Physical and Biological Treatment Technologies of Slaughterhouse Wastewater: A Review
Abstract
:1. Introduction
1.1. Physicochemical Treatment
1.1.1. Dissolved Air Floatation (DAF)
1.1.2. Coagulation–Flocculation and Sedimentation
1.1.3. Electrocoagulation (EC) Process
1.1.4. Membrane Technology
1.1.5. Summary of Physicochemical Treatment Methods
2. Biological Treatment
2.1. Anaerobic Treatment
2.1.1. Anaerobic Lagoon
2.1.2. Anaerobic Filters
2.1.3. Anaerobic Baffled Reactor
2.1.4. Upflow Anaerobic Sludge Blanket Reactor
2.1.5. Suspended and Attached Growth Process
2.1.6. Summary of Biological Treatment Methods
2.2. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrera, M.; Mehrvar, M.; Gilbride, K.; McCarthyc, L.H.; Laursen, A.E.; Bostan, V.; Pushchakd, R. Photolytic treatment of organic constituents and bacterial pathogens in secondary effluent of synthetic slaughterhouse wastewater. Chem. Eng. Res. Des. 2012, 90, 1335–1350. [Google Scholar] [CrossRef]
- Adami, L.; Schiavon, M. From Circular Economy to Circular Ecology: A Review on the Solution of Environmental Problems through Circular Waste Management Approaches. Sustainability 2021, 13, 925. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, R.K.; Sakhuja, D.; Mundhe, S.; Walia, A. Renewable Energy Products through Bioremediation of Wastewater. Sustainability 2020, 12, 7501. [Google Scholar] [CrossRef]
- De Nardi, I.R.; Del Nery, V.; Amorim, A.K.B.; Dos Santos, N.G.; Chimenes, F. Performances of SBR, chemical-DAF and UV disinfection for poultry slaughterhouse wastewater reclamation. Desalination 2011, 269, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Al-Mutairi, N.Z.; Al-Sharifi, F.A.; Al-Shammari, S.B. Evaluation study of a slaughterhouse wastewater treatment plant including contact-assisted activated sludge and DAF. Desalination 2008, 225, 167–175. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Denver, CO, USA, 2005. [Google Scholar]
- Hubbe, M.A.; Metts, J.R.; Hermosilla, D.; Blanco, M.A.; Yerushalmi, L.; Haghighat, F.; Lindholm-Lehto, P.; Khodaparast, Z.; Kamali, M.; Elliott, A. Haghighat, Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities. BioResources 2016, 11, 7953–8091. [Google Scholar] [CrossRef] [Green Version]
- Mittal, G.S. Treatment of wastewater from abattoirs before land application A review. Bioresour. Technol. 2006, 97, 1119–1135. [Google Scholar] [CrossRef]
- Kiepper, B. A survey of wastewater treatment practices in the broiler industry. Water Environ. Fed. 2001, 12, 12–25. [Google Scholar] [CrossRef]
- De Sena, R.F.; Moreira, R.F.P.M.; José, H.J. Comparison of coagulants and coagulation aids for treatment of meat processing wastewater by column flotation. Bioresour. Technol. 2008, 99, 8221–8225. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent Advancement of Coagulation-Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Satyanarayan, S.; Ramakant; Vanerkar, A.P. Conventional approach for abattoir wastewater treatment. Environ. Technol. 2010, 26, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.; Ahmad, M.; Siddique, S.; Waheed, A.; Shafiq, T.; Khan, M.H. Optimization of coagulation process for the treatment of the characterized slaughterhouse wastewater. Pak. J. Sci. Ind. Res. 2012, 55, 43–48. [Google Scholar]
- Emamjomeh, M.M.; Sivakumar, M. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. J. Environ. Manag. 2009, 90, 1663–1679. [Google Scholar] [CrossRef]
- Bayar, S.; Yildiz, Y.S.; Yilmaz, A.E.; Irdemez, S. The effect of stirring speed and current density on removal efficiency of poultry slaughterhouse wastewater by electrocoagulation method. Desalination 2011, 280, 103–107. [Google Scholar] [CrossRef]
- Bayramoglu, M.; Kobya, M.; Eyvaz, M.; Senturk, E. Technical and economic analysis of electrocoagulation for the treatment of poultry slaughterhouse wastewater. Sep. Purif. Technol. 2006, 51, 4–408. [Google Scholar] [CrossRef]
- Kobya, M.; Senturk, E.; Bayramoglu, M. Treatment of poultry slaughterhouse wastewaters by electrocoagulation. J. Hazard. Mater. 2006, 133, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Bayar, S.; Yildiz, Y.Ş.; Yilmaz, A.E.; Koparal, A.S. The effect of initial pH on treatment of poultry slaughterhouse wastewater by electrocoagulation method. Desalin. Water Treat. 2014, 52, 3047–3053. [Google Scholar] [CrossRef]
- Ozyonar, F.; Karagozoglu, B. Investigation of technical and economic analysis of electrocoagulation process for the treatment of great and small cattle slaughterhouse wastewater. Desalin. Water Treat. 2014, 52, 74–87. [Google Scholar] [CrossRef]
- Pérez-Sicairos, S.; Morales-Cuevas, J.B.; Félix-Navarro, R.M.; Hernández-Calderón, O.M. Evaluación del proceso de electrocoagulacíon para la remoción de turbidez de agua de río, agua residual y agua de estanque. Rev. Mex. Ing. Qum. 2011, 10, 79–91. [Google Scholar]
- Picard, T.; Cathalifaud-Feuillade, G.; Mazet, M.; Vandensteendam, C. Cathodic dissolution in the electrocoagulation process using aluminium electrodes. J. Environ. Monit. 2000, 2, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Gürses, A.; Yalçin, M.; Doar, C. Electrocoagulation of some reactive dyes: A statistical investigation of some electrochemical variables. Waste Manag. 2002, 22, 491–499. [Google Scholar] [CrossRef]
- Almandoz, M.C.; Pagliero, C.L.; Ochoa, N.A.; Marchese, J. Composite ceramic membranes from natural aluminosilicates for microfiltration applications. Ceram. Int. 2015, 41, 5621–5633. [Google Scholar] [CrossRef]
- Bohdziewicz, J.; Sroka, E. Integrated system of activated sludge-reverse osmosis in the treatment of the wastewater from the meat industry. Process Biochem. 2005, 40, 1517–1523. [Google Scholar] [CrossRef]
- Yordanov, D. Preliminary study of the efficiency of ultrafiltration treatment of poultry slaughterhouse wastewater. Bulg. J. Agric. Sci. 2010, 16, 700–704. [Google Scholar]
- Rezakazemi, M.; Khajeh, A.; Mesbah, M. Membrane filtration of wastewater from gas and oil production. Environ. Chem. Lett. 2018, 16, 367–388. [Google Scholar] [CrossRef]
- Gürel, L.; Büyükgüngör, H. Treatment of slaughterhouse plant wastewater by using a membrane bioreactor. Water Sci. Technol. 2011, 64, 214–219. [Google Scholar] [CrossRef]
- Umaiyakunjaram, R.; Shanmugam, P. Study on submerged anaerobic membrane bioreactor (SAMBR) treating high suspended solids raw tannery wastewater for biogas production. Bioresour. Technol. 2016, 216, 785–792. [Google Scholar] [CrossRef]
- Hu, A.Y.; Stuckey, D.C. Treatment of dilute wastewaters using a novel submerged anaerobic membrane bioreactor. J. Environ. Eng. 2006, 132, 190–198. [Google Scholar] [CrossRef]
- Dereli, R.K.; Heffernan, B.; Grelot, A.; Van Der Zee, F.P.; Van Lier, J.B. Influence of high lipid containing wastewater on filtration performance and fouling in AnMBRs operated at different solids retention times. Sep. Purif. Technol. 2015, 139, 43–52. [Google Scholar] [CrossRef]
- Pierson, J.A.; Pavlostathis, S.G. Real-Time Monitoring and Control of Sequencing Batch Reactors for Secondary Treatment of a Poultry Processing Wastewater. Water Environ. Res. 2000, 72, 585–592. [Google Scholar] [CrossRef]
- Martineza, S.L.; Torrettab, V.; Minguelac, J.V.; Siñerizd, F.; Rabonib, M.; Copellib, S.; Cristina Radae, E.; Ragazzie, M. Treatment of slaughterhouse wastewaters using anaerobic filters. Environ. Technol. 2014, 35, 322–332. [Google Scholar] [CrossRef]
- Massé, D.I.; Masse, L. Characterization of wastewater from hog slaughterhouses in Eastern Canada and evaluation of their in-plant wastewater treatment systems. Can. Biosyst. Eng. Genie Biosyst. Can. 2000, 42, 139–146. [Google Scholar]
- Fu, Y.; Luo, T.; Mei, Z.; Li, J.; Qiu, K.; Ge, Y. Dry Anaerobic Digestion Technologies for Agricultural Straw and Acceptability in China. Sustainability 2018, 10, 4588. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.Y.; Yang, W.; Ye, Y.; LaBarge, N.; Logan, B.E. Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater. Bioresour. Technol. 2016, 208, 58–63. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valorization 2017, 8, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.F.; Mittal, G.S. Characterization of provincially inspected slaughterhouse wastewater in Ontario, Canada. Can. Biosyst. Eng. Genie Biosyst. Can. 2012, 54, 9–18. [Google Scholar] [CrossRef]
- McCabe, B.K.; Hamawand, I.; Harris, P.; Baillie, C.; Yusaf, T. A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production. Appl. Energy 2014, 114, 798–808. [Google Scholar] [CrossRef]
- Ewemoje, O.; Sangodoyin, A. Developing a pilot scale horizontal sub surface flow constructed wetlands for phytoremediation of primary lagoon effluents. In 11th Edition of the World Wide Workshop for Young Environmental Scientists (WWW-YES-2011)—Urban Waters: Resource or Risks? CCSD: Arcueil, France, 2011. [Google Scholar]
- Covered Anaerobic Lagoons Meat Industry Applications; Australian Meat Processor Corporation: North Sydney, Austrlia, 2017; pp. 1–8.
- Tilley, E.; Ulrich, L.; Luethi, C.; Reymond, P.; Zurburegg, C.; Lüthi, C.M.; Antoine, Z.C.; Schertenleib, R. Compendium of Sanitation Systems and Technologies; Swiss Federal Institute of Aquatic Science and technology (Eawag): Dübendorf, Switzerland, 2014. [Google Scholar]
- Gannoun, H.; Bouallagui, H.; Okbi, A.; Sayadi, S.; Hamdi, M. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter. J. Hazard. Mater. 2009, 170, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, R.; Meenambal, T.; Banu, J.R.; Yeom, I.T. Treatment of poultry slaughterhouse wastewater in upflow anaerobic filter under low upflow velocity. Int. J. Environ. Sci. Technol. 2011, 8, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Stets, M.I.; Etto, R.M.; Galvão, C.W.; Ayub, R.A.; Cruz, L.M.; Steffens, M.B.R.; Barana, A.C. Microbial community and performance of slaughterhouse wastewater treatment filters. Genet. Mol. Res. 2014, 13, 4444–4455. [Google Scholar] [CrossRef] [PubMed]
- Ndibnuh, P.A.S.; David, N.Y.; Ilorme, F. Conceptual Design of a Decentralized Wastewater Treatment System for the Bamenda Regional Hospital Cameroon. J. Pollut. 2018, 1, 1–11. [Google Scholar]
- Foxon, F.M.; Buckley, C.A. Guidelines for the Implementation of Anaerobic Baffled Reactors for On-Site or Decentralized Sanitation; University of Kwazulu Natal: Glenwood, Durban, 2006. [Google Scholar]
- Kuşçu, Ö.S.; Sponza, D.T. Performance of anaerobic baffled reactor (ABR) treating synthetic wastewater containing p-nitrophenol. Enzyme Microb. Technol. 2005, 36, 888–895. [Google Scholar] [CrossRef]
- Cao, W.; Mehrvar, M. Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chem. Eng. Res. Des. 2011, 89, 1136–1143. [Google Scholar] [CrossRef]
- Lettinga, G.; van Velsen, A.F.M.; Hobma, S.W.; De Zeeuw, W.; Klapwijk, A. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment. Biotechnol. Bioeng. 1980, 22, 699–734. [Google Scholar] [CrossRef]
- Rajeshwari, K.V.; Balakrishnan, M.; Kansal, A.; Lata, K.; Kishore, V.V.N. State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renew. Sustain. Energy 2000, 4, 135–156. [Google Scholar] [CrossRef]
- Amorim, A.K.B.; De Nardi, I.R.; Del Nery, V. Water conservation and effluent minimization: Case study of a poultry slaughterhouse. Resour. Conserv. Recycl. 2007, 51, 93–100. [Google Scholar] [CrossRef]
- Del Nery, V.; Pozzi, E.; Damianovic, M.H.R.Z.; Domingues, M.R.; Zaiat, M. Granules characteristics in the vertical profile of a full-scale upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Bioresour. Technol. 2008, 99, 2018–2024. [Google Scholar] [CrossRef]
- Upflow Anaerobic Sludge Blanket. Available online: microbewiki.kenyon.edu (accessed on 2 November 2020).
- Daud, M.K.; Rizvi, H.; Akram, M.F.; Ali, S.; Rizwan, M.; Nafees, M.; Jin, Z.S. Review of upflow anaerobic sludge blanket reactor technology: Effect of different parameters and developments for domestic wastewater treatment. Hindawi 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Caldera, E.Y.; Madue, P.; Griborio, A.; Fernandez, G.N. Effect of the organic load in the performance the UASB reactor treating slaughterhouse effluent. Rev. Tec. Fac. Ing. Univ. Zulia 2005, 28, 119–127. [Google Scholar]
- Chávez, C.P.; Castillo, R.L.; Dendooven, L.; Escamilla-Silva, E.M. Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor. Bioresour. Technol. 2005, 96, 1730–1736. [Google Scholar] [CrossRef]
- Rajakumar, R.; Meenambal, T. Comparative study on start-up performance of HUASB and AF reactors treating poultry slaughterhouse wastewater. Int. J. Environ. Res. 2008, 2, 401–410. [Google Scholar]
- Mijalova Nacheva, P.; Reyes Pantoja, M.; Lomelí Serrano, E.A. Treatment of slaughterhouse wastewater in upflow anaerobic sludge blanket reactor. Water Sci. Technol. 2011, 41, 181–185. [Google Scholar]
- Chollom, M.N.; Rathilal, S.; Swalaha, F.M.; Bakare, B.F.; Tetteh, E.K. Study of the start-up of an upflow laboratory-scale anaerobic sludge blanket for the treatment of slaughterhouse wastewater. WIT Trans. Ecol. Environ. 2017, 216, 123–130. [Google Scholar]
- Miranda, L.A.S.; Henriques, J.A.P.; Monteggia, L.O. A full-scale uasb reactor for treatment of pig and cattle slaughterhouse wastewater with a high oil and grease content. Braz. J. Chem. Eng. 2005, 22, 307. [Google Scholar] [CrossRef]
- Batubara, F.; Ritonga, N.A.; Turmuzi, M. Start-Up of Upflow Anaerobic Sludge Blanket (UASB) Reactor Treating Slaughterhouse Wastewater. J. Phys. Conf. Ser. 2018, 1116, 042008. [Google Scholar] [CrossRef]
- Torkian, A.; Eqbali, A.; Hashemian, S.J. The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resour. Conserv. Recycl. 2003, 40, 1–11. [Google Scholar] [CrossRef]
- Del Nery, V.; Damianovic, M.H.Z.; Barros, F.G. The use of upflow anaerobic sludge blanket reactors in the treatment of poultry slaughterhouse wastewater. Water Sci. Technol. 2001, 44, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Borja, R.; Banks, C.J.; Wang, Z. Performance and kinetics of an upflow anaerobic sludge blanket (UASB) reactor treating slaughterhouse wastewater. J. Environ. Sci. Heal. Part A Environ. Sci. Eng. Toxicol. 1994, 29, 2063–2085. [Google Scholar] [CrossRef]
- Worku, Z. Anaerobic Digestion of Slaughterhouse Wastewater for Methane Recovery and Treatability. Int. J. Sustain. Green Energy 2017, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Manjunath, N.T.; Mehrotra, I.; Mathur, R.P. Treatment of wastewater from slaughterhouse by DAF-UASB system. Water Res. 2000, 34, 1930–1936. [Google Scholar] [CrossRef]
- Conly, L.H.; Gregery, T.W. Anaerobic digestion of rendering waste in an upflow anaerobic sludge blanket digester. Bioresour. Technol. 1992, 21, 563–567. [Google Scholar]
- Singh, K.S.; Harada, H.; Viraraghavan, T. Low-strength wastewater treatment by a UASB reactor. Bioresour. Technol. 1996, 55, 187–194. [Google Scholar] [CrossRef]
- Behling, E.; Diaz, A.; Colina, G.; Herrera, M.; Gutierrez, E.; Chacin, E.; Fernandez, N.; Forster, C.F. Domestic wastewater treatment using a UASB reactor. Bioresour. Technol. 1997, 61, 239–245. [Google Scholar] [CrossRef]
- Kaparaju, P.; Serrano, M.; Angelidaki, I. Optimization of biogas production from wheat straw stillage in UASB reactor. Appl. Energy 2010, 87, 3779–3783. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Krishna Prasad, K.; Chandrasekhara Rao, N.; Vijaya Bhaskar, Y.; Lalit Babu, V.; Rajagopal, D.; Sarma, P.N. Biological treatment of low-biodegradable composite chemical wastewater using upflow anaerobic sludge blanket (UASB) reactor: Process monitoring. J. Sci. Ind. Res. 2005, 64, 771–777. [Google Scholar]
- Parawira, W.; Murto, M.; Zvauya, R.; Mattiasson, B. Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate. Renew. Energy 2006, 31, 893–903. [Google Scholar] [CrossRef]
- Nkemka, V.N.; Murto, M. Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. J. Environ. Manag. 2010, 91, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, H.; Shayegan, J. Optimizing OLR and HRT in a UASB reactor for pretreating high-Strength municipal wastewater. Chem. Eng. Trans. 2011, 24, 1285–1290. [Google Scholar]
- Fang, C.; Boe, K.; Angelidaki, I. Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresour. Technol. 2011, 102, 5734–5741. [Google Scholar] [CrossRef] [PubMed]
- Chunshuang, L.; Dongfeng, Z.; Yadong, G.; Chaocheng, Z. Performance and Modeling of an Up-flow Anaerobic Sludge Blanket (UASB) Reactor for Treating High Salinity Wastewater from Heavy Oil Production. China Pet. Process. Petrochem. Technol. 2012, 14, 90–95. [Google Scholar]
- Venkatesh, K.R.; Rajendran, M.; Murugappan, A. Start-Up Of An Upflow Anaerobic Sludge Blanket Reactor Treating Low-Strength Wastewater Inoculated With Non-Granular Sludge. Int. Ref. J. Eng. Sci. 2013, 2, 46–53. [Google Scholar]
- Xu, S. Process Improvements in Biological Nutrient Removal Systems for Better Wastewater Treatment Process Improvements in Biological Nutrient Removal Systems for Better Wastewater Treatment. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 2014. [Google Scholar]
- Roshan, D.J.M.; Raj, S. Attached growth system for NH4-N Removal from groundwater in the kathmandu valley. In Kathmandu Valley Groundwater Outlook; Shrestha, S., Pradhananga, D., Pandey, V.P., Eds.; Asian Institute of Technology (AIT): Klong Luang, Thailand, 2012; pp. 64–68. [Google Scholar]
- Sehar, S.; Naz, I. Role of the Biofilms in Wastewater Treatment. In Microbial Biofilms Importance and Applications; IntechOpen Limited: Winchester, UK, 2016; p. 122. [Google Scholar]
Methods | Advantage | Disadvantage |
---|---|---|
Dissolved air floatation |
|
|
Coagulation–flocculation and sedimentation |
|
|
Electrocoagulation (EC) process |
|
|
Membrane technology |
|
|
Type of Substrate | OLR | HRT (h) | Temperature (°C) | %COD Removal | Biogas Production | SMP (L g−1 CODadded) | Scale | Reference |
---|---|---|---|---|---|---|---|---|
Slaughterhouse wastewater | 0.2–1.4 kg COD/m3d−1 | 12 | 24–35 °C | 30–62% | 3.45 L/d | NR | Lab | [60] |
Slaughterhouse wastewater | 1.46 to 2.43 kg COD/m3d−1 | 18–27 | 25 °C | 70–92% | NR | NR | Full | [61] |
Slaughterhouse wastewater | 0.64 - 2.95 kg COD/m3d−1 | NR | 35 °C | 58.4% | 270 mL/d | NR | Lab | [62] |
Slaughterhouse wastewater | 13–39 kg SCOD/m3d−1 | 2–7 | 33 °C | 75–90% | NR | 200–280 LCH4/kg SCOD removed | Pilot | [63] |
Slaughterhouse wastewater | 4–15 kg COD/m3d−1 | 0.88, 0.71 0.44, 0.30 | 20.9–25 °C | 90% | 0.020 ± 70.013 0.039 ± 70.010 0.095 ± 70.008 m3/d | 0.239 ± 70.095 0.266 ± 70.005 m3/kg COD removed | Lab | [59] |
Poultry slaughterhouse wastewater | 2.1 kg COD/m3d−1 | 1–5 | NR | >80% | NR | NR | Lab | [64] |
slaughterhouse wastewater | 1.27–17 kg COD/ m3d−1 | 4–0.3 | 35 °C | NR | 0.680–3.790 L.L−1. day−1 | NR | Lab | [65] |
Poultry slaughterhouse wastewater | 15 kg COD/m3d−1 | 24, 16, 12, 10 and 8 | 29–35 °C | 78% | 20.3 L/d | 0.24 m3CH4/ kg COD removed | Lab | [44] |
Slaughterhouse wastewater | 0.32, 0.51, 1.16 and 2.31 kg COD/m3d−1 | 22, 14, 6 and 3 | 29.6 ± 1.40 °C | 43.39–84.54% | 143.9 m3 | 0.09 ± 0.03 to 0.22 ± 0.02 m3/ kgCOD removed | Pilot | [66] |
Slaughterhouse wastewater | 1.2 kg COD m−3 d−1 | 24 | 30 ± 1 °C | 70% | NR | NR | Lab | [67] |
Slaughterhouse wastewater | 0.54 | 15.6 | 35 ± 1 °C | 50.9 | NR | 100 mL CH4/gCODadded | Lab | [68] |
Type of Substrate | Temperature | Influent COD | HRT (h) | OLR (d) | Biogas Produced | COD Removal (%) | References |
---|---|---|---|---|---|---|---|
Low strength wastewater | Ambient temperature (20–35 °C) | 500 mg/L | 3 | 4 kg COD/m3/d | 141 L/kg COD removed | 90–92% | [69] |
Domestic wastewater | Ambient temperature | - | 7.6 | 1.21 kg COD/m3/d | 0.34 m3CH4/ g COD removed | 85% | [70] |
Wheat straw stillage | 55 °C | 70 g/L | 48 | 17.1 g COD/L/d | 154.8 mL CH4/g COD | 76% | [71] |
Composite chemical wastewater | 29 ± 2 °C | 6600 mg/L | 37 | 4.25 kg COD/m3/d | 0.3 m3CH4/kg COD removed | 62% | [72] |
Potato leachate wastewater | 37 °C | 20 g/L | 6.1 g COD/L/d | 0.23 L CH4/ g COD degraded | 93 ± 5.3% | [73] | |
Seaweed leachate | 37 ± 1 °C | 7.3 ± 1.1 g/L | 88.8 | 2.9 g COD/L/d | 0.23 ± 0.03 NL CH4/g CODadded | - | [74] |
High-strength municipal wastewater | 30 °C | 1200 mg/L | 4 | 7.2 kg COD/m3/day | 306.6 mL CH4/g COD removed | 85% | [75] |
Potato juice | 37 °C | 25.2 g/L | 240 | 2.5 g COD/L/d | 250 ± 6 mL CH4/ gVS added | - | [76] |
High salinity wastewater from heavy oil production | 30 ± 2 °C | 350–640 mg/L | 48 | 0.23 kg COD/m3/d | - | 65.08% | [77] |
Low strength wastewater | Ambient temperature (24–35 °C) | 700–1000 mg/L | - | 1.293 kg COD/m3/d | 457 L/kg COD removal | 90.8% | [78] |
Methods | Advantage | Disadvantage |
---|---|---|
Anaerobic lagoon (AL) |
|
|
Anaerobic filters (AF) |
|
|
Anaerobic baffled reactor (ABF) |
|
|
Upflow anaerobic sludge blanket reactor |
|
|
Suspended growth (activated sludge process) |
|
|
Attached growth process |
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musa, M.A.; Idrus, S. Physical and Biological Treatment Technologies of Slaughterhouse Wastewater: A Review. Sustainability 2021, 13, 4656. https://doi.org/10.3390/su13094656
Musa MA, Idrus S. Physical and Biological Treatment Technologies of Slaughterhouse Wastewater: A Review. Sustainability. 2021; 13(9):4656. https://doi.org/10.3390/su13094656
Chicago/Turabian StyleMusa, Mohammed Ali, and Syazwani Idrus. 2021. "Physical and Biological Treatment Technologies of Slaughterhouse Wastewater: A Review" Sustainability 13, no. 9: 4656. https://doi.org/10.3390/su13094656
APA StyleMusa, M. A., & Idrus, S. (2021). Physical and Biological Treatment Technologies of Slaughterhouse Wastewater: A Review. Sustainability, 13(9), 4656. https://doi.org/10.3390/su13094656