An Overview of Climate Change Induced Hydrological Variations in Canada for Irrigation Strategies
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Temperature
3.2. Precipitation Patterns
3.3. Streamflow Patterns
3.3.1. West Coast
3.3.2. Prairies
3.3.3. Central Canada
3.3.4. Atlantic Canada
4. Irrigation Strategies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Central Investigation Agency. The World Fact Book. Available online: https://www.cia.gov/library/publications/the-world-factbook/geos/ca.html (accessed on 27 April 2019).
- Statistics Canada. Human Activity and the Environment: Annual Statistics: Section 2: Annual Statistics: Canada’s Physical Environment. Available online: https://www150.statcan.gc.ca/n1/pub/16-201-x/2007000/5212638-eng.htm (accessed on 5 April 2021).
- World Atlas. Canada Geography. Available online: https://www.worldatlas.com/webimage/countrys/namerica/caland.htm (accessed on 25 April 2019).
- Worldwide Fund for Nature (WWF). Freshwater. Available online: http://www.wwf.ca/conservation/freshwater/ (accessed on 25 April 2019).
- Nowlan, L. Buried Treasure: Groundwater Permitting and Pricing in Canada; Walter and Duncan Gordon Foundation: Toronto, ON, Canada, 2005. [Google Scholar]
- Statistics Canada; Government of Canada. Freshwater in Canada: A Look at Canada’s Freshwater Resources. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/170321/g-b001-eng.htm (accessed on 4 April 2021).
- World Meters. Canada Population Live. Available online: http://www.worldometers.info/world-population/canada-population/ (accessed on 26 April 2019).
- Gleick, P.H.; Cain, N.L. The World’s Water 2004–2005: The Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Environment and Climate Change; Government of Canada. The Science of Climate Change. Available online: https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/science.html (accessed on 27 April 2019).
- Woo, M.-K. Cold ocean seas and northern hydrology: An exploratory overview. Hydrol. Res. 2010, 41, 439–453. [Google Scholar] [CrossRef]
- Bouchard, F.; Turner, K.; MacDonald, L.; Deakin, C.; White, H.; Farquharson, N.; Medeiros, A.; Wolfe, B.; Hall, R.; Pienitz, R. Vulnerability of shallow subarctic lakes to evaporate and desiccate when snowmelt runoff is low. Geophys. Res. Lett. 2013, 40, 6112–6117. [Google Scholar] [CrossRef]
- Hodson, D.L.; Keeley, S.P.; West, A.; Ridley, J.; Hawkins, E.; Hewitt, H.T. Identifying uncertainties in Arctic climate change projections. Clim. Dyn. 2013, 40, 2849–2865. [Google Scholar] [CrossRef] [Green Version]
- Lantz, T.; Turner, K. Changes in lake area in response to thermokarst processes and climate in Old Crow Flats, Yukon. J. Geophys. Res. Biogeosci. 2015, 120, 513–524. [Google Scholar] [CrossRef]
- Schueller, J.; Whitney, J.; Wheaton, T.; Miller, W.; Turner, A. Low-cost automatic yield mapping in hand-harvested citrus. Comput. Electron. Agricu. 1999, 23, 145–153. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. Global Climate Change—Vital Signs of the Planet. Available online: https://climate.nasa.gov/ (accessed on 26 April 2019).
- Natural Resources Canada; Government of Canada. Overview of Climate Change in Canada. Available online: https://www.nrcan.gc.ca/changements-climatiques/impacts-adaptation/overview-climate-change-canada/10321 (accessed on 26 April 2019).
- World Bank. Urbanization in Canada. Available online: https://www.statista.com/statistics/271208/urbanization-in-canada/ (accessed on 30 April 2019).
- Zhang, Y.; Sun, L. Spatial-temporal impacts of urban land use land cover on land surface temperature: Case studies of two Canadian urban areas. Int. J. Appl. Earth Obs. Geoinfor. 2019, 75, 171–181. [Google Scholar] [CrossRef]
- Government of Canada. Climate Trends and Projections. Available online: https://www.canada.ca/en/environment-climate-change/services/climate-change/canadian-centre-climate-services/basics/trends-projections/changes-temperature.html (accessed on 30 April 2019).
- Natural Resources Canada; Government of Canada. Canada’s Changing Climate Report. Available online: https://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/energy/Climate-change/pdf/CCCR_FULLREPORT-EN-FINAL.pdf (accessed on 30 April 2019).
- Willmott, C.J.; Robeson, S.M.; Feddema, J.J. Estimating continental and terrestrial precipitation averages from rain-gauge networks. Int. J. Climatol. 1994, 14, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hogg, W.; Mekis, É. Spatial and temporal characteristics of heavy precipitation events over Canada. J. Clim. 2001, 14, 1923–1936. [Google Scholar] [CrossRef]
- Boluwade, A.; Stadnyk, T.; Fortin, V.; Roy, G. Assimilation of precipitation estimates from the integrated multisatellite retrievals for GPM (IMERG, early run) in the Canadian Precipitation Analysis (CaPA). J. Hydrol. Reg. Stud. 2017, 14, 10–22. [Google Scholar] [CrossRef]
- Shabbar, A.; Bonsal, B.; Khandekar, M. Canadian precipitation patterns associated with the Southern Oscillation. J. Clim. 1997, 10, 3016–3027. [Google Scholar] [CrossRef]
- Statistics Canada. Potable Water Use by Sector and Average Daily Use. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3810027101 (accessed on 30 April 2019).
- Statistics Canada. Freshwater in Canada: A Look at Canada’s Freshwater Resources from 1971 to 2013. Available online: https://www150.statcan.gc.ca/n1/pub/11-627-m/11-627-m2018011-eng.htm (accessed on 30 April 2019).
- Akinremi, O.; McGinn, S.; Cutforth, H. Seasonal and spatial patterns of rainfall trends on the Canadian prairies. J. Clim. 2001, 14, 2177–2182. [Google Scholar] [CrossRef]
- David, P. The Climates of Canada. Environment Canada; Canadian Government Publishing: Ottawa, ON, Canada, 1990. [Google Scholar]
- Jardine, D.; Fenech, A. Some Weather We Are Having! 2018 PEI Weather Trivia Calendar; Climate Research Lab, University of Prince Edward Island: Charlottetown, PE, Canada, 2018. [Google Scholar]
- Zhang, X.; Vincent, L.A.; Hogg, W.; Niitsoo, A. Temperature and precipitation trends in Canada during the 20th century. Atmosp. Ocean 2000, 38, 395–429. [Google Scholar] [CrossRef]
- Vinnikov, K.Y.; Groisman, P.Y.; Lugina, K. Empirical data on contemporary global climate changes (temperature and precipitation). J. Clim. 1990, 3, 662–677. [Google Scholar] [CrossRef] [Green Version]
- Groisman, P.Y.; Easterling, D.R. Variability and trends of total precipitation and snowfall over the United States and Canada. J. Clim. 1994, 7, 184–205. [Google Scholar] [CrossRef] [Green Version]
- Mekis, É.; Vincent, L.A. An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosp. Ocean 2011, 49, 163–177. [Google Scholar] [CrossRef] [Green Version]
- Vincent, L.A.; Mekis, E. Changes in daily and extreme temperature and precipitation indices for Canada over the twentieth century. Atmosp. Ocean 2006, 44, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Akinremi, O.; McGinn, S.; Cutforth, H. Precipitation trends on the Canadian prairies. J. Clim. 1999, 12, 2996–3003. [Google Scholar] [CrossRef]
- Hogg, E.; Bernier, P.Y. Climate change impacts on drought-prone forests in western Canada. For. Chron. 2005, 81, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Groisman, P.Y.; Karl, T.R.; Easterling, D.R.; Knight, R.W.; Jamason, P.F.; Hennessy, K.J.; Suppiah, R.; Page, C.M.; Wibig, J.; Fortuniak, K. Changes in the probability of heavy precipitation: Important indicators of climatic change. In Weather and Climate Extremes; Springer: Berlin/Heidelberg, Germany, 1999; pp. 243–283. [Google Scholar]
- Tan, X.; Gan, T.Y.; Shao, D. Effects of persistence and large-scale climate anomalies on trends and change points in extreme precipitation of Canada. J. Hydrol. 2017, 550, 453–465. [Google Scholar] [CrossRef]
- International Panel on Climate Change (IPCC). Fifth Assessment Report. Available online: https://www.ipcc.ch/assessment-report/ar5/ (accessed on 30 April 2019).
- Mailhot, A.; Beauregard, I.; Talbot, G.; Caya, D.; Biner, S. Future changes in intense precipitation over Canada assessed from multi-model NARCCAP ensemble simulations. Int. J. Climatol. 2012, 32, 1151–1163. [Google Scholar] [CrossRef]
- Mladjic, B.; Sushama, L.; Khaliq, M.; Laprise, R.; Caya, D.; Roy, R. Canadian RCM projected changes to extreme precipitation characteristics over Canada. J. Clim. 2011, 24, 2565–2584. [Google Scholar] [CrossRef] [Green Version]
- Diffenbaugh, N.S.; Pal, J.S.; Trapp, R.J.; Giorgi, F. Fine-scale processes regulate the response of extreme events to global climate change. Proc. Natl. Acad. Sci. USA 2005, 102, 15774–15778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebaldi, C.; Hayhoe, K.; Arblaster, J.M.; Meehl, G.A. Going to the extremes. Clim. Chang. 2006, 79, 185–211. [Google Scholar] [CrossRef]
- Maloney, E.D.; Camargo, S.J.; Chang, E.; Colle, B.; Fu, R.; Geil, K.L.; Hu, Q.; Jiang, X.; Johnson, N.; Karnauskas, K.B. North American climate in CMIP5 experiments: Part III: Assessment of twenty-first-century projections. J. Clim. 2014, 27, 2230–2270. [Google Scholar] [CrossRef]
- Mello, C.R.d.; Lima, J.M.d.; Silva, A.M.d.; Lopes, D. Initial abstraction of small watersheds of ephemeral flood. Rev. Bras. Eng. Agric. Ambient. 2003, 7, 494–500. [Google Scholar] [CrossRef]
- Bravo, J.M.; Allasia, D.G.; Collischonn, W.; Tassi, R.; Meller, A.; Tucci, C.E.M. Avaliação visual e numérica da calibração do modelo hidrológico IPH II com fins educacionais. In Proceedings of the Simpósio Brasileiro de Recursos Hídricos, São Paulo, Brasil, 25–29 November 2007; p. 17. [Google Scholar]
- Godwin, R.; Martin, F.R. Calculation of gross and effective drainage areas for the Prairie Provinces. In Proceedings of the Canadian Hydrology Symposium, Winnipeg, MB, Canada, 11–14 August 1975; pp. 219–223. [Google Scholar]
- Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- Adamowski, K.; Bocci, C. Geostatistical regional trend detection in river flow data. Hydrol. Process. 2001, 15, 3331–3341. [Google Scholar] [CrossRef]
- Stahl, K.; Moore, R.D.; Mckendry, I.G. The role of synoptic-scale circulation in the linkage between large-scale ocean–atmosphere indices and winter surface climate in British Columbia, Canada. Int. J. Climatol. J. R. Meteorol. Soc. 2006, 26, 541–560. [Google Scholar] [CrossRef]
- Beaulieu, M.; Schreier, H.; Jost, G. A shifting hydrological regime: A field investigation of snowmelt runoff processes and their connection to summer base flow, Sunshine Coast, British Columbia. Hydrol. Process. 2012, 26, 2672–2682. [Google Scholar] [CrossRef]
- Wade, N.L.; Martin, J.; Whitfield, P.H. Hydrologic and climatic zonation of Georgia basin, British Columbia. Can. Water Res. J. 2001, 26, 43–70. [Google Scholar] [CrossRef]
- Van Lanen, H.A.; Wanders, N.; Tallaksen, L.M.; Van Loon, A.F. Hydrological drought across the world: Impact of climate and physical catchment structure. Hydrol. Earth Syst. Sci. 2013, 17, 1715–1732. [Google Scholar] [CrossRef] [Green Version]
- Rodenhuis, D.; Bennett, K.; Werner, A.; Murdock, T.; Bronaugh, D. Hydro-Climatology and Future Climate Impacts in British Columbia; Pacific Climate Impacts Consortium, University of Victoria: Victoria, BC, Canada, 2007; p. 30. [Google Scholar]
- Pike, R.G.; Bennett, K.E.; Redding, T.E.; Werner, A.T.; Spittlehouse, D.L. Climate change effects on watershed processes in British Columbia. In Compendium of Forest Hydrology and Geomorphology in British Columbia; B.C. Ministry of Forests and Range: Victoria, BC, Canada, 2010; pp. 699–747. [Google Scholar]
- Silvestri, S. Snorkel Observations of Winter Steelhead Trout Escapement to the Englishman River, Vancouver Island. 2004. Available online: https://a100.gov.bc.ca/pub/acat/documents/r5848/EnglishmanRiverSnorkelSurveyProject2004Final_1143401278523_bb98440f95634e108ba9ff1269fd7f72.pdf (accessed on 5 May 2019).
- Mishra, A.K.; Coulibaly, P. Developments in hydrometric network design: A review. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Gray, D.; Landine, P. An energy-budget snowmelt model for the Canadian Prairies. Can. J. Earth Sci. 1988, 25, 1292–1303. [Google Scholar] [CrossRef]
- Pomeroy, J.; Li, L. Prairie and arctic areal snow cover mass balance using a blowing snow model. J. Geophy. Res. Atmos. 2000, 105, 26619–26634. [Google Scholar] [CrossRef] [Green Version]
- Tabler, R.D. Estimating the transport and evaporation of blowing snow. Great Plains Agric. Counc. Publ. 1975, 73, 85–104. [Google Scholar]
- Gray, D.; Landine, P.; Granger, R. Simulating infiltration into frozen prairie soils in streamflow models. Can. J. Earth Sci. 1985, 22, 464–472. [Google Scholar] [CrossRef]
- Fang, X.; Pomeroy, J. Modelling blowing snow redistribution to prairie wetlands. Hydrol. Process. Int. J. 2009, 23, 2557–2569. [Google Scholar] [CrossRef]
- Elliott, J.; Efetha, A. Influence of tillage and cropping system on soil organic matter, structure and infiltration in a rolling landscape. Can. J. Soil Sci. 1999, 79, 457–463. [Google Scholar] [CrossRef]
- Granger, R.J.; Gray, D. Evaporation from natural nonsaturated surfaces. J. Hydrol. 1989, 111, 21–29. [Google Scholar] [CrossRef]
- Sauchyn, D.J.; St-Jacques, J.-M.; Luckman, B.H. Long-term reliability of the Athabasca River (Alberta, Canada) as the water source for oil sands mining. Proc. Natl. Acad. Sci. USA 2015, 112, 12621–12626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eum, H.-I.; Dibike, Y.; Prowse, T. Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada. J. Hydrol. 2017, 544, 327–342. [Google Scholar] [CrossRef]
- Kerkhoven, E.; Gan, T.Y. Differences and sensitivities in potential hydrologic impact of climate change to regional-scale Athabasca and Fraser River basins of the leeward and windward sides of the Canadian Rocky Mountains respectively. Clim. Chang. 2011, 106, 583–607. [Google Scholar] [CrossRef]
- Leong, D.N.; Donner, S.D. Climate change impacts on streamflow availability for the Athabasca Oil Sands. Clim. Chang. 2015, 133, 651–663. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Du, X.; Wang, J. Assessing climate change impacts on freshwater resources of the Athabasca River Basin, Canada. Sci. Total Environ. 2017, 601, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Nazemi, A.; Wheater, H.S.; Chun, K.P.; Elshorbagy, A. A stochastic reconstruction framework for analysis of water resource system vulnerability to climate-induced changes in river flow regime. Water Resour. Res. 2013, 49, 291–305. [Google Scholar] [CrossRef]
- Pomeroy, J.; de Boer, D.; Martz, L. Hydrology and Water Resources of Saskatchewan; Centre for Hydrology: Saskatoon, SK, Canada, 2005. [Google Scholar]
- Martz, L.; Bruneau, J.; Rolfe, J. Climate Change and Water: SSRB; Final Technical Report; Prairie Adaptation Research Collaborative (PARC): Regina, SK, Canada, 2007; Available online: https://www.parc.ca/wp-content/uploads/2019/05/SSRB-2007-Climate_change_and_water.pdf (accessed on 5 May 2019).
- Saskatchewan Ministry of Agriculture. Agriculture, Natural Resources, and Industry. Available online: https://www.saskatchewan.ca/business/agriculture-natural-resources-and-industry (accessed on 30 April 2019).
- Wheater, H.; Gober, P. Water security in the Canadian Prairies: Science and management challenges. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20120409. [Google Scholar] [CrossRef]
- Kulshreshtha, S.; Wheaton, E. Climate change adaptation and food production in Canada: Some research challenges. WIT Trans. Ecol. Environ. 2013, 170, 101–112. [Google Scholar]
- Shook, K.; Pomeroy, J.; van der Kamp, G. The transformation of frequency distributions of winter precipitation to spring streamflow probabilities in cold regions; case studies from the Canadian Prairies. J. Hydrol. 2015, 521, 395–409. [Google Scholar] [CrossRef]
- Hassanzadeh, E.; Elshorbagy, A.; Wheater, H.; Gober, P. Managing water in complex systems: An integrated water resources model for Saskatchewan, Canada. Environ. Model. Softw. 2014, 58, 12–26. [Google Scholar] [CrossRef]
- Adamowski, J.F. River flow forecasting using wavelet and cross-wavelet transform models. Hydrol. Process. Int. J. 2008, 22, 4877–4891. [Google Scholar] [CrossRef]
- Ehsanzadeh, E.; Ouarda, T.B.; Saley, H.M. A simultaneous analysis of gradual and abrupt changes in Canadian low streamflows. Hydrol. Process. 2011, 25, 727–739. [Google Scholar] [CrossRef]
- Adamowski, J.; Adamowski, K.; Prokoph, A. Quantifying the spatial temporal variability of annual streamflow and meteorological changes in eastern Ontario and southwestern Quebec using wavelet analysis and GIS. J. Hydrol. 2013, 499, 27–40. [Google Scholar] [CrossRef]
- Assani, A.A.; Charron, S.; Matteau, M.; Mesfioui, M.; Quessy, J.-F. Temporal variability modes of floods for catchments in the St. Lawrence watershed (Quebec, Canada). J. Hydrol. 2010, 385, 292–299. [Google Scholar] [CrossRef]
- McBean, E.; Motiee, H. Assessment of impacts of climate change on water resources? A case study of the Great Lakes of North America. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 3183–3209. [Google Scholar]
- Inventory of Canadian Freshwater Lakes. Water Resources Branch, Environment Canada. 1973. Available online: https://waves-vagues.dfo-mpo.gc.ca/Library/351007.pdf (accessed on 5 May 2019).
- Burridge, M.; Mandrak, N. Ecoregion Description: 118: Northeast US and Southeast Canada Atlantic Drainages. Freshwater Ecoregions of the World. The Nature Conservancy and the World Wildlife Fund. 2009. Available online: http://www.feow.org/ecoregion_details.php (accessed on 5 May 2019).
- Environment Canada. Hydrology of Canada. Available online: http://www.ec.gc.ca/rhcwsc/default.asp?lang=En&n=E94719C8-1 (accessed on 30 April 2019).
- Hodgkins, G.; Whitfield, P.; Burn, D.; Hannaford, J.; Marsh, T. The worldwide status and potential future directions of reference hydrologic networks and their importance in assessing climate driven trends in streamflow. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 5–9 December 2011. [Google Scholar]
- Monk, W.; Baird, D. Biodiversity in Canadian lakes and rivers. In Canadian Biodiversity: Ecosystem Status and Trends; Canadian Councils of Resource Ministers: Ottawa, ON, Canada, 2010. [Google Scholar]
- Catto, N. Coastal Erosion in Newfoundland. Climate Adaptation Solutions Association. 2012. Available online: http://nlhfrp.ca/wp-content/uploads/2015/01/Coastal-Erosion-in-Newfoundland.pdf (accessed on 5 May 2019).
- Bhatti, A.Z.; Farooque, A.A.; Krouglicof, N.; Waynes, P.; Acharya, B.; Li, Q.; Ahsan, M.S. Climate Change Impacts on Precipitation and Temperature in Prince Edward Island, Canada. World Water Policy 2021. [Google Scholar] [CrossRef]
- Faraji, A.; Latifi, N.; Soltani, A.; Rad, A.H.S. Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agric. Water Manag. 2009, 96, 132–140. [Google Scholar] [CrossRef]
- Maqsood, J.; Farooque, A.A.; Wang, X.; Abbas, F.; Acharya, B.; Afzaal, H. Contribution of climate extremes to variation in potato tuber yield in Prince Edward Island. Sustainability 2020, 12, 4937. [Google Scholar] [CrossRef]
- Statistics Canada. Agricultural Water Use in Canada, 2010, 2012, and 2018. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/190912/dq190912d-eng.htm (accessed on 3 April 2021).
- Notaro, V.; Puleo, V.; Fontanazza, C.M.; Sambito, M.; La Loggia, G. A Decision Support Tool for Water and Energy Saving in the Integrated Water System. Proc. Eng. 2015, 119. [Google Scholar] [CrossRef] [Green Version]
- Oweis, T. Supplemental Irrigation: A Highly Efficient Water-Use Practice; ICARDA: Aleppo, Syria, 1997. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatti, A.Z.; Farooque, A.A.; Krouglicof, N.; Li, Q.; Peters, W.; Abbas, F.; Acharya, B. An Overview of Climate Change Induced Hydrological Variations in Canada for Irrigation Strategies. Sustainability 2021, 13, 4833. https://doi.org/10.3390/su13094833
Bhatti AZ, Farooque AA, Krouglicof N, Li Q, Peters W, Abbas F, Acharya B. An Overview of Climate Change Induced Hydrological Variations in Canada for Irrigation Strategies. Sustainability. 2021; 13(9):4833. https://doi.org/10.3390/su13094833
Chicago/Turabian StyleBhatti, Ahmad Zeeshan, Aitazaz Ahsan Farooque, Nicholas Krouglicof, Qing Li, Wayne Peters, Farhat Abbas, and Bishnu Acharya. 2021. "An Overview of Climate Change Induced Hydrological Variations in Canada for Irrigation Strategies" Sustainability 13, no. 9: 4833. https://doi.org/10.3390/su13094833
APA StyleBhatti, A. Z., Farooque, A. A., Krouglicof, N., Li, Q., Peters, W., Abbas, F., & Acharya, B. (2021). An Overview of Climate Change Induced Hydrological Variations in Canada for Irrigation Strategies. Sustainability, 13(9), 4833. https://doi.org/10.3390/su13094833