Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ZnO-NP, ZnO Seeds on ACF, and ZnO-NR on ACF Nanocomposites
2.3. Characterization
2.4. Photocatalytic Degradation of MB
3. Results
3.1. XRD Analysis
3.2. Scanning Electron Microscopy (SEM)
3.3. UV–Vis Absorption Spectrum of Bare ZnO-NRs and ZnO-NR/ACF
3.4. FT-IR Analysis
3.5. BET Analysis
3.6. Photocatalytic Activity
3.7. Photocatalytic Degredation Mechanism of MB under UV-Light Irradiation
- ZnO-NRs irradiated under UV light allow excited electrons to be transferred from the valence band (VB) to conduction band (CB). As a result, holes (h+) and electron (e−) will be generated in the VB and CB, respectively. The band gap is defined as the energy difference between the VB and CB.
- Electrons in the CB of ZnO-NRs are easily transferred to CB of ACFs due to the high electric conductivity of carbon. This leads to the excitation of MB molecules adsorbed onto the ZnO-NR/ACF surface.
- Photoelectrons resulting from the reaction react with O2 molecules in the solution forming (O2·−), while holes (h+) react with H2O to form (·OH) that follows chain reactions.
- The (O2·−) and (·OH) radicals react with MB molecules to convert the organic pollutants or into nontoxic forms or completely decompose them to CO2 and H2O. Both of the photodegradation processes are responsible for the degradation of the MB.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagpal, M.; Kakkar, R. Use of metal oxides for the adsorptive removal of toxic organic pollutants. Sep. Purif. Technol. 2019, 211, 522–539. [Google Scholar] [CrossRef]
- Wawrzkiewicz, M.; Wiśniewska, M.; Wołowicz, A.; Gun’ko, V.M.; Zarko, V.I. Mixed silica-alumina oxide as sorbent for dyes and metal ions removal from aqueous solutions and wastewaters. Microporous Mesoporous Mater. 2017, 250, 128–147. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Bhattacharya, A.; Stepanova, D.; Mikhaylov, A.; Grilli, M.L.; Khosravy, M.; Senjyu, T. A Systematic Review of Metal Oxide Applications for Energy and Environmental Sustainability. Metals 2020, 10, 1604. [Google Scholar] [CrossRef]
- Huang, Y.; Su, W.; Wang, R.; Zhao, T. Removal of typical industrial gaseous pollutants: From carbon, zeolite, and metal-organic frameworks to molecularly imprinted adsorbents. Aerosol Air Qual. Res. 2019, 19, 2130–2150. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Res. 2016, 88, 428–448. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Dastan, D.; Panahi, S.L.; Chaure, N.B. Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci. Mater. Electron. 2016, 27, 12291–12296. [Google Scholar] [CrossRef]
- Dastan, D.; Panahi, S.L.; Yengantiwar, A.P.; Banpurkar, A.G. Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv. Sci. Lett. 2016, 22, 950–953. [Google Scholar] [CrossRef]
- Dastan, D. Effect of preparation methods on the properties of titania nanoparticles: Solvothermal versus sol-gel. Appl. Phys. A 2017, 1–13, 123–699. [Google Scholar] [CrossRef]
- Azmina, M.S.; Nor, R.M.; Rafaie, H.A.; Razak, N.S.A.; Sani, S.F.A.; Osman, Z. Enhanced photocatalytic activity of ZnO nanoparticles grown on porous silica microparticles. Appl. Nanosci. 2017, 7, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, C. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal. A Gen. 2006, 304, 55–61. [Google Scholar] [CrossRef]
- Vaiano, V.; Matarangolo, M.; Murcia, J.J.; Rojas, H.; Navío, J.A.; Hidalgo, M.C. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B Environ. 2018, 225, 197–206. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Zhang, J.; Yan, J.; Zhao, Y.; Mahoney, C.; Ferebee, R.; Luo, D.; Pietrasik, J.; Bockstaller, M.R.; et al. Photocatalytic active mesoporous carbon/ZnO hybrid materials from block copolymer tethered ZnO nanocrystals. Langmuir 2017, 33, 12276–12284. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Xu, X.; Ding, T.; Feng, B.; Bao, Z.; Hu, J. Well–steered charge–carrier transfer in 3D branched CuXo/ZnO@ Au heterostructures for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2015, 7, 26819–26827. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.J.; Voon, S.Y.; Tan, L.L.; Goh, B.T.; Yong, S.T.; Chai, S.P. Enhanced daylight-induced photocatalytic activity of solvent exfoliated graphene (SEG)/ZnO hybrid nanocomposites toward degradation of reactive black 5. Ind. Eng. Chem. Res. 2014, 53, 17333–17344. [Google Scholar] [CrossRef]
- Qamar, M.A.; Shahid, S.; Javed, M.; Sher, M.; Iqbal, S.; Bahadur, A.; Li, D. Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiations. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125863. [Google Scholar] [CrossRef]
- Murali, A.; Sarswat, P.K.; Free, M.L. Adsorption-coupled reduction mechanism in ZnO-Functionalized MWCNTs nanocomposite for Cr (VI) removal and improved anti-photocorrosion for photocatalytic reduction. J. Alloy Compd. 2020, 843, 155835. [Google Scholar] [CrossRef]
- Kumaresan, N.; Sinthiya, M.M.A.; Ramamurthi, K.; Babu, R.R.; Sethuraman, K. Visible light driven photocatalytic activity of ZnO/CuO nanocomposites coupled with rGO heterostructures synthesized by solid-state method for RhB dye degradation. Arab. J. Chem. 2020, 13, 3910–3928. [Google Scholar] [CrossRef]
- You, J.; Xiang, Y.; Ge, Y.; He, Y.; Song, G. Synthesis of ternary rGO–ZnO–Fe3O4 nanocomposites and their application for visible light photocatalytic degradation of dyes. Clean Technol. Environ. Policy 2017, 19, 2161–2169. [Google Scholar] [CrossRef]
- Bagnara, M.; Farias, J.; Lansarin, M.A. Obtaining ZnO Immobilized Over Different Substrates by Hydrothermal Treatment for Photocatalysis Application. Química Nova 2016, 39, 286–291. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Zou, L.; Xue, D. Phase evolution from rod-like ZnO to plate-like zinc hydroxysulfate during electrochemical deposition. J. Alloy Compd. 2010, 493, 471–475. [Google Scholar] [CrossRef]
- Sinha, R.; Roy, N.; Mandal, T.K. Growth of Carbon Dot-Decorated ZnO Nanorods on a Graphite-Coated Paper Substrate to Fabricate a Flexible and Self-Powered Schottky Diode for UV Detection. ACS Appl. Mater. Interfaces 2020, 12, 33428–33438. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Bordbar-Khiabani, A.; Yarmand, B. Immobilization of rGO/ZnO hybrid composites on the Zn substrate for enhanced photocatalytic activity and corrosion stability. J. Alloy Compd. 2020, 845, 156219. [Google Scholar] [CrossRef]
- Farhat, O.F.; Halim, M.M.; Abdullah, M.J.; Ali, M.K.M.; Ahmed, N.M.; Allam, N.K. Growth of vertically aligned ZnO nanorods on Teflon as a novel substrate for low-power flexible light sensors. Appl. Phys. A 2015, 119, 1197–1201. [Google Scholar] [CrossRef]
- Albiss, B.A.; AL-Akhras, M.A.; Obaidat, I. Ultraviolet photodetector based on ZnO nanorods grown on a flexible PDMS substrate. Int. J. Environ. Anal. Chem. 2015, 95, 339–348. [Google Scholar] [CrossRef]
- Thi, V.H.T.; Lee, B.K. Great improvement on tetracycline removal using ZnO rod-activated carbon fiber composite prepared with a facile microwave method. J. Hazard. Mater. 2017, 324, 329–339. [Google Scholar]
- Chen, G.; Wang, Y.; Shen, Q.; Song, Y.; Chen, G.; Yang, H. Synthesis and enhanced photocatalytic activity of 3D flowerlike ZnO microstructures on activated carbon fiber. Mater. Lett. 2014, 123, 145–148. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.S.; Hadavifar, M.; Ghasemi, S.S.; Chamjangali, M.A. Synthesis of ZnO nanostructure using activated carbon for photocatalytic degradation of methyl orange from aqueous solutions. Appl. Water Sci. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pant, B.; Barakat, N.A.; Pant, H.R.; Park, M.; Saud, P.S.; Kim, J.W.; Kim, H.Y. Synthesis and photocatalytic activities of CdS/TiO2 nanoparticles supported on carbon nanofibers for highly efficient adsorption and simultaneous decomposition of organic dyes. J. Colloid Interface Sci. 2014, 434, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Zhang, Y.; Park, S.J. Recent advances in carbonaceous photocatalysts with enhanced photocatalytic performances: A mini review. Materials 2019, 12, 1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pant, B.; Park, M.; Kim, H.Y.; Park, S.J. Ag-ZnO photocatalyst anchored on carbon nanofibers: Synthesis, characterization, and photocatalytic activities. Synth. Met. 2016, 220, 533–537. [Google Scholar] [CrossRef]
- Li, P.; Liu, F.; Liu, Y.; Xue, R.; Fan, X. Preparation and photocatalytic activity of visible light-responsive zinc oxide/activated carbon fiber composites. J. Dispers. Sci. Technol. 2020, 1–12. [Google Scholar] [CrossRef]
- Mu, J.; Shao, C.; Guo, Z.; Zhang, Z.; Zhang, M.; Zhang, P.; Chen, B.; Liu, Y. High photocatalytic activity of ZnO− carbon nanofiber heteroarchitectures. ACS Appl. Mater. Interfaces 2011, 3, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Liu, C.; Zhou, S.; Li, W.; Ma, C.; Liu, S.; Yin, W.; Heeres, H.J.; Zheng, W.; Seshan, K.; et al. ZnO nanorod arrays assembled on activated carbon fibers for photocatalytic degradation: Characteristics and synergistic effects. Chemosphere 2020, 261, 127731. [Google Scholar] [CrossRef]
- German Standard No. 52980. Photocatalytic Activity of Surfaces-Determination of Photocatalytic Activity by Degradation of Methylene Blue. Ger. Inst. Stand. (Deutsches Inst. für Normung) 2008, 10, 1–14.
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Taghizadeh, S.M.; Lal, N.; Ebrahiminezhad, A.; Moeini, F.; Seifan, M.; Ghasemi, Y.; Berenjian, A. Green and economic fabrication of zinc oxide (ZnO) nanorods as a broadband UV blocker and antimicrobial agent. Nanomaterials 2020, 10, 530. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, C.; Tapia, C.; Leiva-Aravena, E.; Leiva, E. Graphene Oxide–ZnO Nanocomposites for Removal of Aluminum and Copper Ions from Acid Mine Drainage Wastewater. Int. J. Environ. Res. Public Health 2020, 17, 6911. [Google Scholar] [CrossRef]
- Arias, M.; López, E.; Nuñez, A.; Rubinos, D.; Soto, B.; Barral, M.T.; Díaz-Fierros, F. Adsorption of methylene blue by red mud, an oxide-rich byproduct of bauxite refining. In Effect of Mineral-Organic-Microorganism Interactions on Soil and Freshwater Environments; Berthelin, J., Huang, P.M., Bollag, J.-M., Andreux, F., Eds.; Springer: Boston, MA, USA, 1999; pp. 361–365. [Google Scholar]
- Yang, Y.; Guan, C. Adsorption properties of activated carbon fiber for highly effective removal of methyl orange dye. IOP Conf. Ser. Earth Environ. Sci. 2018, 208, 012005. [Google Scholar] [CrossRef]
- Melián, E.P.; Díaz, O.G.; Rodríguez, J.D.; Colón, G.; Araña, J.; Melián, J.H.; Navío, J.A.; Peña, J.P. ZnO activation by using activated carbon as a support: Characterisation and photoreactivity. Appl. Catal. A Gen. 2009, 364, 174–181. [Google Scholar] [CrossRef]
- Raizada, P.; Singh, P.; Kumar, A.; Sharma, G.; Pare, B.; Jonnalagadda, S.B.; Thakur, P. Solar photocatalytic activity of nano-ZnO supported on activated carbon or brick grain particles: Role of adsorption in dye degradation. Appl. Catal. A Gen. 2014, 486, 159–169. [Google Scholar] [CrossRef]
- Byrappa, K.; Subramani, A.K.; Ananda, S.; Rai, K.L.; Sunitha, M.H.; Basavalingu, B.; Soga, K. Impregnation of ZnO onto activated carbon under hydrothermal conditions and its photocatalytic properties. J. Mater. Sci. 2006, 41, 1355–1362. [Google Scholar] [CrossRef]
- Sobana, N.; Swaminathan, M. Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of Direct Blue 53. Sol. Energy Mater. Sol. Cells 2007, 91, 727–734. [Google Scholar] [CrossRef]
- Vinayagam, M.; Ramachandran, S.; Ramya, V.; Sivasamy, A. Photocatalytic degradation of orange G dye using ZnO/biomass activated carbon nanocomposite. J. Environ. Chem. Eng. 2018, 6, 3726–3734. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Dai, G.; Zhang, F. Immobilization of flower-like ZnO on activated carbon fibre as recycled photocatalysts. Res. Chem. Intermed. 2016, 42, 8227–8237. [Google Scholar] [CrossRef]
- Abu-Dalo, M.A.; Nevostrueva, S.; Hernandez, M. Removal of radionuclides from acidic solution by activated carbon impregnated with methyl-and carboxy-benzotriazoles. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Pathania, D.; Sharma, S.; Singh, P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 2017, 10, 1445–1451. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.F.R.; Soares, S.F.; Órfão, J.J.; Figueiredo, J.L. Adsorption of dyes on activated carbons: Influence of surface chemical groups. Carbon 2003, 41, 811–821. [Google Scholar] [CrossRef]
- AL-Aoh, H.A.; Yahya, R.; Jamil Maah, M.; Radzi Bin Abas, M. Adsorption of methylene blue on activated carbon fiber prepared from coconut husk: Isotherm, kinetics and thermodynamics studies. Desalin. Water Treat. 2014, 52, 6720–6732. [Google Scholar] [CrossRef]
- Yang, X.; Wang, D. Photocatalysis: From fundamental principles to materials and applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. [Google Scholar] [CrossRef]
- Luo, S.; Liu, C.; Wan, Y.; Li, W.; Ma, C.; Liu, S.; Heeres, H.J.; Zheng, W.; Seshan, K.; He, S. Self-assembly of single-crystal ZnO nanorod arrays on flexible activated carbon fibers substrates and the superior photocatalytic degradation activity. Appl. Surf. Sci. 2020, 513, 145878. [Google Scholar] [CrossRef]
- Shrestha, P.; Jha, M.K.; Ghimire, J.; Koirala, A.R.; Shrestha, R.M.; Sharma, R.K.; Pant, B.; Park, M.; Pant, H.R. Decoration of Zinc Oxide Nanorods into the Surface of Activated Carbon Obtained from Agricultural Waste for Effective Removal of Methylene Blue Dye. Materials 2020, 13, 5667. [Google Scholar] [CrossRef] [PubMed]
Sample | SBET (m2/g) | Vp (cm3/g) * | Dp (nm) |
---|---|---|---|
ZnO-NR | 27 ± 0.5 | 0.15 | 4.31 |
ACF | 981 ± 0.5 | 0.95 | 3.75 |
ZnO-NR/ACF | 1050 ± 0.5 | 0.81 | 2.53 |
Sample (at 500 mg/L) | MB Concentration (mg/L) | pH | MB Photodegredation (%) at 120 min | ZnO-NR Load (% wt.) |
---|---|---|---|---|
ZnO-NR | 25 | 4 | 82% | 100% |
50 | 7 | 86% | ||
100 | 12 | 77% | ||
ACF | 25 | 4 | 56% | 0 |
50 | 7 | 58% | ||
100 | 12 | 61% | ||
ZnO-NR/ACF | 25 | 4 | 88% | 10% |
7 | 87% | |||
12 | 88% | |||
50 | 4 | 81% | 20% | |
7 | 99% | |||
12 | 81% | |||
100 | 4 | 82% | 40% | |
7 | 92% | |||
12 | 78% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albiss, B.; Abu-Dalo, M. Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers. Sustainability 2021, 13, 4729. https://doi.org/10.3390/su13094729
Albiss B, Abu-Dalo M. Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers. Sustainability. 2021; 13(9):4729. https://doi.org/10.3390/su13094729
Chicago/Turabian StyleAlbiss, Borhan, and Muna Abu-Dalo. 2021. "Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers" Sustainability 13, no. 9: 4729. https://doi.org/10.3390/su13094729
APA StyleAlbiss, B., & Abu-Dalo, M. (2021). Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers. Sustainability, 13(9), 4729. https://doi.org/10.3390/su13094729