The Effects of Soil Moisture on Harvesting Operations in Populus spp. Plantations: Specific Focus on Costs, Energy Balance and GHG Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Collection and Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Comparison of Harvesting Systems Performance
4.2. Influence of Soil Moisture on Harvesting Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | IR Dry | IR Moist | IT1 Dry | IT1 Moist | IT2 Dry | IT2 Moist |
---|---|---|---|---|---|---|
Felled-processed trees (N) | 601 | 625 | 556 | 528 | 2790 | 2762 |
Felled processed-wood (t) | 1046.159 | 1088.005 | 987.715 | 938.329 | 5411.307 | 5357.194 |
Extraction cycles (N) | 100 | 100 | 100 | 100 | 100 | 100 |
Extracted wood (t) | 534.778 | 549.102 | 555.994 | 423.146 | 974.295 | 851.606 |
IR | IT1 | IT2 | ||||
---|---|---|---|---|---|---|
Dry | Moist | Dry | Moist | Dry | Moist | |
Mean bunching distance (m) | 38.6 ± 10.1 | 49.8 ± 9.5 | 17.5 ± 5.2 | 56.1 ± 8.2 | 22.7 ± 4.2 | 18.4 ± 2.1 |
Mean extraction distance (m) | 146.0 ± 20.1 | 144.5 ± 12.2 | 118.2 ± 14.3 | 138.1 ± 10.3 | 152.4 ± 12.5 | 158.7 ± 11.2 |
Mean mass per working cycle (t) | 5.35 ± 0.12 | 5.49 ± 0.11 | 5.56 ± 0.15 | 4.23 ± 0.13 | 9.74 ± 0.22 | 8.52 ± 0.30 |
Description | MU | IR Dry | IR Moist | IT1 Dry | IT1 Moist | IT2 Dry | IT2 Moist |
---|---|---|---|---|---|---|---|
Real unit cost (SMH) | € t−1 | 11.27 | 13.43 | 9.79 | 13.17 | 8.41 | 10.03 |
Felling–Processing percentage | % | 60.5 | 54.0 | 63.8 | 49.6 | 63.2 | 55.2 |
Bunching–Extraction percentage | % | 39.5 | 46.0 | 36.2 | 50.4 | 36.8 | 44.8 |
Hypothetical unit cost (PMH) | € t−1 | 10.91 | 12.98 | 9.39 | 12.49 | 8.03 | 9.47 |
Felling–Processing percentage | % | 61.5 | 54.6 | 65.1 | 51.0 | 64.6 | 56.7 |
Bunching–Extraction percentage | % | 38.5 | 45.4 | 34.9 | 49.0 | 35.4 | 43.3 |
Description | M.U. | Energetic Output | Direct Input | Indirect Input | Human Labor Input | Total Inputs | Output/Inputs Ratio | System Efficiency |
---|---|---|---|---|---|---|---|---|
IR-d | MJ t−1 | 14,649 | 323.72 | 5.30 | 0.88 | 329.91 | 44.4 | 97.7% |
GJ ha−1 | 10,217 | 225.78 | 3.70 | 0.61 | 230.09 | |||
IR-m | MJ t−1 | 14,649 | 425.57 | 7.33 | 1.01 | 433.90 | 33.8 | 97.0% |
GJ ha−1 | 10,217 | 296.81 | 5.11 | 0.70 | 302.72 | |||
IT1-d | MJ t−1 | 16,585 | 301.68 | 4.79 | 0.88 | 307.36 | 54.0 | 98.1% |
GJ ha−1 | 8191 | 148.99 | 2.37 | 0.44 | 151.79 | |||
IT1-m | MJ t−1 | 16,585 | 501.85 | 8.88 | 1.08 | 511.82 | 32.4 | 96.9% |
GJ ha−1 | 8191 | 247.84 | 4.39 | 0.53 | 252.76 | |||
IT2-d | MJ t−1 | 16,153 | 467.23 | 10.81 | 0.08 | 478.12 | 33.8 | 97.0% |
GJ ha−1 | 8741 | 252.83 | 5.85 | 0.05 | 258.73 | |||
IT2-m | MJ t−1 | 16,153 | 535.35 | 12.72 | 0.11 | 548.18 | 29.5 | 96.6% |
GJ ha−1 | 8741 | 289.69 | 6.89 | 0.06 | 296.63 |
Harvesting Sites | CO2 | CO | HC | Nox | PM10 |
---|---|---|---|---|---|
g t−1 | |||||
IR-d | 2074.29 | 32.92 | 0.53 | 31.62 | 4.74 |
IR-m | 2135.01 | 34.32 | 0.58 | 33.43 | 4.77 |
IT1-d | 2279.39 | 34.26 | 0.50 | 34.43 | 4.77 |
IT1-m | 2315.31 | 35.84 | 0.58 | 35.62 | 5.19 |
IT2-d | 3674.05 | 66.99 | 1.03 | 57.99 | 9.02 |
IT2-m | 3864.99 | 76.32 | 1.08 | 66.38 | 10.71 |
References
- Azizi, M.; Faezipour, M.M.; Bayatkashkooli, A.; Taheri, F. Quantitative study of poplar plantations in three Iranian provinces. For. Sci. Pract. 2013, 15, 363–369. [Google Scholar] [CrossRef]
- FAO. Poplars and other fast-growing trees—Renewable resources for future green economies, 2016 Synthesis of Country Progress Reports. In Proceedings of the 25th Session of the International Poplar Commission, Berlin, Germany, 13–16 September 2016; Working Paper IPC/15. Forestry Policy and Resources Division, FAO: Rome, Italy, 2016. Available online: http://www.fao.org/forestry/ipc2016/en/ (accessed on 1 June 2020).
- Italian Inventory of Forests and Carbon Pools. 2005. Available online: https://www.sian.it/inventarioforestale/jsp/documentazione.jsp (accessed on 1 June 2020).
- Anaraki, K.A.; Lashgarara, F.; Kiadaliri, H. Effect of socio-economic factors on development of poplar plantation in Guilan province (case study: Somesara). Iran. J. For. Poplar Res. 2012, 20, 346–356. [Google Scholar]
- González-García, S.; Bacenetti, J.; Murphy, R.J.; Fiala, M. Present and future environmental impact of poplar cultivation in the Po Valley (Italy) under different crop management systems. J. Clean. Prod. 2012, 26, 56–66. [Google Scholar] [CrossRef]
- Davison, J.; Riggs, W. Hybrid poplar production 1998–2003 in Eureka and Churchill Counties. Univ. Nev. Coop. Ext. Fact Sheet 2004, 5–25. [Google Scholar]
- Castro, G.L.; Fragnelli, G. New technologies and alternative uses for poplar wood. Boletín Inf. Cideu 2006, 2, 27–36. [Google Scholar]
- Lashkarbolouki, E.; Modirrahmati, A.R.; Rahmani, R.; Kahneh, E.; Koopar, S.A.M. Phenology and growth characteristics of seven clones of Populus deltoides in Astaneh Ashrafie, Guilan. Iran. J. For. Poplar Res. 2010, 18, 527–538. [Google Scholar]
- Colangelo, M.; Camarero, J.J.; Borghetti, M.; Gazol, A.; Gentilesca, T.; Ripullone, F. Size matters a lot: Drought-affected Italian oaks are smaller and show lower growth prior to tree death. Front. Plant Sci. 2017, 8, 135. [Google Scholar] [CrossRef] [Green Version]
- Motta, R.; Nola, P. Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. J. Veg. Sci. 2001, 12, 219–230. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R.; Kärhä, K.; Mederski, P.S. Multi-tree cut-to-length harvesting of short-rotation poplar plantations. Eur. J. For. Res. 2021, 140, 345–354. [Google Scholar] [CrossRef]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Latterini, F.; Mederski, P.S.; Tocci, D.; Venanzi, R.; Stefanoni, W.; Pari, L. Applications of GIS-Based Software to Improve the Sustainability of A Forwarding Operation in Central Italy. Sustainability 2020, 12, 5716. [Google Scholar] [CrossRef]
- Schweier, J.; Blagojević, B.; Venanzi, R.; Latterini, F.; Picchio, R. Sustainability assessment of alternative strip clear cutting operations for wood chip production in renaturalization management of pine stands. Energies 2019, 12, 3306. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Lombardini, C.; Marchi, E.; Aminti, G. A low-investment technology for the simplified processing of energy wood from coppice forests. Eur. J. For. Res. 2019, 138, 31–41. [Google Scholar] [CrossRef]
- Picchio, R.; Venanzi, R.; Di Marzio, N.; Tocci, D.; Tavankar, F. A Comparative Analysis of Two Cable Yarder Technologies Performing Thinning Operations on a 33 Year Old Pine Plantation: A Potential Source of Wood for Energy. Energies 2020, 13, 5376. [Google Scholar] [CrossRef]
- Spinelli, R.; Magagnotti, N.; Lombardini, C.; Mihelič, M. A Low-Investment Option for the Integrated Semi-Mechanized Harvesting of Small-Scale, Short-Rotation Poplar Plant. Small-Scale For. 2021, 20, 59–72. [Google Scholar] [CrossRef]
- Nikooy, M.; Esmailnezhad, A.; Naghdi, R. Productivity and cost analysis of skidding with Timberjack 450C in forest plantations in Shafaroud watershed, Iran. J. For. Sci. 2013, 59, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Long, C.; McNeel, J.; Baumgras, J. Productivity and cost of manual felling and cable skidding in central Appalachian hardwood forests. For. Prod. J. 2004, 54, 45–51. [Google Scholar]
- Naghdi, R.; Rafatniaa, N.; Sobhani, H.; Jalali, G.H.; Hosseini, S.M. A survey of the efficiency of timber jack 450C wheeled skidder in sheared forests. J. Nat. Resour. 2005, 57, 657–687. [Google Scholar]
- Demir, M. Investigation of timber harvesting mechanization progress in Turkey. Afr. J. Biotechnol. 2010, 9, 1628–1634. [Google Scholar]
- Picchio, R.; Pignatti, G.; Marchi, E.; Latterini, F.; Benanchi, M.; Foderi, C.; Venanzi, R.; Verani, S. The Application of Two Approaches Using GIS Technology Implementation in Forest Road Network Planning in an Italian Mountain Setting. Forests 2018, 9, 277. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Latterini, F.; Mederski, P.S.; Venanzi, R.; Karaszewski, Z.; Bembenek, M.; Croce, M. Comparing Accuracy of Three Methods Based on the GIS Environment for Determining Winching Areas. Electronics 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- González-García, S.; Krowas, I.; Becker, G.; Feijoo, G.; Moreira, M.T. Cradle-to-gate life cycle inventory and environmental performance of Douglas-fir roundwood production in Germany. J. Clean. Prod. 2013, 54, 244–252. [Google Scholar] [CrossRef]
- Lima, K.S.; Meira Castro, A.C.; Santos Baptista, J.; Silva, U. Wood-Logging Process Management in Eastern Amazonia (Brazil). Sustainability 2020, 12, 7571. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Jafari, M.; Shabanian, N.; Venanzi, R.; Tavankar, F.; Picchio, R. Soil recovery assessment after timber harvesting based on the sustainable forest operation (SFO) perspective in iranian temperate forests. Sustainability 2020, 12, 2874. [Google Scholar] [CrossRef] [Green Version]
- Ozkaya, G.; Erdin, C. Evaluation of sustainable forest and air quality management and the current situation in europe through operation research methods. Sustainability 2020, 12, 10588. [Google Scholar] [CrossRef]
- Lontsi, R.T.; Corre, M.D.; Iddris, N.A.; Veldkamp, E. Soil greenhouse gas fluxes following conventional selective and reduced-impact logging in a Congo Basin rainforest. Biogeochemistry 2020, 151, 153–170. [Google Scholar] [CrossRef]
- Gusti, M.; Di Fulvio, F.; Biber, P.; Korosuo, A.; Forsell, N. The Effect of alternative forest management models on the forest harvest and emissions as compared to the forest reference level. Forests 2020, 11, 794. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A. Effects of skidder passes and slope on soil disturbance in two soil water contents. Croat. J. For. Eng. 2014, 35, 73–80. [Google Scholar]
- Startsev, A.D.; McNabb, D.H. Effects of skidding on forest soil infiltration in west-central Alberta. Can. J. Soil Sci. 2000, 80, 617–624. [Google Scholar] [CrossRef]
- Cambi, M.; Grigolato, S.; Neri, F.; Picchio, R.; Marchi, E. Effects of forwarder operation on soil physical characteristics: A case study in the Italian alps. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2016, 37, 233–239. [Google Scholar]
- Jourgholami, M.; Majnounian, B. Productivity and cost of wheeled skidder in Hyrcanian Forest. Int. J. Nat. Eng. Sci. 2008, 2, 99–103. [Google Scholar]
- Miyata, E.S. Determining Fixed and Operating Costs of Logging Equipment; General Technical Report NC-55; Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 1980.
- Spinelli, R.; Magagnotti, N.; Lombardini, C. Performance, capability and costs of small-scale cable yarding technology. Small-Scale For. 2010, 9, 123–135. [Google Scholar] [CrossRef]
- Picchio, R.; Spina, R.; Maesano, M.; Carbone, F.; Lo Monaco, A.; Marchi, E. Stumpage value in the short wood system for the conversion into high forest of a oak coppice. For. Stud. China 2011, 13, 252–262. [Google Scholar] [CrossRef]
- Picchio, R.; Sirna, A.; Sperandio, G.; Spina, R.; Verani, S. Mechanized harvesting of eucalypt coppice for biomass production using high mechanization level. Croat. J. For. Eng. 2012, 33, 15–24. [Google Scholar]
- Bodaghi, A.I.; Nikooy, M.; Naghdi, R.; Venanzi, R.; Latterini, F.; Tavankar, F.; Picchio, R. Ground-based extraction on salvage logging in two high forests: A productivity and cost analysis. Forests 2018, 9, 729. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Maesano, M.; Savelli, S.; Marchi, E. Productivity and energy balance in the conversion into high forest system of a Quercus cerris L. coppice in Central Italy. Croat. J. For. Eng. 2009, 1, 15–26. [Google Scholar]
- Hartsough, B. Economics of harvesting to maintain high structural diversity and resulting damage to residual trees. West. J. Appl. For. 2003, 18, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Magagnotti, N.; Sirna, A.; Spinelli, R. Improved winching technique to reduce logging damage. Ecol. Eng. 2012, 47, 83–86. [Google Scholar] [CrossRef]
- Christie, C.J.-A. Improving the energy and fluid balance of workers involved in harvesting tasks. Occup. Ergon. 2010, 9, 119–126. [Google Scholar] [CrossRef]
- Christie, C.J.-A. Relationship between energy intake and expenditure during harvesting tasks. Occup. Ergon. 2008, 8, 1–10. [Google Scholar]
- Balimunsi, H.; Grigolato, S.; Picchio, R.; Nyombi, K.; Cavalli, R. Productivity and energy balance of forest plantation harvesting in Uganda. For. Stud. China 2012, 14, 276–282. [Google Scholar] [CrossRef]
- Canagaratna, S.G.; Witt, J. Calculation of temperature rise in calorimetry. J. Chem. Educ. 1988, 65, 126. [Google Scholar] [CrossRef]
- Klvac, R.; Fischer, R.; Skoupy, A. Energy use and emissions from the medium distance cableway system operation phase. Croat. J. For. Eng 2012, 33, 79–88. [Google Scholar]
- Athanassiadis, D. Energy consumption and exhaust emissions in mechanized timber harvesting operations in Sweden. Sci. Total Environ. 2000, 255, 135–143. [Google Scholar] [CrossRef]
- Vanbeveren, S.P.P.; Spinelli, R.; Eisenbies, M.; Schweier, J.; Mola-Yudego, B.; Magagnotti, N.; Acuna, M.; Dimitriou, I.; Ceulemans, R. Mechanised harvesting of short-rotation coppices. Renew. Sustain. Energy Rev. 2017, 76, 90–104. [Google Scholar] [CrossRef]
- Danilović, M.; Tomašević, I.; Gačić, D. Efficiency of John Deere 1470D ECOIII harvester in poplar plantations. Croat. J. For. Eng. 2011, 32, 533–548. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Sperandio, G.; Cielo, P.; Verani, S.; Zanuttini, R. Cost and productivity of harvesting high-value hybrid poplar plantations in Italy. For. Prod. J. 2011, 61, 64–70. [Google Scholar] [CrossRef]
- Lotfalian, M.; Moafi, M.; Foumani, B.S.; Akbari, R.A. Time study and skidding capacity of the wheeled skidder Timberjack 450C. Int. J. Sci. Technol. Educ. Res. 2011, 2, 120–124. [Google Scholar]
- Mousavi, R. Effect of log length on productivity and cost of Timberjack 450C skidder in the Hyrcanian forest in Iran. J. For. Sci. 2012, 58, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Mederski, P.S.; Borz, S.A.; Đuka, A.; Lazdiņš, A. Challenges in forestry and forest engineering—Case studies from four countries in East Europe. Croat. J. For. Eng. 2020, 42, 117–134. [Google Scholar] [CrossRef]
- Gagliardi, K.; Ackerman, S.; Ackerman, P. Multi-product forwarder-based timber extraction: Time consumption and productivity analysis of two forwarder models over multiple products and extraction distances. Croat. J. For. Eng. 2020, 41, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Danilović, M.; Stojnić, D.; Karić, S.; Sučević, M. Transport of technical roundwood by forwarder and tractor assembly from poplar plantations. Nov. Meh. Šumarstva Časopis Teor. Praksu Šumarskoga Inženjerstva 2014, 35, 11–22. [Google Scholar]
- Puttock, D.; Spinelli, R.; Hartsough, B.R. Operational Trials of Cut-To-Length Harvesting of Poplar in a Mixed Wood Stand. Int. J. For. Eng. 2005, 16, 39–49. [Google Scholar] [CrossRef]
- Eriksson, M.; Lindroos, O. Productivity of harvesters and forwarders in CTL operations in northern Sweden based on large follow-up datasets. Int. J. For. Eng. 2014, 25, 179–200. [Google Scholar] [CrossRef]
- Apǎfǎian, A.I.; Proto, A.R.; Borz, S.A. Performance of a mid-sized harvester-forwarder system in integrated harvesting of sawmill, pulpwood and firewood. Ann. For. Res. 2017, 60, 227–241. [Google Scholar] [CrossRef]
- Williams, C.; Ackerman, P. Cost-productivity analysis of South African pine sawtimber mechanised cut-to-length harvesting. South. For. 2016, 78, 267–274. [Google Scholar] [CrossRef]
- Cabral, O.M.D.J.V.; Lopes, E.D.S.; Rodrigues, C.K.; Filho, A.F. Impact of distance between strip roads on productivity and costs of a forwarder in commercial thinning of pinus taeda stands. Croat. J. For. Eng. 2020, 41, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Kaleja, S.; Spalva, G.; Stola, J. Productivity and cost of logbear F4000 forwarder in thinning depending on driving conditions. Eng. Rural Dev. 2018, 17, 1458–1463. [Google Scholar] [CrossRef]
- Baldini, S.; Picchio, R.; Savelli, S. Analisi energetica nelle utilizzazioni di un ceduo di eucalipto con una meccanizzazione leggera. J. Agric. Eng 2007, 3, 49–56. [Google Scholar]
- Vusić, D.; Šušnjar, M.; Marchi, E.; Spina, R.; Zečić, T.; Picchio, R. Skidding operations in thinning and shelterwood cut of mixed stands–Work productivity, energy inputs and emissions. Ecol. Eng. 2013, 61, 216–223. [Google Scholar] [CrossRef]
- Valente, C.; Spinelli, R.; Hillring, B.G. LCA of environmental and socio-economic impacts related to wood energy production in alpine conditions: Valle di Fiemme (Italy). J. Clean. Prod. 2011, 19, 1931–1938. [Google Scholar] [CrossRef]
- Bembenek, M.; Tsioras, P.A.; Karaszewski, Z.; Zawieja, B.; Bakinowska, E.; Mederski, P.S. Effect of day or night and cumulative shift time on the frequency of tree damage during CTL harvesting in various stand conditions. Forests 2020, 11, 743. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and How Much, Do Harvesting Activities Affect Forest Soil, Regeneration and Stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Cambi, M.; Certini, G.; Neri, F.; Marchi, E. The impact of heavy traffic on forest soils: A review. For. Ecol. Manag. 2015, 338, 124–138. [Google Scholar] [CrossRef]
- Naghdi, R.; Solgi, A.; Zenner, E.K.; Tsioras, P.A.; Nikooy, M. Soil disturbance caused by ground-based skidding at different soil moisture conditions in Northern Iran. Int. J. For. Eng. 2016, 27, 169–178. [Google Scholar] [CrossRef]
- Grzywiński, W.; Turowski, R.; Naskrent, B.; Jelonek, T.; Tomczak, A. The impact of season on productivity and time consumption in timber harvesting from young alder stands in lowland poland. Forests 2020, 11, 1081. [Google Scholar] [CrossRef]
- Chmielewski, S.; Porter, B. Valorization of the selected methods of harvesting and skidding of the pine stands in pre-final cut. Tech. Roln. Ogrod. Les 2012, 3, 23–26. [Google Scholar]
Characteristics | Chainsaw Stihl ms880 | Harvester John Deere 1470 D | Skidder Timberjack 450C | Forwarder John Deere JD1110 D |
---|---|---|---|---|
Displacement (cm3) | 122 | 9000 | 6800 | 4140 |
Power (kW) | 6.4 | 179.7 | 120.0 | 121.0 |
Weight (kg) | 10 | 19,700 | 10,270 | 17,500 |
Bar length (cm) | 90 | 75 | - | - |
Oil tank volume (l) | 0.7 | 290.0 | 150.0 | 300.0 |
Fuel tank volume (l) | 1.3 | 470.7 | 159.0 | 150.0 |
Number of cylinders | 1 | 6 | 6 | 6 |
Maximum traction or load (kg) | - | - | 11,000 | 8500 |
Maximum operative distance (m) | - | 8.6 | 75.0 | 10.5 |
Description | IR | IT1 | IT2 |
---|---|---|---|
Plantation area (ha) | 60 | 20 | 20 |
Tree density (stem·ha−1) | 400 | 278 | 279 |
Mean DBH (cm) | 38.3 | 42.8 | 40.4 |
Mean basal area (m2·ha−1) | 46.1 | 39.9 | 35.8 |
Mean tree height (m) | 25.3 | 24.8 | 27.2 |
Standing volume (m3·ha−1) | 876.4 | 702.6 | 749.8 |
Wood density (kg·m−3) | 795.8 (±11.5) | 702.9 (±15.6) | 721.7 (±9.4) |
Wood moisture (%) | 98.2 (±19.2) | 95.4 (±18.5) | 99.1 (±21.7) |
Time Elements | IR & IT1 by Chainsaw (2 Operators) | IT2 by Harvester (1 Operator) |
---|---|---|
Moving (M) | starts when the chainsaw operator moves from the last felled tree to the next to be felled and ends when the team cleans the tree stump before the felling | starts when the harvester wheels start moving from one standing point and ends when they stop at the next standing point |
Felling (F) | starts when the chainsaw operator turns on the chainsaw and performs the cut and ends with the fall of the tree | starts when the harvester head grips the stem and ends when the tree falls onto the ground |
Processing (P) | starts when the chainsaw operator cuts the first branch and ends when he finishes the cross cutting of the tree | starts when the tree stem starts moving through the harvester head and ends when the harvester wheels start moving |
Time Elements | IR & IT1 by Skidder (2 operators) | IT2 by Forwarder (1 Operators) |
---|---|---|
Travel unloaded (TUL) | begins when the skidder leaves the roadside landing area and ends when the skidder arrives at a suitable position (nearest distance from the logs) on the skid trail | begins when the forwarder leaves the roadside landing area and ends when the forwarder arrives at the first suitable position (nearest distance from the first logs) |
Bunching—Loading (B) | begins when the skidder driver releases the cable and ends when the winching phase is finished | begins when the forwarder driver loads the first log and ends when the forwarder is fully loaded |
Travel loaded (TL) | begins when the skidder starts to move and ends when the skidder arrives on roadside landing | begins when the fully loaded forwarder starts to move and ends when the forwarder arrives at the roadside landing |
Landing operations (LO) | begins when the choker setter opens the load and ends when load is piled up in final position and the skidder is preparing for the next cycle | begins when the forwarder driver starts to unload the logs and ends when load is piled up in final position and the forwarder is preparing for the next cycle |
Parameter | IR Dry | IR Moist | IT1 Dry | IT1 Moist | IT2 Dry | IT2 Moist |
---|---|---|---|---|---|---|
Felled-processed trees (N) | 601 | 625 | 556 | 528 | 2790 | 2762 |
Felled processed-volume (m3) | 1314.600 | 1367.184 | 1405.200 | 1334.940 | 7498.000 | 7423.020 |
Extraction cycles (N) | 100 | 100 | 100 | 100 | 100 | 100 |
Extracted volume (m3) | 672.000 | 690.000 | 791.000 | 602.000 | 1350.000 | 1180.000 |
IR | IT1 | IT2 | ||||
---|---|---|---|---|---|---|
Dry | Moist | Dry | Moist | Dry | Moist | |
Mean bunching distance (m) | 38.6 ± 10.1 | 49.8 ± 9.5 | 17.5 ± 5.2 | 56.1 ± 8.2 | 22.7 ± 4.2 | 18.4 ± 2.1 |
Mean extraction distance (m) | 146.0 ± 20.1 | 144.5 ± 12.2 | 118.2 ± 14.3 | 138.1 ± 10.3 | 152.4 ± 12.5 | 158.7 ± 11.2 |
Mean volume per working cycle (m3) | 6.72 ± 0.15 | 6.90 ± 0.14 | 7.91 ± 0.22 | 6.02 ± 0.18 | 13.5 ± 0.31 | 11.8 ± 0.42 |
Sites | IR-Dry | IR-Moist | IT1-Dry | IT1-Moist | IT2-Dry | IT2-Moist |
---|---|---|---|---|---|---|
Time Elements | Average Value ± SD (minutes) | |||||
M | 0.36 ± 0.05 | 0.48 ± 0.06 | 0.31 ± 0.04 | 0.42 ± 0.03 | 0.53 ± 0.05 | 0.55 ± 0.06 |
F | 2.85 ± 0.22 | 2.75 ± 0.15 | 3.15 ± 0.22 | 3.08 ± 0.31 | 0.56 ± 0.04 | 0.59 ± 0.05 |
P | 13.91 ± 0.38 | 14.85 ± 0.45 | 14.58 ± 0.87 | 15.29 ± 0.65 | 3.05 ± 0.25 | 3.15 ± 0.15 |
DT | 0.29 ± 0.04 | 0.41 ± 0.11 | 0.38 ± 0.12 | 0.45 ± 0.08 | 0.11 ± 0.03 | 0.13 ± 0.03 |
TET | 17.12 ± 0.45 | 18.08 ± 0.81 | 18.04 ± 0.88 | 18.79 ± 0.50 | 4.14 ± 0.72 | 4.29 ± 0.44 |
TGT | 17.41 ± 0.52 | 18.49 ± 0.73 | 18.42 ± 0.91 | 19.24 ± 0.71 | 4.25 ± 0.65 | 4.42 ± 0.61 |
Sites | IR-Dry | IR-Moist | IT1-Dry | IT1-Moist | IT2-Dry | IT2-Moist |
---|---|---|---|---|---|---|
Time Elements | Average Value ± SD (minutes) | |||||
TUL | 4.53 ± 0.44 | 6.86 ± 0.50 | 3.88 ± 0.64 | 5.48 ± 0.98 | 1.35 ± 0.50 | 1.89 ± 0.44 |
B | 2.10 ± 0.80 | 3.40 ± 1.00 | 1.38 ± 0.21 | 3.52 ± 0.61 | 2.15 ± 0.44 | 2.39 ± 0.40 |
TL | 4.30 ± 1.50 | 7.20 ± 0.50 | 4.11 ± 1.07 | 6.92 ± 1.16 | 3.02 ± 0.28 | 5.12 ± 0.31 |
LO | 5.70 ± 2.10 | 6.50 ± 1.90 | 5.90 ± 0.92 | 5.80 ± 0.89 | 5.20 ± 1.10 | 5.39 ± 0.81 |
DT | 1.00 ± 0.45 | 1.20 ± 0.50 | 1.24 ± 0.22 | 1.85 ± 0.18 | 1.02 ± 0.10 | 1.39 ± 0.13 |
TET | 16.63 ± 1.80 | 23.96 ± 1.90 | 15.27 ± 1.78 | 21.72 ± 1.55 | 11.72 ± 0.97 | 14.79 ± 0.84 |
TGT | 17.63 ± 1.80 | 25.16 ± 1.90 | 16.51 ± 1.89 | 23.57 ± 2.01 | 12.74 ± 1.16 | 16.18±1.01 |
Site (Machine) | Variable | Model | Equation | R2 Adj. | p-Value |
---|---|---|---|---|---|
IR-Dry (Skidder) | D | Polynomial | Y = −4 × 10−5(D)2 + 0.0592(D) + 8.0769 | 0.633 | <0.001 |
LV | Polynomial | Y = 0.9524(LV)2 + 8.2375(LV) + 28.361 | 0.380 | <0.001 | |
D and LV | Linear | Y = 0.059(D) + 1.546(LV) − 1.523 | 0.679 | <0.001 | |
IR-Moist (Skidder) | D | Polynomial | Y = −2 × 10−5(D)2 + 0.1343(D) + 6.2007 | 0.764 | <0.001 |
LV | Exponential | Y = 3.1537e0.2875(LV) | 0.363 | <0.001 | |
D and LV | Linear | Y = 0.116(D) + 2.089(LV) − 6.076 | 0.812 | <0.001 | |
IT1-Dry (Skidder) | D | Linear | Y = 0.088(D) + 6.3003 | 0.821 | <0.05 |
LV | Polynomial | Y = 0.7512(LV)2 + 4.2725(LV) + 8.030 | 0.231 | >0.05 | |
D and LV | Linear | Y = 0.085(D) + 2.156(LV) + 0.125 | 0.401 | >0.05 | |
IT1-Moist (Skidder) | D | Exponential | Y = 9.312e0.0064(D) | 0.724 | <0.01 |
LV | Polynomial | Y = 0.95210(LV)2 + 2.1225 (LV) + 5.103 | 0.412 | >0.05 | |
D and LV | Linear | Y = 0.109(D) + 1.816(LV) + 0.231 | 0.502 | > 0.05 | |
IT2-Dry (Forwarder) | D | Polynomial | Y = −0.0001(D)2 + 0.078(D) + 5.103 | 0.811 | <0.05 |
LV | Polynomial | Y = −0.0021(LV)2 + 0.807(LV) + 2.210 | 0.452 | >0.05 | |
D and LV | Linear | Y = 0.080(D) + 2.086(LV) − 0.957 | 0.568 | > 0.05 | |
IT2-Moist (Forwarder) | D | Polynomial | Y = 0.0003(D)2 + 0.004(D) + 7.7868 | 0.765 | <0.01 |
LV | Polynomial | Y = −0.052(LV)2 + 1.105(LV) + 1.574 | 0.431 | >0.05 | |
D and LV | Linear | Y = 0.128(D) + 1.974(LV) − 0.358 | 0.631 | >0.05 |
Description | MU | Chainsaw | Skidder | Harvester | Forwarder |
---|---|---|---|---|---|
Investment cost | € | 1674.00 | 155,000.00 | 390,000.00 | 365,000.00 |
Service life | Years | 2 | 10 | 10 | 10 |
Annual use | H | 800 | 1000 | 800 | 800 |
Recovery value | € | 167.40 | 15,500.00 | 39,000.00 | 36,500.00 |
Interest on capital | % | 3 | 3 | 3 | 3 |
Fuel consumption | l h−1 | 1.0 | 4.2 | 15.0 | 17.0 |
Fuel price | € l−1 | 2.00 | 0.80 | 0.80 | 0.80 |
Lubricant cost | % of fuel cost | 20 | 35 | 35 | 35 |
Labor cost | € h−1 | 16.40 | 16.90 | 17.50 | 17.50 |
Crew | n° | 2 | 2 | 1 | 1 |
Fixed costs | |||||
Depreciation | € year−1 | 753.30 | 13,950.00 | 35,100.00 | 32,850.00 |
Interest | € year−1 | 38.92 | 2766.75 | 6961.50 | 6515.25 |
Insurance and tax | € year−1 | 64.87 | 4611.25 | 11,602.50 | 10,858.75 |
Yearly fixed costs | € year−1 | 857.09 | 21,328.00 | 53,664.00 | 50,224.00 |
Hourly fixed costs | € h−1 | 1.07 | 21.33 | 67.08 | 62.78 |
Variable costs | |||||
Fuel | € h−1 | 2.02 | 3.36 | 12.00 | 13.60 |
Lubricant | € h−1 | 0.40 | 1.18 | 4.20 | 4.76 |
Repair and maintenance | € h−1 | 0.94 | 13.95 | 43.88 | 41.06 |
Workers | € h−1 | 32.80 | 33.80 | 17.50 | 17.50 |
Hourly variable cost | € h−1 | 36.17 | 52.29 | 77.58 | 76.92 |
Operating cost | € h−1 | 37.24 | 73.61 | 144.66 | 139.70 |
Profit and overhead | % | 10 | 10 | 11 | 12 |
Profit and overhead | € h−1 | 3.72 | 7.36 | 15.91 | 16.76 |
Total operating cost | € h−1 | 40.96 | 80.98 | 160.57 | 156.47 |
Description | MU | IR Dry | IR Moist | IT1 Dry | IT1 Moist | IT2 Dry | IT2 Moist |
---|---|---|---|---|---|---|---|
Real unit cost (SMH) | € m−3 | 8.97 | 10.69 | 7.79 | 10.48 | 6.69 | 7.98 |
Felling-Processing percentage | % | 60.5 | 54.0 | 63.8 | 49.6 | 63.2 | 55.2 |
Bunching-Extraction percentage | % | 39.5 | 46.0 | 36.2 | 50.4 | 36.8 | 44.8 |
Hypothetical unit cost (PMH) | € m−3 | 8.68 | 10.33 | 7.47 | 9.94 | 6.39 | 7.54 |
Felling-Processing percentage | % | 61.5 | 54.6 | 65.1 | 51.0 | 64.6 | 56.7 |
Bunching-Extraction percentage | % | 38.5 | 45.4 | 34.9 | 49.0 | 35.4 | 43.3 |
Description | M.U. | Energetic Output | Direct Input | Indirect Input | Human Labor Input | Total Inputs | Output/Inputs Ratio | System Efficiency |
---|---|---|---|---|---|---|---|---|
IR-d | MJ m−3 | 11,658 | 257.62 | 4.22 | 0.70 | 262.54 | 44.4 | 97.7% |
GJ ha−1 | 10,217 | 225.78 | 3.70 | 0.61 | 230.09 | |||
IR-m | MJ m−3 | 11,658 | 338.67 | 5.83 | 0.80 | 345.30 | 33.8 | 97.0% |
GJ ha−1 | 10,217 | 296.81 | 5.11 | 0.70 | 302.72 | |||
IT1-d | MJ m−3 | 11,658 | 212.05 | 3.37 | 0.62 | 216.04 | 54.0 | 98.1% |
GJ ha−1 | 8191 | 148.99 | 2.37 | 0.44 | 151.79 | |||
IT1-m | MJ m−3 | 11,658 | 352.75 | 6.24 | 0.76 | 359.76 | 32.4 | 96.9% |
GJ ha−1 | 8191 | 247.84 | 4.39 | 0.53 | 252.76 | |||
IT2-d | MJ m−3 | 11,658 | 337.20 | 7.80 | 0.06 | 345.06 | 33.8 | 97.0% |
GJ ha−1 | 8741 | 252.83 | 5.85 | 0.05 | 258.73 | |||
IT2-m | MJ m−3 | 11,658 | 386.36 | 9.18 | 0.08 | 395.62 | 29.5 | 96.6% |
GJ ha−1 | 8741 | 289.69 | 6.89 | 0.06 | 296.63 |
Harvesting Sites | CO2 | CO | HC | Nox | PM10 |
---|---|---|---|---|---|
g m−3 | |||||
IR-d | 1650.72 | 26.20 | 0.42 | 25.16 | 3.77 |
IR-m | 1699.04 | 27.31 | 0.46 | 26.60 | 4.08 |
IT1-d | 1602.18 | 24.08 | 0.35 | 24.20 | 3.35 |
IT1-m | 1627.43 | 25.19 | 0.41 | 25.04 | 3.65 |
IT2-d | 2651.56 | 48.35 | 0.74 | 41.85 | 6.51 |
IT2-m | 2789.36 | 55.08 | 0.78 | 47.91 | 7.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavankar, F.; Nikooy, M.; Latterini, F.; Venanzi, R.; Bianchini, L.; Picchio, R. The Effects of Soil Moisture on Harvesting Operations in Populus spp. Plantations: Specific Focus on Costs, Energy Balance and GHG Emissions. Sustainability 2021, 13, 4863. https://doi.org/10.3390/su13094863
Tavankar F, Nikooy M, Latterini F, Venanzi R, Bianchini L, Picchio R. The Effects of Soil Moisture on Harvesting Operations in Populus spp. Plantations: Specific Focus on Costs, Energy Balance and GHG Emissions. Sustainability. 2021; 13(9):4863. https://doi.org/10.3390/su13094863
Chicago/Turabian StyleTavankar, Farzam, Mehrdad Nikooy, Francesco Latterini, Rachele Venanzi, Leonardo Bianchini, and Rodolfo Picchio. 2021. "The Effects of Soil Moisture on Harvesting Operations in Populus spp. Plantations: Specific Focus on Costs, Energy Balance and GHG Emissions" Sustainability 13, no. 9: 4863. https://doi.org/10.3390/su13094863
APA StyleTavankar, F., Nikooy, M., Latterini, F., Venanzi, R., Bianchini, L., & Picchio, R. (2021). The Effects of Soil Moisture on Harvesting Operations in Populus spp. Plantations: Specific Focus on Costs, Energy Balance and GHG Emissions. Sustainability, 13(9), 4863. https://doi.org/10.3390/su13094863