Geosites and Geotourism in the Local Development of Communities of the Andes Mountains. A Case Study
Abstract
:1. Introduction
2. Geographical and Geological Setting
2.1. Geographical Setting
2.2. Geological Setting
3. Materials and Methods
3.1. Inventory and Preliminary Selection of Geosites
3.2. Semi-Quantitative Geosite Assessment
3.3. SWOT Analysis
4. Results
4.1. Geosite Inventory and Description
4.2. Geosite Assessment
4.2.1. Assessment of Scientific, Academic, and Tourist Interest
4.2.2. Degradation Susceptibility
4.2.3. Global Protection Priority
4.3. SWOT Analysis
4.4. Proposed Itineraries Including Geosites
- Tourists can access each selected geosite in their own vehicle.
- There exists an infrastructure with accommodation and restaurants within short distances.
- Tourist and recreational activities are offered.
5. Interpretation of Results and Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gray, M.; Gordon, J.E.; Brown, E.J. Geodiversity and the ecosystem approach: The contribution of geoscience in delivering integrated environmental management. Proc. Geol. Assoc. 2013, 124, 659–673. [Google Scholar] [CrossRef]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Boletín Oficial del Estado. LEY 42/2007, de 13 de diciembre, del Patrimonio Natural y de la Biodiversidad; BOE: Madrid, Spain, 2007; pp. 126–144. [Google Scholar]
- Urresty, C.; Rauld, R.; González, C.; Rozas, C. La incorporación del concepto de geodiversidad y geopatrimonio en la planificación territorial en Chile. In Proceedings of the XIV Congreso Geológico Chileno; AT4, Impacto de las Geociencias en la sociedad, La Serena, Chile, 4–8 October 2015; pp. 392–395. [Google Scholar]
- Medina, W. Importancia de la Geodiversidad. Método para el inventario y valoración del Patrimonio Geológico. Ser. Correlación Geológica 2015, 31, 57–72. [Google Scholar]
- Carrión, P.; Herrera, G.; Briones, J.; Sánchez, C. La Geodiversidad, una componente de desarrollo sostenible. J. Sci. Res. 2018, 3, 36–42. [Google Scholar]
- Carcavilla Urquí, L.; López Martínez, J.; Durán Valsero, J.J. Patrimonio Geológico y Geodiversidad: Investigación, Conservación, Gestión y Relación Cuadernos; Instituto Geológico y Minero de España (IGME): Madrid, Spain, 2007; ISBN 9788478407101. [Google Scholar]
- Erikstad, L. Geoheritage and geodiversity management-the questions for tomorrow. Proc. Geol. Assoc. 2013, 124, 713–719. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Jaya-Montalvo, M.; Gurumendi-Noriega, M. Worldwide Research on Geoparks through Bibliometric Analysis. Sustainability 2021, 13, 1175. [Google Scholar] [CrossRef]
- Prosser, C.D.; Díaz-Martínez, E.; Larwood, J.G. The conservation of geosites. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 193–212. [Google Scholar]
- Jakubowski, K.J. Geological heritage and museums. In Proceedings of the Geological Heritage Concept, Conservation and Protection Policy in Central Europe; Polish Geological Institute Special Papers: Warsaw, Poland, 2004; pp. 21–28. [Google Scholar]
- Reis, J.; Póvoas, L.; Barriga, F.J.A.S.; Lopes, C.; Santos, V.F.; Ribeiro, B.; Cascalho, J.; Pinto, A. Science Education in a Museum: Enhancing Earth Sciences Literacy as a Way to Enhance Public Awareness of Geological Heritage. Geoheritage 2014, 6, 217–223. [Google Scholar] [CrossRef]
- UNESCO. List of UNESCO Global Geoparks (UGGp). Available online: http://www.unesco.org/new/en/natural-sciences/environment/earth-sciences/unesco-global-geoparks/list-of-unesco-global-geoparks/ (accessed on 19 August 2020).
- Bentivenga, M.; Cavalcante, F.; Mastronuzzi, G.; Palladino, G.; Prosser, G. Geoheritage: The Foundation for Sustainable Geotourism. Geoheritage 2019, 11, 1367–1369. [Google Scholar] [CrossRef] [Green Version]
- Salamanca, J.V.; Alberruche, E.; Urquí, L.C.; Martínez, E.D.; Cortés, Á.G.; De Domingo, A.G.; Ponce, D.; Gil, D.L. Guía Metodológica Para la Integración del Patrimonio Geológico en la Evaluación de Impacto Ambiental; Dirección General de Calidad y Evaluación Ambiental, Ministerio de Agricultura, Alimentación y Medio Ambiente & IGME: Madrid, Spain, 2012. [Google Scholar]
- Berrezueta, E.R.; Domínguez-Cuesta, M.J.; Carrión, P.; Berrezueta, T.; Herrero, G. Propuesta metodológica para el aprovechamiento del patrimonio geológico minero de la zona Zaruma-Portovelo (Ecuador). Trab. Geol. 2006, 26, 103–109. [Google Scholar]
- Albani, R.A.; Mansur, K.L.; Carvalho, I.D.S.; Santos, W.F.S. dos Quantitative evaluation of the geosites and geodiversity sites of João Dourado Municipality (Bahia–Brazil). Geoheritage 2020, 12. [Google Scholar] [CrossRef]
- Voth, A. Los geoparques y el geoturismo: Nuevos conceptos de valorización de recursos patrimoniales y desarrollo regional. In Proceedings of the XI Coloquio Ibérico de Geografía. La Perspectiva Geográfica Ante los Nuevos Retos de la Soiedad y el Medio Ambiente en el Contexto Ibérico; Interdisciplinary Group for Critical Studies and Latin America (GIECRYAL): Alcalá de Henares, Spain, 2008; pp. 1–15. [Google Scholar]
- García-Cortés, Á.; Carcavilla Urquí, L.; Apoita Mugarza, B.; Arribas, A.; Bellido, F.; Barrón, E.; Delvene, G.; Díaz Martínez, E.; Díez, A.; Durán, J.J.; et al. Documento Metodológico para la Elaboración del Inventario Español de Lugares de Interés Geológico (IELIG); Instituto Geológico y Minero de España: Madrid, Spain, 2013. [Google Scholar]
- Pérez-Umaña, D.; Quesada-Román, A. Metodología para la valoración y evaluación de geomorfositios en Costa Rica. Rev. Geográfica América Cent. 2018, 1, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Henriques, M.H.; Dos Reis, R.P.; Brilha, J.; Mota, T. Geoconservation as an emerging geoscience. Geoheritage 2011, 3, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Carrión-Mero, P.; Loor-Oporto, O.; Andrade-Ríos, H.; Herrera-Franco, G.; Morante-Carballo, F.; Jaya-Montalvo, M.; Aguilar-Aguilar, M.; Torres-Peña, K.; Berrezueta, E. Quantitative and Qualitative Assessment of the “El Sexmo” Tourist Gold Mine (Zaruma, Ecuador) as A Geosite and Mining Site. Resources 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Mehdioui, S.; El Hadi, H.; Tahiri, A.; Brilha, J.; El Haibi, H.; Tahiri, M. Inventory and Quantitative Assessment of Geosites in Rabat-Tiflet Region (North Western Morocco): Preliminary Study to Evaluate the Potential of the Area to Become a Geopark. Geoheritage 2020, 12, 1–17. [Google Scholar] [CrossRef]
- Rocha, J.; Brilha, J.; Henriques, M.H. Assessment of the geological heritage of Cape Mondego Natural Monument (Central Portugal). Proc. Geol. Assoc. 2014, 125, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Corbí, H.; Fierro, I.; Aberasturi, A.; Sánchez Ferris, E.J. Potential Use of a Significant Scientific Geosite: The Messinian Coral Reef of Santa Pola (SE Spain). Geoheritage 2018, 10, 427–441. [Google Scholar] [CrossRef]
- Cantero-Quesada, J.M. Territorio, turismo y senderos temáticos: El caso de Baños de la Encina, Jaén. In Patrimonio Cultural y Desarrollo Territorial; Aranzadi, T.R., Ed.; Thomson Reuters Aranzadi: Cizur Menor, Spain, 2016; pp. 277–308. [Google Scholar]
- Palacio Prieto, J.L.; de Castro Martínez, G.F.; González, E.M. Geotrails in the mixteca alta UNESCO Global Geopark, Oaxaca, Mexico. Cuad. Geográficos Univ. Granada 2019, 58, 111–125. [Google Scholar]
- Palladino, G.; Prosser, G.; Bentivenga, M. The Geological Itinerary of Sasso di Castalda: A Journey into the Geological History of the Southern Apennine Thrust-belt (Basilicata, Southern Italy). Geoheritage 2013, 5, 47–58. [Google Scholar] [CrossRef]
- Asociación de Servicios de Geología y Minería de Iberoamérica (ASGMI). Bases para el Desarrollo Común del Patrimonio Geológico en los Servicios Geológicos de Iberoamérica; ASGMI: Salta, Argentina, 2018. [Google Scholar]
- Franco, G.H.; Mero, P.C.; Carballo, F.M.; Narváez, G.H.; Bitar, J.B.; Torrens, R.B. Strategies for the development of the value of the mining-industrial heritage of the Zaruma-Portovelo, Ecuador, in the context of a geopark project. Int. J. Energy Prod. Manag. 2020, 5, 48–59. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Ayala-Granda, A.; Serrano-Ayala, S.; Morante-Carballo, F.; Aguilar-Aguilar, M.; Gurumendi-Noriega, M.; Paz-Salas, N.; Herrera-Franco, G.; Berrezueta, E. Assessment of geomorphosites for geotourism in the northern part of the “ruta escondida” (Quito, Ecuador). Sustainability 2020, 12, 1–23. [Google Scholar] [CrossRef]
- Herrera, G.; Carrión, P.; Briones, J. Geotourism potential in the context of the Geopark Project for the development of Santa Elena Province, Ecuador. In Proceedings of the WIT Transactions on Ecology and the Environment; Passerini, G., Marchettini, N., Eds.; WIT Press: Southampton, UK, 2018; Volume 217, pp. 557–568. [Google Scholar]
- Ayala Granda, A.J.; Carrión Mero, P.C.; Gurumendi Noriega, M.; Herrera Franco, G.; Morante Carballo, F.; Paz Salas, N.A. Registro y valoración de geomorfositios de la zona sur de la Ruta Escondida, como alternativa de fomento a la geoconservación del paisaje en la región Caranqui-Ecuador. In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering, Integration, and Alliances for A Sustainable Development” “Hemispheric Cooperation for Competitiveness and Prosperity on a Knowledge-Bas, Latin American and Caribbean Consortium of Engineering Institutions, Virtual Edition. 27–31 July 2020; pp. 27–31. [Google Scholar]
- Morante-Carballo, F.; Herrera-Narváez, G.; Jiménez-Orellana, N.; Carrión-Mero, P. Puyango, Ecuador Petrified Forest, a Geological Heritage of the Cretaceous Albian-Middle, and Its Relevance for the Sustainable Development of Geotourism. Sustainability 2020, 12, 6579. [Google Scholar] [CrossRef]
- Fernández, M.P.; Timón, D.L.; Marín, R.G. El geoturismo como estrategia de desarrollo en áreas rurales deprimidas: Propuesta de geoparque villuercas, Ibores, Jara (Extremadura). Bol. Asoc. Geogr. Esp. 2011, 485–497. [Google Scholar]
- Dowling, R. Geotourism’s Global Growth. Geoheritage 2011, 3, 1–13. [Google Scholar] [CrossRef]
- Chylińska, D. The Role of the Picturesque in Geotourism and Iconic Geotourist Landscapes. Geoheritage 2019, 11, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Dowling, R.K. Global Geotourism—An Emerging Form of Sustainable Tourism. Czech. J. Tour. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Sanz, J.; Zamalloa, T.; Maguregi, G.; Fernandez, L.; Echevarria, I. Educational Potential Assessment of Geodiversity Sites: A Proposal and a Case Study in the Basque Country (Spain). Geoheritage 2020, 12, 1–13. [Google Scholar] [CrossRef]
- Martín Roda, E. El proceso turístico: Sujetos, agentes y efectos. Espac. Tiempo Forma. Ser. VI Geogr. 2001, 209–222. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Apolo-Masache, B.; Jaya-Montalvo, M. Research Trends in Geotourism: A Bibliometric Analysis Using the Scopus Database. Geosciences 2020, 10, 379. [Google Scholar] [CrossRef]
- Newsome, D.; Dowling, R. Geoheritage and Geotourism. In Geoheritage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 305–321. [Google Scholar]
- Sousa, B.B.; Malheiro, M.A.; Liberato, P.; Liberato, D. Managing Market Segments with Environmental Concerns: Geotourism And Geodiversity. In Proceedings of the 35th IBIMA Conference Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges, IBIMA, Seville, Spain, 1–2 April 2020; pp. 9682–9690. [Google Scholar]
- Dowling, R.K.; Newsome, D. Geotourism: Sustainability, Impacts and Management; Elsevier/Heineman Publisher: Oxford, UK, 2006. [Google Scholar]
- Costa, S.P.; Sonaglio, K.E. Análisis del comportamiento resiliente de los gestores de turismo. Estud. Perspect. Tur. 2020, 29, 331–348. [Google Scholar]
- Ponce, W.P.P.; Pérez, J.F.R.; Hernández, I.P. Resiliencia del turismo ante fenómenos naturales. Comparación de casos de Cuba y Ecuador. COODES 2018, 6, 225–240. [Google Scholar]
- Arredondo García, M.C.; Aguilera, J.C.L.; Ávila Serrano, G.E.; Sánchez Cortez, J.L.; Figueroa Beltrán, C.; Mata Perelló, J.M. Determinación del patrimonio geológico, cultural e histórico en la creación de geoparques como instrumento de conservación y desarrollo local. Re Met. Rev. Soc. Española Def. Patrim. Geológico Min. 2013, 45–52. [Google Scholar]
- Arellano, J. Implicaciones del medioambiente del pleistoceno tardío y holoceno temprano para la ubicación de ocupaciones humanas precerámicas en la sierra central del Ecuador. Sarange 1997, 24, 119–134. [Google Scholar]
- Coello Zamora, D.M. Los Escenarios Naturales Formados por la Actividad Volcánica del Tungurahua y su Contribución en la Generación de un Producto Orientado al Fomento del Geoturismo de las Provincias de Tungurahua y Chimborazo; Universidad Técnica de Ambato: Ambato, Ecuador, 2015. [Google Scholar]
- Mendoza, B.; Chidichimo, F.; Straface, S. Estima del volumen de agua subterránea proveniente de los deshielos del nevado Chimborazo. In Proceedings of the XXV Congreso Latinoamericano de Hidráulica, Santiago, Chile, 25–29 August 2014; pp. 1–10. [Google Scholar]
- Lozano, P.; Armas, A.; Machado, V. Estrategias para la conservación del ecosistema páramo en Pulinguí San Pablo y Chorrera Mirador, Ecuador. Enfoque UTE 2016, 7, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Barba, D. Estudio Vulcanólogico del Complejo Volcánico Chimborazo; Escuela Politécnica Nacional (EPN): Quito, Ecuador, 2016. [Google Scholar]
- INEC. Población y Demografía. Available online: https://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/ (accessed on 12 January 2021).
- Winkler, W.; Villagómez, D.; Spikings, R.; Abegglen, P.; Tobler, S.; Egüez, A. The Chota basin and its significance for the inception and tectonic setting of the inter-Andean depression in Ecuador. J. S. Am. Earth Sci. 2005, 19, 5–19. [Google Scholar] [CrossRef]
- Inguaggiato, S.; Hidalgo, S.; Beate, B.; Bourquin, J. Geochemical and isotopic characterization of volcanic and geothermal fluids discharged from the Ecuadorian volcanic arc. Geofluids 2010, 10, 525–541. [Google Scholar] [CrossRef]
- Bernard, B.; de Vries, B.W.; Barba, D.; Leyrit, H.; Robin, C.; Alcaraz, S.; Samaniego, P. The Chimborazo sector collapse and debris avalanche: Deposit characteristics as evidence of emplacement mechanisms. J. Volcanol. Geotherm. Res. 2008, 176, 36–43. [Google Scholar] [CrossRef]
- Samaniego, P.; Barba, D.; Robin, C.; Fornari, M.; Bernard, B. Eruptive history of Chimborazo volcano (Ecuador): A large, ice-capped and hazardous compound volcano in the Northern Andes. J. Volcanol. Geotherm. Res. 2012, 221–222, 33–51. [Google Scholar] [CrossRef]
- Huddart, D.; Stott, T. The Andes. In Adventure Tourism; Springer International Publishing: Cham, Switzerland, 2020; pp. 291–324. [Google Scholar]
- Chimborazo, el Volcán de Ecuador Más Alto que el Everest (si se Mide Desde el Centro de la Tierra). Available online: https://www.bbc.com/mundo/noticias/2016/04/160407_por_que_chimborazo_ecuador_mas_lejos_centro_tierra_que_el_everest_dgm (accessed on 21 March 2021).
- Hall, M.L.; Samaniego, P.; Le Pennec, J.L.; Johnson, J.B. Ecuadorian Andes volcanism: A review of Late Pliocene to present activity. J. Volcanol. Geotherm. Res. 2008, 176, 1–6. [Google Scholar] [CrossRef]
- Vallejo Cruz, C. Evolution of the Western Cordillera in the Andes of Ecuador (Late Cretaceous-Paleogene). Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2007. [Google Scholar]
- Luzieux, L.D.A.; Heller, F.; Spikings, R.; Vallejo, C.F.; Winkler, W. Origin and Cretaceous tectonic history of the coastal Ecuadorian forearc between 1° N and 3° S: Paleomagnetic, radiometric and fossil evidence. Earth Planet. Sci. Lett. 2006, 249, 400–414. [Google Scholar] [CrossRef]
- Jaillard, É.; Lapierre, H.; Ordóñez, M.; Toro, J.; Amórtegui, A.; Vanmelle, J. Accreted oceanic terranes in Ecuador: Southern edge of the Caribbean Plate? Geol. Soc. Lond. Spec. Publ. 2009, 328, 469–485. [Google Scholar] [CrossRef] [Green Version]
- Berrezueta, E.; López, K.; González-Menéndez, L.; Ordóñez-Casado, B.; Benítez, S. Ophiolitic rocks and plagiorhyolites from SW Ecuador (Cerro San José): Petrology, geochemistry and tectonic setting. J. Iber. Geol. 2021, 1–20. [Google Scholar] [CrossRef]
- Alvarado, A.; Audin, L.; Nocquet, J.M.; Jaillard, E.; Mothes, P.; Jarrín, P.; Segovia, M.; Rolandone, F.; Cisneros, D. Partitioning of oblique convergence in the Northern Andes subduction zone: Migration history and the present-day boundary of the North Andean Sliver in Ecuador. Tectonics 2016, 35, 1048–1065. [Google Scholar] [CrossRef] [Green Version]
- Bablon, M.; Quidelleur, X.; Samaniego, P.; Le Pennec, J.-L.; Audin, L.; Jomard, H.; Baize, S.; Liorzou, C.; Hidalgo, S.; Alvarado, A. Interactions between volcanism and geodynamics in the southern termination of the Ecuadorian arc. Tectonophysics 2019, 751, 54–72. [Google Scholar] [CrossRef]
- Spikings, R.A.; Crowhurst, P.V. (U–Th)/He thermochronometric constraints on the late Miocene–Pliocene tectonic development of the northern Cordillera Real and the Interandean Depression, Ecuador. J. S. Am. Earth Sci. 2004, 17, 239–251. [Google Scholar] [CrossRef]
- Barba, D.; Robin, C.; Samaniego, P.; Eissen, J.-P. Holocene recurrent explosive activity at Chimborazo volcano (Ecuador). J. Volcanol. Geotherm. Res. 2008, 176, 27–35. [Google Scholar] [CrossRef]
- Baize, S.; Audin, L.; Winter, T.; Alvarado, A.; Pilatasig Moreno, L.; Taipe, M.; Reyes, P.; Kauffmann, P.; Yepes, H. Paleoseismology and tectonic geomorphology of the Pallatanga fault (Central Ecuador), a major structure of the South-American crust. Geomorphology 2015, 237, 14–28. [Google Scholar] [CrossRef]
- Egüez, A.; Gaona, M.; Albán, A. Mapa Geológico de la República del Ecuador. ESCALA 1:1 000 000; Ministerio de Minería y Instituto Nacional de Investigación Geológico Minero Metalúrgico: Quito, Ecuador, 2017; Available online: https://www.geoenergia.gob.ec/mapas-geologicos/ (accessed on 16 April 2021).
- Villares, F.; Garcia-Casco, A.; Blanco-Quintero, I.F.; Montes, C.; Reyes, P.S.; Cardona, A. The Peltetec ophiolitic belt (Ecuador): A window to the tectonic evolution of the Triassic margin of western Gondwana. Int. Geol. Rev. 2020, 1–25. [Google Scholar] [CrossRef]
- Spikings, R.; Cochrane, R.; Villagomez, D.; Van der Lelij, R.; Vallejo, C.; Winkler, W.; Beate, B. The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean Large Igneous Province (290–75Ma). Gondwana Res. 2015, 27, 95–139. [Google Scholar] [CrossRef]
- Jaillard, E.; Ordoñez, M.; Suárez, J.; Toro, J.; Iza, D.; Lugo, W. Stratigraphy of the late Cretaceous–Paleogene deposits of the cordillera occidental of central ecuador: Geodynamic implications. J. S. Am. Earth Sci. 2004, 17, 49–58. [Google Scholar] [CrossRef] [Green Version]
- ESPOL University. Registry of Geological and Mining Heritage and Its Impact on the Defense and Preservation of Geodiversity in Ecuador; ESPOL University: Guayaquil, Ecuador, 2018. [Google Scholar]
- Dyson, R.G. Strategic development and SWOT analysis at the University of Warwick. Eur. J. Oper. Res. 2004, 152, 631–640. [Google Scholar] [CrossRef]
- Riobamba. Lo Mejor. Available online: https://riobamba.com.ec/es-ec/chimborazo/riobamba/volcanes/volcan-chimborazo-a07694d29 (accessed on 12 March 2021).
- Winckell, A. Los grandes rasgos del relieve en el Ecuador. In Los Paisajes Naturales del Ecuador; CEDIG: Quito, Ecuador, 1997; pp. 3–13. [Google Scholar]
- Quinde Martínez, P.D.; Reinoso Angulo, E. Estudio de peligro sísmico de Ecuador y propuesta de espectros de diseño para la Ciudad de Cuenca. Rev. Ing. Sísmica 2016, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Valdivieso Ramache, C.D. La Justicia Indígena y su Incidencia en la Vulneración de los Derechos Humanos, en la Comunidad de Cacha, Parroquia de Yaruquies, Cantón Riobamba, Provincia de Chimborazo a Partir del 2008; Universidad Nacional de Chimborazo (UNACH): Riobamba, Ecuador, 2016. [Google Scholar]
- Yepes, H.; Audin, L.; Alvarado, A.; Beauval, C.; Aguilar, J.; Font, Y.; Cotton, F. A new view for the geodynamics of Ecuador: Implication in seismogenic source definition and seismic hazard assessment. Tectonics 2016, 35, 1249–1279. [Google Scholar] [CrossRef] [Green Version]
- Narvaez, D.F.; Rose-Koga, E.F.; Samaniego, P.; Koga, K.T.; Hidalgo, S. Constraining magma sources using primitive olivine-hosted melt inclusions from Puñalica and Sangay volcanoes (Ecuador). Contrib. Mineral. Petrol. 2018, 173, 80. [Google Scholar] [CrossRef]
- Ancellin, M.-A.; Samaniego, P.; Vlastélic, I.; Nauret, F.; Gannoun, A.; Hidalgo, S. Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc. Geochem. Geophys. Geosystems 2017, 18, 1163–1188. [Google Scholar] [CrossRef]
- Carrión Mero, P.; Herrera Franco, G.; Briones, J.; Caldevilla, P.; Domínguez-Cuesta, M.; Berrezueta, E. Geotourism and Local Development Based on Geological and Mining Sites Utilization, Zaruma-Portovelo, Ecuador. Geosciences 2018, 8, 205. [Google Scholar] [CrossRef]
- Erfurt-Cooper, P. Geotourism in Volcanic and Geothermal Environments: Playing with Fire? Geoheritage 2011, 3, 187–193. [Google Scholar] [CrossRef]
- Humboldt, A. Geognostische und physikalische Beobachtungen über die Vulkane des Hochlandes von Quito. Ann. Phys. Chem. 1837, 116, 161–193. [Google Scholar] [CrossRef]
- La Frenierre, J.; Mark, B.G. Detecting Patterns of Climate Change at Volcán Chimborazo, Ecuador, by Integrating Instrumental Data, Public Observations, and Glacier Change Analysis. Ann. Am. Assoc. Geogr. 2017, 107, 979–997. [Google Scholar] [CrossRef]
- Vizuete, D.D.C.; Montoya, A.V.G.; Yepez, C.B.R.; Velásquez, C.R.C.; Marcu, M.V.; Borz, S.A. Perception and use of cultural ecosystem services among the Andean communities of Chimborazo reserve. Environ. Eng. Manag. J. 2019, 18, 2705–2718. [Google Scholar]
- Noboa, A.M.Y. Empty spaces that are full of cultural history: An innovative proposal for the management of a protected area of Chimborazo volcano (Ecuador). J. Prot. Mt. Areas Res. Manag. 2020, 12, 43–49. [Google Scholar] [CrossRef]
- UNESCO. Top 10 Focus Areas of UNESCO Global Geoparks. Available online: http://www.unesco.org/new/en/natural-sciences/environment/earth-sciences/unesco-global-geoparks/top-10-focus-areas/ (accessed on 13 March 2021).
- Ruban, D.A. Quantification of geodiversity and its loss. Proc. Geol. Assoc. 2010, 121, 326–333. [Google Scholar] [CrossRef]
- Brocx, M.; Semeniuk, V. Geoheritage and geoconservation—History, definition, scope and scale. J. R. Soc. West. Aust. 2007, 90, 53–87. [Google Scholar]
- Carcavilla Urquí, L. Patrimonio Geológico y Geodiversidad: Investigación, Conservación, Gestión y Relación con los Espacios Naturales Protegidos; IGME: Madrid, Spain, 2006. [Google Scholar]
- Horacio, J.; Muñoz-Narciso, E.; Sierra-Pernas, J.M.; Canosa, F.; Pérez-Alberti, A. Geo-Singularity of the Valley-Fault of Teixidelo and Candidacy to Geopark of Cape Ortegal (NW Iberian Peninsula): Preliminary Assessment of Challenges and Perspectives. Geoheritage 2019, 11, 1043–1056. [Google Scholar] [CrossRef]
- Endy Marlina, E. Geotourism as a Strategy of Geosite Empowerment Towards the Tourism Sustainability in Gunungkidul Regency, Indonesia. Int. J. Smart Home 2016, 10, 131–148. [Google Scholar] [CrossRef]
- Kubalíková, L.; Kirchner, K. Geosite and Geomorphosite Assessment as a Tool for Geoconservation and Geotourism Purposes: A Case Study from Vizovická vrchovina Highland (Eastern Part of the Czech Republic). Geoheritage 2016, 8, 5–14. [Google Scholar] [CrossRef]
- Kubalíková, L. Assessing Geotourism Resources on a Local Level: A Case Study from Southern Moravia (Czech Republic). Resources 2019, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Wu, F.; Han, J.; Chu, H. Geoheritage and Sustainable Development in Yimengshan Geopark. Geoheritage 2019, 11, 991–1003. [Google Scholar] [CrossRef]
- Martínez-Graña, A.M.; Serrano, L.; González-Delgado, J.A.; Dabrio, C.J.; Legoinha, P. Sustainable geotourism using digital technologies along a rural georoute in Monsagro (Salamanca, Spain). Int. J. Digit. Earth 2017, 10, 121–138. [Google Scholar] [CrossRef]
- Wrede, V.; Mügge-Bartolović, V. GeoRoute Ruhr—A Network of Geotrails in the Ruhr Area National GeoPark, Germany. Geoheritage 2012, 4, 109–114. [Google Scholar] [CrossRef]
- Simón-Porcar, G.; Martínez-Graña, A.; Simón, J.L.; González-Delgado, J.Á.; Legoinha, P. Ordovician Ichnofossils and Popular Architecture in Monsagro (Salamanca, Spain): Ethnopaleontology in the Service of Rural Development. Geoheritage 2020, 12, 76. [Google Scholar] [CrossRef]
Value | Interest of the Geosites | ||||||
---|---|---|---|---|---|---|---|
Scientific (Sc.) | Academic (Ac.) | Touristic (To.) | |||||
Parameters | Value | Weight | Value | Weight | Value | Weight | |
Representativeness | 0 to 4 | 30 | 0 to 4 | 5 | 0 to 4 | 0 | |
Standard or reference site | 10 | 5 | 0 | ||||
Knowledge of the site | 15 | 0 | 0 | ||||
State of conservation | 10 | 5 | 0 | ||||
Conditions of observation | 10 | 5 | 5 | ||||
Scarcity, rarity | 15 | 5 | 0 | ||||
Geological diversity | 10 | 10 | 0 | ||||
Educational values | 0 | 20 | 0 | ||||
Logistics infrastructure | 0 | 15 | 5 | ||||
Population density | 0 | 5 | 5 | ||||
Possibilities for public outreach (accessibility) | 0 | 15 | 10 | ||||
Size of site | 0 | 0 | 15 | ||||
Association with other natural elements | 0 | 5 | 5 | ||||
Beauty | 0 | 5 | 20 | ||||
Informative value | 0 | 0 | 15 | ||||
Possibility of recreational and leisure activities | 0 | 0 | 5 | ||||
Proximity to other places of interest | 0 | 0 | 5 | ||||
Socio-economic environment | 0 | 0 | 10 | ||||
Total (weight) | 100 | 100 | 100 | ||||
Total | Sc. = value × weight | Ac. = value × weight | To. = value × weight |
Parameter | Fragility (Fr.) | |
Value | Weight | |
Geosite size | 0 to 4 | 40 |
Vulnerability to looting | 30 | |
Natural hazards | 30 | |
Total (weight) | 100 | |
Total (Fr.) | Fr. = value × weight | |
Parameter | Vulnerability (Vul.) | |
Value | Weight | |
Proximity to infrastructures | 0 to 4 | 20 |
Mining exploitation interest | 15 | |
Protected area designation | 15 | |
Indirect protection | 15 | |
Accessibility | 15 | |
Ownership status | 10 | |
Population density | 5 | |
Proximity to recreational areas | 5 | |
Total (weight) | 100 | |
Total (Vul.) | Vul. = value × weight |
No. | Geosites | Type of Geological Interest |
---|---|---|
G1 | Falla Pallatanga (geologic fault) | Structural |
G2 | Páramo Guacona (moorland) | Geomorphological |
G3 | Páramo de Navag (moorland) | Geomorphological |
G4 | Laguna de Colta (lagoon) | Geomorphological |
G5 | Mirador de Guano (viewpoint) | Geomorphological |
G6 | Pozo Chingazo (water well) | Hydrogeological |
G7 | Cascada de Tambo (waterfall) | Geomorphological |
G8 | Lahar Tungurahua (lahar) | Geomorphological |
G9 | Columnas de basalto de Guano (basalt columns) | Volcanic |
G10 | Comunidad Cacha (landscape-museum) | Geomorphological |
G11 | Laguna Comunidad Quero (lagoon) | Geomorphological |
G12 | Huellas de Mastodontes de Riobamba (mastodon footprints) | Paleontological |
G13 | Loma de Quito (hill) | Geomorphological |
G14 | Termas Guayllabamba (hot springs) | Hydrogeological |
G15 | Cantera faldas Chimborazo (mine) | Mining |
G16 | Capas Volcánicas de Chimborazo (Tephra fallout deposit) | Volcanic |
G17 | Cascada La Chorrera (waterfall) | Geomorphological |
G18 | Dunas Palmira (dunes-desert) | Geomorphological |
G19 | Volcán Chimborazo (volcano) | Volcanic |
G20 | Volcán El Altar (volcano) | Volcanic |
No. | Geosites | Sc. | Ac. | To. | Av. | DS | Pp (Sc.) | Pp (Ac.) | Pp (To.) | Pp |
---|---|---|---|---|---|---|---|---|---|---|
G1 | Falla Pallatanga (geologic fault) | 360 | 305 | 280 | 315.00 | 23.25 | 18.83 | 13.52 | 11.39 | 14.42 |
G2 | Páramo Guacona (moorland) | 265 | 310 | 255 | 276.67 | 22.50 | 9.88 | 13.51 | 9.14 | 10.76 |
G3 | Páramo de Navag (moorland) | 220 | 205 | 245 | 223.33 | 22.50 | 6.81 | 5.91 | 8.44 | 7.01 |
G4 | Laguna de Colta (lagoon) | 255 | 260 | 330 | 281.67 | 12.00 | 4.88 | 5.07 | 8.17 | 5.95 |
G5 | Mirador de Guano (viewpoint) | 195 | 225 | 260 | 226.67 | 43.75 | 10.40 | 13.84 | 18.48 | 14.05 |
G6 | Pozo Chingazo (water well) | 215 | 185 | 140 | 180.00 | 52.50 | 15.17 | 11.23 | 6.43 | 10.63 |
G7 | Cascada de Tambo (waterfall) | 215 | 210 | 205 | 210.00 | 66.50 | 19.21 | 18.33 | 17.47 | 18.33 |
G8 | Lahar Tungurahua (lahar) | 335 | 225 | 195 | 251.67 | 43.88 | 30.77 | 13.88 | 10.43 | 17.37 |
G9 | Columnas de basalto de Guano (basalt columns) | 250 | 235 | 190 | 225.00 | 43.75 | 17.09 | 15.10 | 9.87 | 13.84 |
G10 | Comunidad Cacha (landscape-museum) | 350 | 305 | 270 | 308.33 | 40.63 | 31.10 | 23.62 | 18.51 | 24.14 |
G11 | Laguna Comunidad Quero (lagoon) | 185 | 175 | 195 | 185.00 | 52.25 | 11.18 | 10.00 | 12.42 | 11.18 |
G12 | Huellas Megaterios de Riobamba (megaterios footprints) | 290 | 190 | 260 | 246.67 | 29.25 | 15.37 | 6.60 | 12.36 | 11.12 |
G13 | Loma de Quito (hill) | 195 | 225 | 165 | 195.00 | 44.00 | 10.46 | 13.92 | 7.49 | 10.46 |
G14 | Termas Guayllabamba (hot springs) | 200 | 215 | 275 | 230.00 | 63.38 | 15.84 | 18.31 | 29.95 | 20.95 |
G15 | Cantera faldas Chimborazo (mine) | 285 | 230 | 230 | 248.33 | 97.38 | 49.43 | 32.19 | 32.19 | 37.53 |
G16 | Capas Volcánicas de Chimborazo (Tephra fallout deposit) | 220 | 205 | 275 | 233.33 | 126.50 | 38.27 | 33.23 | 59.79 | 43.05 |
G17 | Cascada La Chorrera (waterfall) | 195 | 175 | 190 | 186.67 | 24.50 | 5.82 | 4.69 | 5.53 | 5.34 |
G18 | Dunas Palmira (dunes-desert) | 205 | 240 | 345 | 263.33 | 24.75 | 6.50 | 8.91 | 18.41 | 10.73 |
G19 | Volcán Chimborazo (volcano) | 380 | 370 | 370 | 373.33 | 15.75 | 14.21 | 13.48 | 13.48 | 13.72 |
G20 | Volcán El Altar (volcano) | 255 | 210 | 315 | 260.00 | 19.50 | 7.92 | 5.37 | 12.09 | 8.24 |
Internal Environment | Strengths (S) | Weaknesses (W) | |
External Environment | S1. Variety of attractions, such as waterfalls, rock formations, paleontological fragments. S2. Easy access. S3. Unique and relevant landscape beauty. S4. Valuable geological heritage. | W1. Limited promotion and brochures about geosites and geotourism. W2. Lack of knowledge and disinterest of the population. W3. Lack of design of routes or circuits with geological information to visit the attractions. W4. Some attractions are not covered by geosite protection and conservation. | |
Opportunities (O) | Strategies: S + O | Strategies: W + O | |
O1. Boost the economy of the province. O2. Creation of routes. O3. Diverse and flexible tourist alternatives. O4. Geotourism as a state policy. | S1.O2. Develop plans focused on promoting attractions through geological routes for tourists. S4.O4. Promote active national cooperation through initiatives that lead to better conservation of natural, cultural, and intangible heritage. | W1.O1. Generate geotourism promotion projects that serve as an alternative to improve the population’s economic conditions and seek to promote integrated tourism. W4.O4. Pursue scientific studies and research on intervention methods that allow the country to face the dangers that threaten its heritage. | |
Threats (T) | Strategies: S + T | Strategies: W + T | |
T1. Lack of private economic resources that facilitate the implementation of programs and projects associated with geological tourism. T2. Environmental degradation. T3. High-quality demand in tourism services to confront the COVID-19. | S1.T2. Promote the development of conservation and protection plans for geosites with the community’s support to prevent deterioration. S3.T1. Promote both national and international recognition of assets through cooperation with government entities. | W2.T3. Involve experts in preservation and conservation issues to develop initiatives that prevent deterioration and improve the quality of tourism at geosites. W3.T1. Use marketing tools appropriately to keep the destination’s spirit alive and thereby achieve its development in the tourism market. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrión-Mero, P.; Borja-Bernal, C.; Herrera-Franco, G.; Morante-Carballo, F.; Jaya-Montalvo, M.; Maldonado-Zamora, A.; Paz-Salas, N.; Berrezueta, E. Geosites and Geotourism in the Local Development of Communities of the Andes Mountains. A Case Study. Sustainability 2021, 13, 4624. https://doi.org/10.3390/su13094624
Carrión-Mero P, Borja-Bernal C, Herrera-Franco G, Morante-Carballo F, Jaya-Montalvo M, Maldonado-Zamora A, Paz-Salas N, Berrezueta E. Geosites and Geotourism in the Local Development of Communities of the Andes Mountains. A Case Study. Sustainability. 2021; 13(9):4624. https://doi.org/10.3390/su13094624
Chicago/Turabian StyleCarrión-Mero, Paúl, César Borja-Bernal, Gricelda Herrera-Franco, Fernando Morante-Carballo, María Jaya-Montalvo, Alfonso Maldonado-Zamora, Nataly Paz-Salas, and Edgar Berrezueta. 2021. "Geosites and Geotourism in the Local Development of Communities of the Andes Mountains. A Case Study" Sustainability 13, no. 9: 4624. https://doi.org/10.3390/su13094624
APA StyleCarrión-Mero, P., Borja-Bernal, C., Herrera-Franco, G., Morante-Carballo, F., Jaya-Montalvo, M., Maldonado-Zamora, A., Paz-Salas, N., & Berrezueta, E. (2021). Geosites and Geotourism in the Local Development of Communities of the Andes Mountains. A Case Study. Sustainability, 13(9), 4624. https://doi.org/10.3390/su13094624