Environmental Sustainability of Building Retrofit through Vertical Greening Systems: A Life-Cycle Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Methods and Data
2.2.1. Life-Cycle Inventory
2.2.2. Impact Assessment
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Dover, J.W. Introduction to Urban Sustainability Issues. In Nature Based Strategies for Urban and Building Sustainability; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–15. ISBN 978-0-12-812150-4. [Google Scholar]
- Frazer, L. Paving Paradise: The Peril of Impervious Surfaces. Environ. Health Perspect. 2005, 113, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Directorate General for Research and Innovation. In Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ’Nature Based Solutions and Re Naturing Cities’: (Full Version); Publications Office: Luxembourg, 2015. [Google Scholar]
- Perini, K. Retrofitting with Vegetation Recent Building Heritage Applying a Design Tool—The Case Study of a School Building. Front. Arch. Res. 2013, 2, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Perez, G.; Perini, K. Nature Based Strategies for Urban. and Building Sustainability; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 978-0-12-812324-9. [Google Scholar]
- Ardente, F.; Beccali, M.; Cellura, M.; Mistretta, M. Building Energy Performance: A LCA Case Study of Kenaf-Fibres Insulation Board. Energy Build. 2008, 40, 1–10. [Google Scholar] [CrossRef]
- Matos, C.; Teixeira, C.A.; Duarte, A.; Bentes, I. Domestic Water Uses: Characterization of Daily Cycles in the North Region of Portugal. Sci. Total Environ. 2013, 458, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.K.; Hall, M. The Construction Challenge: Sustainability in Developing Countries; Royal Institution of Chartered Surveyors (RICS): London, UK, 2005. [Google Scholar]
- Thormark, C. A Low Energy Building in a Life Cycle—Its Embodied Energy, Energy Need for Operation and Recycling Potential. Build. Environ. 2002, 37, 429–435. [Google Scholar] [CrossRef]
- Dunnett, N.; Kingsbury, N. Planting Green Roofs and Living Walls; Timber Press: Portland, OR, USA, 2008. [Google Scholar]
- Köhler, M. Green Facades—A View Back and Some Visions. Urban Ecosyst. 2008, 11, 423–436. [Google Scholar] [CrossRef]
- Manso, M.; Castro-Gomes, J. Green Wall Systems: A Review of Their Characteristics. Renew. Sustain. Energy Rev. 2015, 41, 863–871. [Google Scholar] [CrossRef]
- Ottelé, M.; Perini, K.; Fraaij, A.; Haas, E.M.; Raiteri, R. Comparative Life Cycle Analysis for Green Façades and Living Wall Systems. Energy Build. 2011, 43, 3419–3429. [Google Scholar] [CrossRef]
- Pérez-Urrestarazu, L.; Urrestarazu, M. Vertical Greening Systems. In Nature Based Strategies for Urban and Building Sustainability; Elsevier: Amsterdam, The Netherlands, 2018; pp. 55–63. ISBN 978-0-12-812150-4. [Google Scholar]
- Ascione, F.; Bianco, N.; de’ Rossi, F.; Turni, G.; Vanoli, G.P. Green Roofs in European Climates. Are Effective Solutions for the Energy Savings in Air-Conditioning? Appl. Energy 2013, 104, 845–859. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; de Gracia, A.; Burés, S.; Urrestarazu, M.; Cabeza, L.F. Vertical Greenery Systems for Energy Savings in Buildings: A Comparative Study between Green Walls and Green Facades. Build. Environ. 2017, 111, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Perini, K.; Ottelé, M.; Giulini, S.; Magliocco, A.; Roccotiello, E. Quantification of Fine Dust Deposition on Different Plant Species in a Vertical Greening System. Ecol. Eng. 2017, 100, 268–276. [Google Scholar] [CrossRef]
- Collins, R.; Schaafsma, M.; Hudson, M.D. The Value of Green Walls to Urban Biodiversity. Land Use Policy 2017, 64, 114–123. [Google Scholar] [CrossRef]
- Dover, J.W. Green Infrastructure: Incorporating Plants and Enhancing Biodiversity in Buildings and Urban. Environments; Routledge: London, UK, 2015; ISBN 978-0-415-52124-6. [Google Scholar]
- ISO UNI EN ISO 14040:2006. Environmental Management-Life Cycle Assessment-Principles and Framework; ISO: London, UK, 2021. [Google Scholar]
- Magrassi, F.; Del Borghi, A.; Gallo, M.; Strazza, C.; Robba, M. Optimal Planning of Sustainable Buildings: Integration of Life Cycle Assessment and Optimization in a Decision Support System (DSS). Energies 2016, 9, 490. [Google Scholar] [CrossRef] [Green Version]
- Manso, M.; Castro-Gomes, J.; Paulo, B.; Bentes, I.; Teixeira, C.A. Life Cycle Analysis of a New Modular Greening System. Sci. Total Environ. 2018, 627, 1146–1153. [Google Scholar] [CrossRef]
- Pan, L.; Chu, L.M. Energy Saving Potential and Life Cycle Environmental Impacts of a Vertical Greenery System in Hong Kong: A Case Study. Build. Environ. 2016, 96, 293–300. [Google Scholar] [CrossRef]
- Strazza, C.; Del Borghi, A.; Blengini, G.A.; Gallo, M. Definition of the Methodology for a Sector EPD (Environmental Product Declaration): Case Study of the Average Italian Cement. Int. J. Life Cycle Assess. 2010, 15, 540–548. [Google Scholar] [CrossRef]
- Perini, K. Life Cycle Assessment of Vertical Greening Systems. In Nature Based Strategies for Urban and Building Sustainability; Elsevier: Amsterdam, The Netherlands, 2018; pp. 333–340. ISBN 978-0-12-812150-4. [Google Scholar]
- Del Borghi, A.; Gaggero, P.L.; Gallo, M.; Strazza, C. Development of PCR for WWTP Based on a Case Study. Int. J. Life Cycle Assess. 2008, 13, 512–521. [Google Scholar] [CrossRef]
- Feng, H.; Hewage, K. Lifecycle Assessment of Living Walls: Air Purification and Energy Performance. J. Clean. Prod. 2014, 69, 91–99. [Google Scholar] [CrossRef]
- Magliocco, A.; Perini, K.; Prampolini, R. Qualità Ambientale e Percezione Dei Sistemi Di Verde Verticale: Un Caso Studio. 2015. Available online: http://www.sitda.net/downloads/convegni_seminari/programma%20sessioni%20parallele_ABITARE%20INSIEME.pdf (accessed on 1 March 2021).
- Perini, K.; Bazzocchi, F.; Croci, L.; Magliocco, A.; Cattaneo, E. The Use of Vertical Greening Systems to Reduce the Energy Demand for Air Conditioning. Field Monitoring in Mediterranean Climate. Energy Build. 2017, 143, 35–42. [Google Scholar] [CrossRef]
- Rosasco, P.; Perini, K. Evaluating the Economic Sustainability of a Vertical Greening System: A Cost-Benefit Analysis of a Pilot Project in Mediterranean Area. Build. Environ. 2018, 142, 524–533. [Google Scholar] [CrossRef]
- Magliocco, A.; Perini, K. The Perception of Green Integrated into Architecture: Installation of a Green Facade in Genoa, Italy. Aims Environ. Sci. 2015, 2, 899–909. [Google Scholar] [CrossRef]
- Perini, K.; Magliocco, A.; Giulini, S. Vertical Greening Systems Evaporation Measurements: Does Plant Species Influence Cooling Performances? Int. J. Vent. 2017, 16, 152–160. [Google Scholar] [CrossRef]
- ISO UNI EN ISO 14046:2016. Environmental Management-Water Footprint-Principles, Requirements and Guidelines; ISO: London, UK, 2016. [Google Scholar]
- Edilclima. Available online: http://en.edilclima.it/ (accessed on 1 March 2021).
- EP Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. 2010, pp. 13–35. Available online: http://data.europa.eu/eli/dir/2010/31/oj (accessed on 1 March 2021).
- ISPRA Rapporto Rifiuti Urbani 2020. Available online: https://www.isprambiente.gov.it/files2020/pubblicazioni/rapporti/rapportorifiutiurbani_ed-2020_n-331-1.pdf (accessed on 1 March 2021).
- Del Borghi, A.; Moreschi, L.; Gallo, M. Circular Economy Approach to Reduce Water–Energy–Food Nexus. Curr. Opin. Environ. Sci. Health 2020, 13, 23–28. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013-The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-41532-4. [Google Scholar]
- Huijbregts, M.A.J.; Rombouts, L.J.A.; Hellweg, S.; Frischknecht, R.; Hendriks, A.J.; van de Meent, D.; Ragas, A.M.J.; Reijnders, L.; Struijs, J. Is Cumulative Fossil Energy Demand a Useful Indicator for the Environmental Performance of Products? Environ. Sci. Technol. 2006, 40, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Núñez, M.; Pastor, A.V.; et al. The WULCA Consensus Characterization Model for Water Scarcity Footprints: Assessing Impacts of Water Consumption Based on Available Water Remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef] [Green Version]
- CEN EN 15978:2011. Sustainability of Construction Works-Assessment of Environmental Performance of Buildings-Calculation Method; CEN: Brussels, Belgium, 2011. [Google Scholar]
- Magrassi, F.; Rocco, E.; Barberis, S.; Gallo, M.; Del Borghi, A. Hybrid Solar Power System versus Photovoltaic Plant: A Comparative Analysis through a Life Cycle Approach. Renew. Energy 2019, 130, 290–304. [Google Scholar] [CrossRef]
- Reverberi, A.; Del Borghi, A.; Dovì, V. Optimal Design of Cogeneration Systems in Industrial Plants Combined with District Heating/Cooling and Underground Thermal Energy Storage. Energies 2011, 4, 2151–2165. [Google Scholar] [CrossRef] [Green Version]
Month | Air Extracted from Outside | Energy Demand without Green (kWh) | Air Extracted Behind Vertical Greening System (VGS; °C) | Energy Demand with Green (kWh) | Delta kWh (kWh) |
---|---|---|---|---|---|
2015 | |||||
June | 26.5 | 2935.0 | 21.3 | 726.0 | 2209.0 |
July | 29.8 | 4637.0 | 24.6 | 2265.0 | 2372.0 |
August | 27.3 | 3344.0 | 22.7 | 1257.0 | 2087.0 |
September | 23.0 | 1326.0 | 19.2 | 202.0 | 1124.0 |
Total 2015 | 12,242.0 | 4450.0 | 7792.0 | ||
2016 | |||||
June | 25.6 | 2537.0 | 22.6 | 1225.0 | 1312.0 |
July | 23.8 | 1900.0 | 21.7 | 986.0 | 914.0 |
August | 21.3 | 706.0 | 18.3 | 123.0 | 583.0 |
September | 23.2 | 1412.0 | 21.1 | 605.0 | 807.0 |
Total 2016 | 6555.0 | 2939.0 | 3616.0 | ||
2017 | |||||
June | 22.2 | 1061.0 | 20.7 | 540.0 | 521.0 |
July | 25.6 | 2721.0 | 23.7 | 1855.0 | 866.0 |
August | 26.3 | 2888.0 | 20.1 | 372.0 | 2516.0 |
Total 2017 | 6670.0 | 2767.0 | 3903.0 |
Life-Cycle Phases | Inventor Data | Without Green | With Green |
---|---|---|---|
Wall | Surface (m2) | 129 | |
Plants (No./m2) | 38 | ||
Construction | Constructive elements | ||
| - | 433 | |
| - | 90 | |
| - | 54 | |
Support structure (m2) | - | 129 | |
Irrigation material—PVC (m) | - | 260 | |
Planter boxes—HDPE (kg) | - | 3.3 | |
Diesel (MJ/wall) | - | 6942 | |
Maintenance/use | Electricity for cooling (kWh/year) | 8945 | 3520 |
Electricity for irrigation (kWh/year) | 36.5 | ||
Diesel (MJ/year) | - | 1157 | |
Fertilizer production (kg/year) | - | 12.5 | |
Fertilizers emissions to air | |||
| - | 49.5 | |
| - | 47.85 | |
| - | 36.3 | |
Water (m3/year) | - | 134.676 |
Scenario | Life Span (Years) | Recycling | Final Disposal and/or Energy Recovery | |
---|---|---|---|---|
Plastic | Biomass | |||
1 | 10 | - | - | 100% |
2 | 42.1% | - | 57.9% | |
3 | 100% | 100% | - | |
4 | 25 | - | - | 100% |
5 | 42.1% | - | 57.9% | |
6 | 100% | 100% | - |
Scenario | Life Span (Years) | Without Green | With Green | ||||
---|---|---|---|---|---|---|---|
GWP (kg CO2 eq) | CED (MJ) | WSI (m3 eq) | GWP (kg CO2 eq) | CED (MJ) | WSI (m3 eq) | ||
1 | 10 | 316.41 | 5937.12 | 212.40 | 225.49 | 4165.56 | 322.57 |
2 | 224.20 | 4165.91 | 322.51 | ||||
3 | 222.34 | 4165.46 | 322.42 | ||||
4 | 25 | 791.02 | 14,842.80 | 531.01 | 434.80 | 8008.36 | 774.29 |
5 | 433.51 | 8008.71 | 774.23 | ||||
6 | 431.62 | 8007.96 | 774.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perini, K.; Magrassi, F.; Giachetta, A.; Moreschi, L.; Gallo, M.; Del Borghi, A. Environmental Sustainability of Building Retrofit through Vertical Greening Systems: A Life-Cycle Approach. Sustainability 2021, 13, 4886. https://doi.org/10.3390/su13094886
Perini K, Magrassi F, Giachetta A, Moreschi L, Gallo M, Del Borghi A. Environmental Sustainability of Building Retrofit through Vertical Greening Systems: A Life-Cycle Approach. Sustainability. 2021; 13(9):4886. https://doi.org/10.3390/su13094886
Chicago/Turabian StylePerini, Katia, Fabio Magrassi, Andrea Giachetta, Luca Moreschi, Michela Gallo, and Adriana Del Borghi. 2021. "Environmental Sustainability of Building Retrofit through Vertical Greening Systems: A Life-Cycle Approach" Sustainability 13, no. 9: 4886. https://doi.org/10.3390/su13094886
APA StylePerini, K., Magrassi, F., Giachetta, A., Moreschi, L., Gallo, M., & Del Borghi, A. (2021). Environmental Sustainability of Building Retrofit through Vertical Greening Systems: A Life-Cycle Approach. Sustainability, 13(9), 4886. https://doi.org/10.3390/su13094886