Electro-Decontamination of Spent Ion Exchange Resins Contaminated with Iron Oxide Deposits under Dynamic Conditions
Abstract
:1. Introduction
- 2H+ + 2ē → 2H2↑ (cathode),
- 2H2O − 4ē → O2↑ + 4H+ (anode),
- Fe2O3 + 6H+ + 2ē → 2Fe2+(aq) + 3H2O [20].
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sawicki, J.A. Analyses of Fuel Crud and Coolant-Borne Corrosion Products in Normal Water Chemistry BWRs. J. Nucl. Mater. 2011, 419, 85–96. [Google Scholar] [CrossRef]
- Sawicki, J.A.; Sefranek, P.J.; Fisher, S. Depth Distribution and Chemical Form of Iron in Low Cross-Linked Crud-Removing Resin Beds. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1998, 142, 122–132. [Google Scholar] [CrossRef]
- Hoshi, M.; Tachikawa, E.; Suwa, T.; Sagawa, C.; Yonezawa, C.; Aoyama, I.; Yamamoto, K. Crud Behaviors in High-Temperature Water, (I): Characterization of Water in JMTR OWL-1 Loop. J. Nucl. Sci. Technol. 1986, 23, 511–521. [Google Scholar] [CrossRef]
- Tsai, T.-L.; Lin, T.-Y.; Su, T.-Y.; Wei, H.-J.; Men, L.-C.; Wen, T.-J. Identification of Chemical Composition of CRUD Depositing on Fuel Surface of a Boiling Water Reactor (BWR-6) Plant. Energy Procedia 2012, 14, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Otoha, K.; Izumi, T.; Hayashi, T.; Morikawa, Y.; Murabayashi, H. Crud Removal Performance with Ion Exchange Resins in BWR Plants. J. Nucl. Sci. Technol. 1996, 33, 10. [Google Scholar] [CrossRef]
- Li, J.; Wang, J. Advances in Cement Solidification Technology for Waste Radioactive Ion Exchange Resins: A Review. J. Hazard. Mater. 2006, 135, 443–448. [Google Scholar] [CrossRef]
- Korpiola, K.; Järvinen, J.; Penttilä, K.; Kotiluoto, P. Modeling of Incineration of Spent Ion Exchange Resins of Boiling Water and Pressurized Water Nuclear Reactors. Nucl. Technol. 2010, 172, 230–236. [Google Scholar] [CrossRef]
- Luca, V.; Bianchi, H.L.; Allevatto, F.; Vaccaro, J.O.; Alvarado, A. Low Temperature Pyrolysis of Simulated Spent Anion Exchange Resins. J. Environ. Chem. Eng. 2017, 5, 4165–4172. [Google Scholar] [CrossRef]
- Xu, L.; Meng, X.; Li, M.; Li, W.; Sui, Z.; Wang, J.; Yang, J. Dissolution and Degradation of Nuclear Grade Cationic Exchange Resin by Fenton Oxidation Combining Experimental Results and DFT Calculations. Chem. Eng. J. 2019, 361, 1511–1523. [Google Scholar] [CrossRef]
- Cheng, T.-H.; Huang, C.-P.; Huang, Y.-H.; Shih, Y.-J. Kinetic Study and Optimization of Electro-Fenton Process for Dissolution and Mineralization of Ion Exchange Resins. Chem. Eng. J. 2017, 308, 954–962. [Google Scholar] [CrossRef]
- Kitabata, T.; Yoshimura, S.; Tsukamoto, Y.; Higashiura, N.; Mitsumori, S. Separation Method of Radionuclide from Spent Ion Exchange Resin. Patent No. JP2967026B2, 24 October 1999. Available online: https://patents.google.com/patent/JP2967026B2/en (accessed on 19 April 2021).
- Miyamoto, S.; Saki, M.; Aizawa, M.; Ota, N.; Sumitani, T.; Ishida, I. Decontamination Method and Decontamination Apparatus for Radioactive Waste Ion Exchange Resin. Patent No. JP6439242B2, 19 December 2018. Available online: https://patents.google.com/patent/JP6439242B2/en?oq=JP6439242B2 (accessed on 19 April 2021).
- Chi, L.; Semmler, J. Electrochemical Regeneration of Spent Ion Exchange Resin, Report number AECL-CW--127140-CONF-002; Atomic Energy of Canada Limited: Chalk River, ON, Canada, 2010; Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:49101522 (accessed on 3 March 2021).
- Semmler, J.; Chi, L. Treatment of Liquid Waste and Regeneration of Spent Ion Exchange Resin Using Electrochemical Techniques, Report number AECL-CW--127140-CONF-003; Atomic Energy of Canada Limited: Chalk River, ON, Canada, 2012; Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:49101523 (accessed on 3 March 2021).
- Korchagin, Y.P.; Aref’ev, E.K.; Korchagin, E.Y. Improvement of Technology for Treatment of Spent Radioactive Ion-Exchange Resins at Nuclear Power Stations. Therm. Eng. 2010, 57, 593–597. [Google Scholar] [CrossRef]
- Sidhu, P.S. Dissolution of Iron Oxides and Oxyhydroxides in Hydrochloric and Perchloric Acids. Clays Clay Miner. 1981, 29, 269–276. [Google Scholar] [CrossRef]
- Torres, R.; Blesa, M.A.; Matijević, E. Interactions of Metal Hydrous Oxides with Chelating Agents: IX. Reductive Dissolution of Hermatite and Magnetite by Aminocarboxylic Acids. J. Colloid Interface Sci. 1990, 134, 475–485. [Google Scholar] [CrossRef]
- Keny, S.J.; Kumbhar, A.G.; Venkateswaran, G.; Kishore, K. Radiation Effects on the Dissolution Kinetics of Magnetite and Hematite in EDTA- and NTA-Based Dilute Chemical Decontamination Formulations. Radiat. Phys. Chem. 2005, 72, 475–482. [Google Scholar] [CrossRef]
- Tokar, E.A.; Matskevich, A.I.; Sokolnitskaya, T.A.; Egorin, A.M. The Dissolution of Hematite Deposits on Model Spent Ion Exchange Resins Using Direct Current. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1048, 012020. [Google Scholar] [CrossRef]
- Yanina, S.V.; Rosso, K.M. Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal Conduction. Science 2008, 320, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egorin, A.; Tokar, E.; Kalashnikova, A.; Sokolnitskaya, T.; Tkachenko, I.; Matskevich, A.; Filatov, E.; Zemskova, L. Synthesis and Sorption Properties towards Sr-90 of Composite Sorbents Based on Magnetite and Hematite. Materials 2020, 13, 1189. [Google Scholar] [CrossRef] [Green Version]
- Jeon, B.-H.; Dempsey, B.A.; Burgos, W.D. Kinetics and Mechanisms for Reactions of Fe(II) with Iron(III) Oxides. Environ. Sci. Technol. 2003, 37, 3309–3315. [Google Scholar] [CrossRef]
- Larese-Casanova, P.; Scherer, M.M. Fe(II) Sorption on Hematite: New Insights Based on Spectroscopic Measurements. Environ. Sci. Technol. 2007, 41, 471–477. [Google Scholar] [CrossRef]
- Frierdich, A.J.; Helgeson, M.; Liu, C.; Wang, C.; Rosso, K.M.; Scherer, M.M. Iron Atom Exchange between Hematite and Aqueous Fe(II). Environ. Sci. Technol. 2015, 49, 8479–8486. [Google Scholar] [CrossRef]
- Catalano, J.G.; Fenter, P.; Park, C.; Zhang, Z.; Rosso, K.M. Structure and Oxidation State of Hematite Surfaces Reacted with Aqueous Fe(II) at Acidic and Neutral PH. Geochim. Cosmochim. Acta 2010, 74, 1498–1512. [Google Scholar] [CrossRef]
- Jeon, B.-H.; Dempsey, B.A.; Burgos, W.D.; Royer, R.A. Reactions of Ferrous Iron with Hematite. Colloids Surf. A Physicochem. Eng. Asp. 2001, 191, 41–55. [Google Scholar] [CrossRef]
Experiment | FeSO4 (mol/L) | H2SO4 (mol/L) | G | A | B | R2 | sDE |
---|---|---|---|---|---|---|---|
1 | - | 1 | 1.0 ± 0.02 | 54.6 ± 0.8 | 14.3 ± 0.5 | 0.9971 | 96.6 |
2 | - | 2 | 1.02 ± 0.01 | 50.4 ± 0.7 | 13.9 ± 0.6 | 0.9972 | 97.5 |
3 | 0.1 | 1 | 1.02 ± 0.01 | 46.7 ± 0.6 | 11.7 ± 0.5 | 0.9971 | 98.8 |
4 | 0.1 | 2 | 1.0 ± 0.02 | 40.0 ± 0.6 | 8.8 ± 0.4 | 0.9967 | 98.9 |
Experiment | H2SO4 (mol/L) | Current (A) | G | A | B | R2 | RA | sDE |
---|---|---|---|---|---|---|---|---|
5 | 1 | 1.0 | 0.70 ± 0.02 | 19.7 ± 0.5 | 5.2 ± 0.4 | 0.9940 | 22 | 91.5 |
6 | 1 | 1.5 | 0.78 ± 0.05 | 18.0 ± 1.3 | 5.7 ± 1.0 | 0.9861 | 14 | 92.2 |
7 | 1 | 2.0 | 0.82 ± 0.04 | 17.0 ± 1.0 | 6.0 ± 0.8 | 0.9799 | 10 | 92.5 |
8 | 2 | 1.0 | 0.80 ± 0.01 | 10.0 ± 0.2 | 3.2 ± 0.1 | 0.9981 | 17 | 97.4 |
9 | 2 | 1.5 | 0.82 ± 0.01 | 8.5 ± 0.2 | 3.6 ± 0.2 | 0.9980 | 16 | 98.4 |
10 | 2 | 2.0 | 0.84 ± 0.01 | 7.2 ± 0.1 | 3.4 ± 0.1 | 0.9993 | 14 | 98.4 |
Experiment | FeSO4 (mol/L) | H2SO4 (mol/L) | Current (A) | G | A | B | R2 | RA | sDE |
---|---|---|---|---|---|---|---|---|---|
11 | 0.1 | 1 | 1.5 | 0.82 ± 0.03 | 18.1 ± 0.4 | 3.8 ± 0.3 | 0.9942 | 12 | 94.4 |
12 | 0.1 | 2 | 1.5 | 0.95 ± 0.03 | 12.8 ± 0.4 | 3.2 ± 0.3 | 0.9931 | 3 | 97.9 |
13 | 0.2 | 1 | 1.5 | 0.94 ± 0.03 | 15.2 ± 0.4 | 4.0 ± 0.3 | 0.9955 | 5 | 98.4 |
14 | 0.2 | 2 | 1.5 | 0.94 ± 0.02 | 9.7 ± 0.3 | 2.7 ± 0.2 | 0.9918 | 4 | 98.5 |
Electro-Decontamination Conditions | Solution | The Solution/SIER Ratio (mL/mL) | |
---|---|---|---|
H2SO4 (1 mol/L) | NaNO3 (2 mol/L), HNO3 (1 mol/L) | ||
Static | 90 ± 9 | 30 ± 3 | 33 |
Dynamic | 30 ± 10 | 0 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokar, E.; Matskevich, A.; Egorin, A. Electro-Decontamination of Spent Ion Exchange Resins Contaminated with Iron Oxide Deposits under Dynamic Conditions. Sustainability 2021, 13, 4756. https://doi.org/10.3390/su13094756
Tokar E, Matskevich A, Egorin A. Electro-Decontamination of Spent Ion Exchange Resins Contaminated with Iron Oxide Deposits under Dynamic Conditions. Sustainability. 2021; 13(9):4756. https://doi.org/10.3390/su13094756
Chicago/Turabian StyleTokar, Eduard, Anna Matskevich, and Andrei Egorin. 2021. "Electro-Decontamination of Spent Ion Exchange Resins Contaminated with Iron Oxide Deposits under Dynamic Conditions" Sustainability 13, no. 9: 4756. https://doi.org/10.3390/su13094756
APA StyleTokar, E., Matskevich, A., & Egorin, A. (2021). Electro-Decontamination of Spent Ion Exchange Resins Contaminated with Iron Oxide Deposits under Dynamic Conditions. Sustainability, 13(9), 4756. https://doi.org/10.3390/su13094756