 9.4 | 9.0 | 11.3 | 10.0 | 11.3 | 5.5 | 13.5 | 7.8 | 11.9 | 8.3 | 7.5 |
Leaf area index | 41.2 | 40.5 | 47.0 | 43.2 | 46.1 | 28.9 | 51.1 | 37.3 | 47.7 | 39.3 | 34.6 |
Gross primary production (kg*C/m2) | 245.9 | 224.7 | 269.5 | 241.9 | 253.1 | 118.6 | 294.4 | 200.3 | 279.0 | 217.0 | 171.4 |
Evapotranspiration (kg/m2) | 133.2 | 114.1 | 150.9 | 155.6 | 138.5 | 35.0 | 173.5 | 113.7 | 156.3 | 107.4 | 132.0 |
Surface soil moisture (mm) | 10.4 | 8.8 | 9.4 | 10.5 | 8.4 | 6.7 | 12.4 | 9.3 | 9.0 | 8.8 | 7.7 |
Subsurface soil moisture (mm) | 12.5 | 9.4 | 19.6 | 11.2 | 20.3 | 8.2 | 17.7 | 8.6 | 16.9 | 8.6 | 17.0 |
Real value of production (Kg/ha) | 423 | 420 | 453 | 327 | 396 | 372 | 515 | 345 | 372 | 421 | 450 |
Predicted production by RF (Kg/ha) | 472 | 412 | 472 | 407 | 422 | 374 | 530 | 422 | 393 | 416 | 459 |
Predicted production by SVR (Kg/ha) | 416 | 420 | 443 | 369 | 396 | 372 | 515 | 472 | 441 | 441 | 450 |
Predicted production by KNN (Kg/ha) | 418 | 459 | 409 | 418 | 438 | 359 | 409 | 500 | 409 | 541 | 507 |
References
- Roselaar, S. Agriculture in Republican Italy. In A Companion to Ancient Agriculture; Wiley: New York, NY, USA, 2020; pp. 417–430. [Google Scholar]
- Amaratunga, V.; Wickramasinghe, L.; Perera, A.; Jayasinghe, J.; Rathnayake, U. Artificial Neural Network to Estimate the Paddy Yield Prediction Using Climatic Data. Math. Probl. Eng. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Bozorg-Haddad, O.; Sohrabi, S.; Delpasand, M.; Loáiciga, H.A. Dryland farming improvement by considering the rela-tion between rainfall variability and crop yield. Environ. Dev. Sustain. 2020, 23, 5316–5327. [Google Scholar] [CrossRef]
- FAO. Available online: http://www.fao.org/americas/noticias/ver/en/c/409536 (accessed on 1 January 2021).
- Kumar, J.; Abbo, S. Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv. Agron. 2001, 72, 107–138. [Google Scholar]
- Merga, B.; Haji, J. Economic importance of chickpea: Production, value, and world trade. Cogent Food Agric. 2019, 5, 1615718. [Google Scholar] [CrossRef]
- ANRIS. Available online: http://anris.agri-peri.ir (accessed on 2 January 2021).
- Alijani, B.; Harman, J.R. Synoptic Climatology of Precipitation in Iran. Ann. Assoc. Am. Geogr. 1985, 75, 404–416. [Google Scholar] [CrossRef]
- Taheri, K.; Taheri, M.; Parise, M. Impact of intensive groundwater exploitation on an unprotected covered karst aquifer: A case study in Kermanshah Province, western Iran. Environ. Earth Sci. 2016, 75, 1221. [Google Scholar] [CrossRef]
- Gandhi, N.; Armstrong, L.J.; Petkar, O.; Tripathy, A.K. Rice crop yield prediction in india using support vector ma-chines. In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 13–15 July 2016; pp. 1–5. [Google Scholar]
- Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.; Ciampitti, I.A. Satellite-based soybean yield forecast: Integrating machine learning and weather data for improving crop yield prediction in southern Brazil. Agric. For. Meteorol. 2020, 284, 107886. [Google Scholar] [CrossRef]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Ejaz, N.; Abbasi, S. Wheat yield prediction using neural network and integrated svm-nn with regression. Pak. J. Eng. Technol. Sci. 2020, 8, 77–97. [Google Scholar]
- Medar, R.A.; Rajpurohit, V.S.; Ambekar, A.M. Sugarcane Crop Yield Forecasting Model Using Supervised Machine Learning. Int. J. Intell. Syst. Appl. 2019, 11, 11–20. [Google Scholar] [CrossRef]
- Chen, H.; Wu, W.; Liu, H.-B. Assessing the relative importance of climate variables to rice yield variation using support vector machines. Theor. Appl. Clim. 2016, 126, 105–111. [Google Scholar] [CrossRef]
- Kouadio, L.; Deo, R.C.; Byrareddy, V.; Adamowski, J.F.; Mushtaq, S.; Nguyen, V.P. Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Comput. Electron. Agric. 2018, 155, 324–338. [Google Scholar] [CrossRef]
- Kim, N.; Lee, Y.-W. Machine Learning Approaches to Corn Yield Estimation Using Satellite Images and Climate Data: A Case of Iowa State. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 383–390. [Google Scholar] [CrossRef]
- Narasimhamurthy, V.; Kumar, P. Rice crop yield forecasting using random forest algorithm. Int. J. Res. Appl. Sci. Eng. Technol. IJRASET 2017, 5, 1220–1225. [Google Scholar] [CrossRef]
- Mohammadi, K.; Mostafaeipour, A.; Dinpashoh, Y.; Pouya, N. Electricity generation and energy cost estimation of large-scale wind turbines in Jarandagh, Iran. J. Energy 2014, 37. [Google Scholar] [CrossRef] [Green Version]
- Zarezade, M.; Mostafaeipour, A. Identifying the effective factors on implementing the solar dryers for Yazd province, Iran. Renew. Sustain. Energy Rev. 2016, 57, 765–775. [Google Scholar] [CrossRef]
- Rezaei, M.; Salimi, M.; Momeni, M.; Mostafaeipour, M. Investigation of the socio-economic feasibility of installing wind turbines to produce hydrogen: Case study. Int. J. Hydrogen Energy 2018, 43, 23135–23147. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Parviz, L. Assessing accuracy of barley yield forecasting with integration of climate variables and support vector regres-sion. Ann. Univ. Mariae Curie-Sklodowska Sect. C Biol. 2019, 73, 19–30. [Google Scholar] [CrossRef]
- Kuwata, K.; Shibasaki, R. Estimating crop yields with deep learning and remotely sensed data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 858–861. [Google Scholar]
- Tiwari, P.; Shukla, P. Artificial Neural Network-Based Crop Yield Prediction Using NDVI, SPI, VCI Feature Vectors. In Advances in Human Factors, Business Management, Training and Education; Springer: Berlin/Heidelberg, Germany, 2019; pp. 585–594. [Google Scholar]
- Sharifi, A. Yield prediction with machine learning algorithms and satellite images. J. Sci. Food Agric. 2021, 101, 891–896. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Jooyandeh, E. Prioritizing the locations for hydrogen production using a hybrid wind-solar system: A case study. Adv. Energy Res. 2017, 5, 107. [Google Scholar]
- Li, B.; Tang, H.; Chen, D. Drought Monitoring Using the Modified Temperature/Vegetation Dryness Index. In Proceedings of the 2009 2nd International Congress on Image and Signal Processing, Tianjin, China, 17–19 October 2009; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Pekin, B.; Macfarlane, C. Measurement of crown cover and leaf area index using digital cover photography and its ap-plication to remote sensing. Remote Sens. 2009, 1, 1298–1320. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.T. Efficient Water Use in Crop Production: Discussion on the Generality of Relations Between Biomass Production and Evapotranspiration. In Limitations to Efficient Water Use in Crop Production; Wiley: New York, NY, USA, 2015; pp. 29–44. [Google Scholar]
- Trejo, F.J.P.; Barbosa, H.A.; Peñaloza-Murillo, M.A.; Moreno, M.A.; Farías, A. Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela. Atmósfera 2016, 29, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Saeidizand, R.; Sabetghadam, S.; Tarnavsky, E.; Pierleoni, A. Evaluation of CHIRPS rainfall estimates over Iran. Q. J. R. Meteorol. Soc. 2018, 144, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousefi, M.; Khoshnevisan, B.; Shamshirband, S.; Motamedi, S.; Nasir, M.H.N.M.; Arif, M.; Ahmad, R. Support vector regression methodology for prediction of output energy in rice production. Stoch. Environ. Res. Risk Assess. 2015, 29, 2115–2126. [Google Scholar] [CrossRef]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support vector Machines and Other Kernel-Based Learning Methods; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Dibike, Y.B.; Velickov, S.; Solomatine, D.; Abbott, M.B. Model Induction with Support Vector Machines: Introduction and Applications. J. Comput. Civ. Eng. 2001, 15, 208–216. [Google Scholar] [CrossRef]
- Samui, P. Support vector machine applied to settlement of shallow foundations on cohesionless soils. Comput. Geotech. 2008, 35, 419–427. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Stone, C.J.; Olshen, R.A. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Ghasemi, J.B.; Tavakoli, H. Application of random forest regression to spectral multivariate calibration. Anal. Methods 2013, 5, 1863–1871. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random-forest. R News 2002, 2, 18–22. [Google Scholar]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Lee, K.-C. Radar target recognition by machine learning of k-nearest neighbors regression on angular diversity RCS. Appl. Comput. Electromagn. Soc. J. 2019, 34, 75–81. [Google Scholar]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Goli, A.; Qolipour, M. Prediction of air travel demand using a hybrid artificial neural network (ANN) with Bat and Firefly algorithms: A case study. J. Supercomput. 2018, 74, 5461–5484. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Fakhrzad, M.; Gharaat, S.; Jahangiri, M.; Dhanraj, J.; Band, S.; Issakhov, A.; Mosavi, A. Machine Learning for Prediction of Energy in Wheat Production. Agriculture 2020, 10, 517. [Google Scholar] [CrossRef]
- Samadianfard, S.; Hashemi, S.; Kargar, K.; Izadyar, M.; Mostafaeipour, A.; Mosavi, A.; Nabipour, N.; Shamshirband, S. Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm. Energy Rep. 2020, 6, 1147–1159. [Google Scholar] [CrossRef]
- Mostafaeipour, A.; Qolipour, M.; Goudarzi, H.; Jahangiri, M.; Golmohammadi, A.; Rezaei, M.; Goli, A.; Sadeghikhorami, L.; Sedeh, A.S.; Soltani, S.R.K. Implementation of adaptive neuro-fuzzy inference system (ANFIS) for performance prediction of fuel cell parameters. J. Renew. Energy Environ. 2019, 6, 7–15. [Google Scholar]
Row | Authors | Date of Research | Location of Study (Country) | Crop | Tools | Methods | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | MLR | E-BPNN | DL | SVM | ERT | DT | NN | KNN | GPR | BST | BGT | LR | ||||||
1 | Gandhi et al. [10] | 2016 | India | Rice | WEKA-EXCEl | * | ||||||||||||
2 | Ejaz and Abbasi [13] | 2018 | Pakistan | Wheat | Phyton-Weka | * | * | * | ||||||||||
3 | Medar et al. [14] | 2019 | India | Sugarcane | SciKit-Python | * | ||||||||||||
4 | Chen et al. [15] | 2015 | China | Paddy rice | MATLAB | * | * | * | ||||||||||
5 | Kouadio et al. [16] | 2018 | Vietnam | Robusta coffee | MATLAB | * | * | * | ||||||||||
6 | Kim and Lee [17] | 2016 | United States | Corn | R software | * | * | * | * | |||||||||
7 | Narasimhamurthy and Kumar [18] | 2017 | India | Rice | R software | * | ||||||||||||
8 | Parviz [19] | 2020 | Iran | Barley | * | * | ||||||||||||
9 | Kuwata and Shibasaki [20] | 2015 | United States | Corn | SciKit-Python & CAFFE | * | * | |||||||||||
10 | Tiwari and Shukla [21] | 2020 | India | MATLAB | * | |||||||||||||
11 | Han et al. [22] | 2020 | China | Winter wheat | MATLAB-WEKA-GEE | * | * | * | * | * | * | * | * | |||||
12 | Sharifi [26] | 2020 | Iran | Barley | GEE | * | * | * | * | |||||||||
13 | Present research | 2020 | Iran | Chickpea | SciKit-Python | * | * | * |
Soil Features | Climate Data | Satellite Data | Sampling Features | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Row | Authors | Fertilizer | Organic Carbon | Soil Temperature | PH | Soil moisture | Soil Mixtures | Rainy Days | Precipitation | Evaporation | Humidity | Sunshine Hours | Solar Radiation | Temperature | Mean Wind Speed | Air or Vapor Pressure | Crop Evapotranspiration | NDVI | EVI | LAI | FPAR | GPP | ET | Number of Samples | Sampling Interval |
1 | Gandhi et al. [10] | * | * | * | 27 | 1998*–2002 | |||||||||||||||||||
2 | Ejaz and Abbasi [13] | * | * | * | * | 21 years | |||||||||||||||||||
3 | Medar et al. [14] | * | * | * | * | * | * | * | 2 | 2008–2018 | |||||||||||||||
4 | Chen et al. [15] | * | * | * | * | * | 34 | 1985–2012 | |||||||||||||||||
5 | Kouadio et al. [16] | * | * | * | * | * | 44 | 2013–2014 | |||||||||||||||||
6 | Kim and Lee [17] | * | * | * | * | * | * | * | * | * | * | 94 | 2004–2014 | ||||||||||||
7 | Narasimhamurthy and Kumar [18] | * | * | 13 | 2005–2015 | ||||||||||||||||||||
8 | Parviz [19] | * | * | * | 3 | 1982–2017 | |||||||||||||||||||
9 | Kuwata and Shibasaki [20] | * | * | * | * | 90 | 2001–2010 | ||||||||||||||||||
10 | Tiwari and Shukla [21] | * | * | ||||||||||||||||||||||
11 | Han et al. [22] | * | * | * | * | * | * | * | 629 | 2001–2014 | |||||||||||||||
12 | Sharifi [26] | * | * | * | * | 24 | 2015–2019 | ||||||||||||||||||
13 | Present research | * | * | * | * | * | * | * | * | * | * | 11 | 2010–2017 |
Data | Spatial Resolution | Temporal Resolution | Source | Product |
---|---|---|---|---|
Normalized difference vegetation index | 250 m | 16-Day | NASA | MOD13Q1.006 |
Enhanced vegetation index | 250 m | 16-Day | NASA | MOD13Q1.006 |
Leaf area index | 500 m | 4-Day | NASA | MCD15A3H.006 |
Fraction of photosynthetically Active radiation | 500 m | 4-Day | NASA | MCD15A3H.006 |
Gross primary production | 500 m | 8-Day | NASA | MOD17A2H.006 |
Evapotranspiration | 500 m | 8-Day | NASA | MOD16A2.006 |
Rainfed croplands | 1000 m | 2010 | NASA | USGS/GFSAD1000_V1 |
Surface soil moisture | 0.25° | 31-days | NASA | NASA_USDA/HSL/SMAP |
Subsurface soil moisture | 0.25° | 31-days | NASA | NASA_USDA/HSL/SMAP |
Precipitation | 0.05° | Daily | CHIRPS | chirps-v2.0.1981-2019.39yrs.tif.gz |
Criteria | March | April | May | June | MA | AM | MJ |
---|---|---|---|---|---|---|---|
Temperature min | 0.059 | 0.009 | 0.028 | 0.081 | 0.033 | 0.019 | 0.056 |
Temperature max | 0.079 | 0.093 | 0.094 | 0.087 | 0.086 | 0.094 | 0.091 |
Average Temperature | 0.009 | −0.018 | −0.019 | −0.018 | −0.005 | −0.018 | −0.018 |
Precipitation | 0.072 | 0.01 | −0.366 | −0.459 | 0.05 | −0.124 | −0.377 |
Humidity max | 0.162 | 0.176 | 0.139 | 0.039 | 0.175 | 0.155 | 0.091 |
Humidity min | −0.317 | −0.152 | −0.013 | 0.044 | −0.227 | −0.080 | 0.008 |
Humidity | 0.207 | 0.205 | 0.163 | 0.087 | 0.213 | 0.183 | 0.132 |
Dry temperature | 0.103 | 0.211 | 0.294 | 0.238 | 0.151 | 0.261 | 0.269 |
Normalized difference vegetation index | 0.458 | 0.503 | 0.142 | 0.068 | 0.616 | 0.291 | 0.113 |
Enhanced vegetation index | 0.361 | 0.549 | 0.141 | 0.082 | 0.624 | 0.312 | 0.120 |
Fraction of photosynthetically active radiation | 0.415 | 0.457 | 0.132 | 0.044 | 0.547 | 0.281 | 0.104 |
Leaf area index | 0.462 | 0.456 | 0.148 | 0.044 | 0.559 | 0.291 | 0.118 |
Gross primary production | 0.373 | 0.407 | 0.132 | −0.005 | 0.566 | 0.260 | 0.084 |
Evapotranspiration | −0.021 | 0.235 | 0.134 | 0.041 | 0.161 | 0.180 | 0.110 |
Surface soil moisture | 0.105 | 0.090 | 0.097 | 0.075 | 0.099 | 0.093 | 0.095 |
Subsurface soil moisture | 0.203 | 0.202 | 0.203 | 0.221 | 0.204 | 0.204 | 0.210 |
Year | Real Value of Production Kg/ha | Prediction by RF(OC) Kg/ha | Prediction by SVR(OC) Kg/ha | Prediction by KNN(OC) Kg/ha | Prediction by RF(A) Kg/ha | Prediction by SVR(A) Kg/ha | Prediction by KNN(A) Kg/ha |
---|---|---|---|---|---|---|---|
2017 | 542.76 | 535.27 | 509.31 | 524.56 | 514.13 | 495.45 | 484.85 |
2016 | 539.82 | 534.15 | 519.13 | 521.92 | 528.545 | 516.89 | 522.44 |
2015 | 281.85 | 320.31 | 368.36 | 395.32 | 341.79 | 392.87 | 413.74 |
2014 | 568.83 | 525.92 | 486.75 | 462.44 | 524.11 | 453.12 | 447.45 |
2013 | 475.52 | 454.20 | 446.63 | 424.78 | 457.32 | 428.88 | 446.95 |
2012 | 470.49 | 442.52 | 449.05 | 432.69 | 449.09 | 445.45 | 437.84 |
2011 | 379.82 | 412.23 | 429.82 | 438.33 | 416.40 | 433.05 | 437.43 |
2010 | 408.51 | 434.36 | 430.45 | 442.61 | 432.1 | 438.66 | 472.62 |
Methods | MBE (Kg/ha) | RMSE (Kg/ha) | MAE (Kg/ha) | MAPE (%) | CC |
---|---|---|---|---|---|
SVR | 48.92 | 73.57 | 49.71 | 11.94 | 0.46 |
RF | 32.31 | 40.71 | 33.00 | 7.96 | 0.86 |
KNN | 72.85 | 90.16 | 73.72 | 17.18 | 0.20 |
Methods | MBE (Kg/ha) | RMSE (Kg/ha) | MAE (Kg/ha) | MAPE (%) | CC |
---|---|---|---|---|---|
SVR | 63.77 | 80.94 | 63.77 | 15.92 | 0.52 |
RF | 34.88 | 43.39 | 34.89 | 8.32 | 0.86 |
KNN | 80.44 | 93.66 | 80.44 | 19.56 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezapour, S.; Jooyandeh, E.; Ramezanzade, M.; Mostafaeipour, A.; Jahangiri, M.; Issakhov, A.; Chowdhury, S.; Techato, K. Forecasting Rainfed Agricultural Production in Arid and Semi-Arid Lands Using Learning Machine Methods: A Case Study. Sustainability 2021, 13, 4607. https://doi.org/10.3390/su13094607
Rezapour S, Jooyandeh E, Ramezanzade M, Mostafaeipour A, Jahangiri M, Issakhov A, Chowdhury S, Techato K. Forecasting Rainfed Agricultural Production in Arid and Semi-Arid Lands Using Learning Machine Methods: A Case Study. Sustainability. 2021; 13(9):4607. https://doi.org/10.3390/su13094607
Chicago/Turabian StyleRezapour, Shahram, Erfan Jooyandeh, Mohsen Ramezanzade, Ali Mostafaeipour, Mehdi Jahangiri, Alibek Issakhov, Shahariar Chowdhury, and Kuaanan Techato. 2021. "Forecasting Rainfed Agricultural Production in Arid and Semi-Arid Lands Using Learning Machine Methods: A Case Study" Sustainability 13, no. 9: 4607. https://doi.org/10.3390/su13094607
APA StyleRezapour, S., Jooyandeh, E., Ramezanzade, M., Mostafaeipour, A., Jahangiri, M., Issakhov, A., Chowdhury, S., & Techato, K. (2021). Forecasting Rainfed Agricultural Production in Arid and Semi-Arid Lands Using Learning Machine Methods: A Case Study. Sustainability, 13(9), 4607. https://doi.org/10.3390/su13094607