Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China
Abstract
:1. Introduction
2. Literature Review and Hypothesis
2.1. Green Technology Advances and Spatial Spillovers
2.2. Access to Digital Financial Services and Green Technology Advances
2.3. Regional Competition, Access to Digital Financial Services, and Green Technology Advances
3. Method and Data
3.1. Data
3.1.1. Measurement of Green Technology Advances
3.1.2. Variables
3.2. Empirical Strategy
3.2.1. Measurement Method of Green Technology Advances
3.2.2. Spatial Weight Matrix
3.2.3. Baseline Model
3.2.4. Spatial Durbin Model
3.2.5. Indirect and Direct Effects
4. Results
4.1. Baseline Model
4.2. Spatial Spillover
4.3. Direct and Indirect Effects
5. Discussion
6. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Yang, L.; Fan, L. Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme. Int. J. Environ. Res. Public Health 2021, 18, 2620. [Google Scholar] [CrossRef]
- Hu, J.; Pan, X.; Huang, Q. Quantity or quality? The impacts of environmental regulation on firms’ innovation—Quasi-natural experiment based on China’s carbon emissions trading pilot. Technol. Forecast. Soc. Chang. 2020, 158, 120122. [Google Scholar] [CrossRef]
- Qian, H.; Tao, Y.; Cao, S.; Cao, Y. The Theory and Empirical Study of China’s Digital Finance Development and Economic Growth. Quant. Tech. Econ. 2020, 37, 26–46. [Google Scholar]
- Yi, X.; Zhou, L. Does the development of digital inclusive finance significantly affect household consumption—Micro-evidence from Chinese households. JFR 2018, 11, 47–67. [Google Scholar]
- Liang, B.; Zhang, J. Can China’s Inclusive Financial Innovation Ease SME Financing Constraints. Forum. Sci. Technol. Chin. 2018, 11, 94–105. [Google Scholar]
- Oh, D. A global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Tone, K.A. Slacks-based Measure of Super-Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2002, 143, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Wang, J.; Wang, F.; Kong, T.; Zhang, X.; Cheng, Z. Measuring the Development of Digital Inclusive Finance in China: Indexing and Spatial Characteristics. Chin. Econ. Q. 2020, 19, 1401–1418. [Google Scholar]
- Jaffe, A.B.; Newell, R.G.; Stavins, R.N. Technological change and the environment. In Handbook of Environmental Economics; Elsevier: Amsterdam, The Netherlands, 2003; Volume 1, pp. 461–516. [Google Scholar]
- Mansfield, E. Technical Change and the Rate of Imitation. Econometrica 1961, 29, 741–766. [Google Scholar] [CrossRef] [Green Version]
- Hägerstrand, T. Innovation Diffusion as a Spatial Process; University of Chicago Press: Chicago, IL, USA, 1967. [Google Scholar]
- Bigliardi, B.; Dormio, A.I. An empirical investigation of innovation determinants in food machinery enterprises. Eur. J. Innov. Manag. 2009, 12, 223–242. [Google Scholar] [CrossRef]
- Neuhäusler, P. The use of patents and informal appropriation mechanisms—Differences between sectors and among companies. Technovation 2012, 32, 681–693. [Google Scholar] [CrossRef]
- Keller, W. Geographic localization of international technology diffusion. Am. Econ. Rev. 2002, 92, 120–142. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Wu, T.; Hu, X. The Space Diffusion Effect China’s Technological Progress. Chin. Ind. Econ. 2017, 4, 17–33. [Google Scholar]
- Aghion, P.; Askenazy, P.; Berman, N.; Cette, G.; Eymard, L. Credit constraints and the cyclicality of R&D investment: Evidence from France. J. Eur. Econ. Assoc. 2012, 10, 1001–1024. [Google Scholar]
- Maskus, K.E.; Neumann, R.; Seidel, T. How national and international financial development affect industrial R&D. Eur Econ. Rev. 2012, 56, 72–83. [Google Scholar]
- Meierrieks, D. Financial development and innovation: Is there evidence of a Schumpeterian finance-innovation nexus? AEF 2014, 15, 343–363. [Google Scholar]
- Zhu, X.; Asimakopoulos, S.; Kim, J. Financial development and innovation-led growth: Is too much finance better? J. Int. Money Financ. 2020, 100, 102083. [Google Scholar] [CrossRef]
- Wan, J.; Zhou, Q.; Xiao, Y. Digital finance, financing constraints and enterprise innovation. J. Econ. Rev. 2020, 1, 71–83. [Google Scholar]
- Liang, B.; Zhang, J. Can the development of digital inclusive finance stimulate innovation?—Evidence from Chinese cities and SMEs. Mod. Econ. Sci. 2019, 5, 74–86. [Google Scholar]
- Xu, Z.; Zhang, L.; Liu, Y. Does Digital Inclusive Finance Enhance Regional Innovation? Financ. Econ. 2020, 11, 17–28. [Google Scholar]
- Braun, E.; Wield, D. Regulation as a means for the social control of technology. Technol. Anal. Strateg. 1994, 6, 259–272. [Google Scholar] [CrossRef]
- Liu, Z.; Song, D.; Gong, Y. Study on Spatial-temporal Differentiation and Convergence of China’s Green Innovation Ability. J. Chin. J. Manag. 2017, 14, 1475–1483. [Google Scholar]
- Zhang, F. A Theoretical and Empirical Study on the Impact of Financial Development on Green Total Factor Productivity. Chin. Soft Sci. 2017, 9, 154–167. [Google Scholar]
- Zhou, L. Encouragement and cooperation of government officials in Promotion Game—On the Long-term Causes of Local Protectionism and Duplicate Construction in China. Econ. Res. J. 2004, 6, 33–40. [Google Scholar]
- Qian, Y.; Roland, G. Federalism and the soft budget constraint. Am. Econ. Rev. 1998, 5, 1143–1162. [Google Scholar] [CrossRef] [Green Version]
- Maskin, E.; Qian, Y.; Xu, C. Incentives, information, and organizational form. Rev. Econ. Stud. 2000, 67, 359–378. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Shen, K. Empirical Study on Local Government Intervention, Regional Financial Development and Transformation of China’s Economic Growth Mode—Based on the Background of Fiscal Decentralization. Nankai Econ. Stud. 2008, 6, 122–141. [Google Scholar]
- Yuan, Y.; Jia, K.; Xu, X. Financial competition, relative capital deepening and regional economic efficiency. Stat. Res. 2012, 3, 45–53. [Google Scholar]
- Xie, X.; Zhu, X. Digital Finance and SME Technological Innovation—Evidence from New OTC Market. Stud. Inter. Fin. 2021, 1, 87–96. [Google Scholar]
- Zhang, J.; Wu, G.; Zhang, J. Estimation of Interprovincial Material Capital Stock in China: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Kaneko, S.; Managi, S. Environmental productivity in China. Econ. Bull. 2004, 17, 1–10. [Google Scholar]
- Fu, Q.; Ma, Q.; Sodnomdargia, B. Local Government Competition and Environmental Regulation: Heterogeneity Based on Regional Openness. Chin. J. Pop Resour. Environ. 2016, 26, 69–75. [Google Scholar]
- Luo, N.; Peng, Y. Spatial and Spatial Differences of Urban Industrial Land Use Efficiency in China and the Influence of Local Government Competition. Chin. Land. Sci. 2016, 30, 62–70, 97. [Google Scholar]
- Li, X.; He, N. Research on the Influence of Environmental Tax on Green Technological Innovation of Enterprises under Regional Competition. Chin. J. Pop Resour. Environ. 2018, 28, 73–81. [Google Scholar]
- Fan, D.; Zhou, H. Study on the Factor Analysis Method of Regional Technology Innovation Ability Evaluation. J. Ind. Tech. Econ. 2006, 25, 61–63. [Google Scholar]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Lozano, S.; Gutiérrez, E. Slacks-based measure of efficiency of airports with airplanes delays as undesirable outputs. Comput. Oper. Res. 2011, 38, 131–139. [Google Scholar] [CrossRef]
- Thompson, P.; Fox-Kean, M. Patent citations and the geography of knowledge spillovers: A reassessment. Am. Econ. Rev. 2005, 95, 450–460. [Google Scholar] [CrossRef] [Green Version]
- Peri, G. Determinants of knowledge flows and their effect on innovation. Rev. Econ. Stat. 2005, 87, 308–322. [Google Scholar] [CrossRef]
- Singh, J.; Marx, M. Geographic constraints on knowledge spillovers: Political borders vs. spatial proximity. Manag. Sci 2013, 59, 2056–2078. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.A. Borders and distance in knowledge spillovers: Dying over time or dying with age?—Evidence from patent citations. Eur. Econ. Rev. 2014, 71, 152–172. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.; Long, Z.; Wu, M. An Empirical Analysis Regional Economic Convergence in China: 1978–2002. Chin. Econ. Q. 2005, 1, 67–82. [Google Scholar]
- Deng, R.; Liu, Y. Industrial agglomeration, spatial spillover and regional economic growth—Research based on space panel Durbin model. Inq. Econ. Issues 2016, 1, 66–76. [Google Scholar]
- LeSage, J.; Pace, R.K. Introduction to Spatial Econometrics; Taylor & Francis Group, CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Walker, T. Inclusive talent management in the public sector: Theory and practice. Transnatl. Corp. Rev. 2020, 12, 140–148. [Google Scholar]
- Wang, J. Existence of Regional Financial Competition and Evolution of Local Government’s Behavior. West. Forum. 2018, 28, 68–76. [Google Scholar]
Indicator | Factor | Symbol | Index | Unit | |
---|---|---|---|---|---|
Input | Labor | L | Employment | 10,000 | |
Capital | K | Capital stock | 100 million | ||
Output | Desired output | Economic output | O | GDP | 100 million |
Undesired output | Pollution | UO | Industrial effluents | 10,000 tons | |
Industrial sulfur dioxide | 10,000 tons | ||||
Industrial fumes | 10,000 tons |
Variable Name | Symbol | Definition | Source/Reference |
---|---|---|---|
Access to digital financial services | f | Digital financial inclusive index/100 | Guo et al., 2020 [8] |
Regional competition | rc | Foreign investment actually used in that year | China City Statistical Yearbook |
Regional financial development | fin | Savings deposit in all financial institutions at the end of year/GDP | China City Statistical Yearbook |
Population density | pd | Population per square kilometers | China Statistical Yearbook |
Economic structure | ec | Ratio of secondary industry to service sector | China Statistical Yearbook |
Technologically innovative ability | tech | City innovative index/100 | 2017 China City and Industrial Innovation Report |
Environmental regulation | er | Reduction of Industrial SO2 emissions/ real GDP | China Statistical Yearbook |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
f | 0.0244 *** | 0.0183 *** | 0.0262 *** | 0.0222 *** |
(0.004) | (0.004) | (0.004) | (0.004) | |
rc | 0.0075 *** | 0.0127 *** | 0.0135 *** | 0.0240 *** |
(0.003) | (0.003) | (0.005) | (0.005) | |
fin | −0.0346 *** | −0.0212 ** | −0.0363 *** | −0.0249 *** |
(0.010) | (0.009) | (0.010) | (0.009) | |
pd | −0.0115 * | 0.0013 | −0.0137 ** | −0.0002 |
(0.006) | (0.003) | (0.006) | (0.003) | |
es | 0.2081 *** | 0.1800 *** | 0.2052 *** | 0.1752 *** |
(0.055) | (0.051) | (0.055) | (0.051) | |
tech | −0.0053 | 0.0072 | 0.0099 | 0.0330 *** |
(0.010) | (0.009) | (0.014) | (0.013) | |
er | 0.0823 *** | 0.0756 *** | 0.0815 *** | 0.0740 *** |
(0.013) | (0.013) | (0.013) | (0.013) | |
rc × f | −0.0038 * | −0.0073 *** | ||
(0.003) | (0.002) | |||
cons | 0.0929 ** | 0.0358 | 0.1023 ** | 0.0420 |
(0.043) | (0.035) | (0.043) | (0.035) | |
N | 1855 | 1855 | 1855 | 1855 |
Hausman test | 78.42 *** | 72.08 *** | ||
Model | FE | RE | FE | RE |
Test | (1) | (2) | ||
---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |
LM test no spatial lag | 2.770 | 0.096 | 2.958 | 0.085 |
Robust LM test no spatial lag | 8.908 | 0.003 | 9.857 | 0.002 |
LM test no spatial error | 5.543 | 0.019 | 5.997 | 0.014 |
Robust LM test no spatial error | 11.681 | 0.001 | 12.896 | 0.000 |
Test | (1) | (2) | ||
---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |
Wald spatial lag test | 83.315 | 0.000 | 99.892 | 0.000 |
LR spatial lag test | 94.729 | 0.000 | 112.870 | 0.000 |
Wald spatial error test | 77.103 | 0.000 | 93.216 | 0.000 |
LR spatial error test | 90.833 | 0.000 | 108.588 | 0.000 |
Hausman test | 106.172 | 0.000 | 144.190 | 0.000 |
Variable | (1) | (2) | ||||||
---|---|---|---|---|---|---|---|---|
(a) | (b) | (c) | (d) | (a) | (b) | (c) | (d) | |
Coefficient | Direct Effect | Indirect Effect | Total Effect | Coefficient | Direct Effect | Indirect Effect | Total Effect | |
f | 0.0501 ** (2.1644) | 0.0501 ** (2.1094) | −0.0256 (−1.0274) | 0.0245 *** (3.2) | 0.0512 ** (2.2155) | 0.0521 ** (2.253) | −0.0380 * (−1.5722) | 0.0141 * (1.6599) |
rc | 0.0072 ** (2.563) | 0.0075 *** (2.6804) | 0.0116 (0.7376) | 0.0191 (1.1849) | 0.0142 *** (2.848) | 0.0133 *** (2.7089) | −0.0706 *** (−2.6653) | −0.0573 ** (−2.1415) |
fin | −0.0348 *** (−3.457) | −0.0355 *** (−3.5068) | −0.0387 (−1.2438) | −0.0742 ** (−2.4704) | −0.0368 *** (−3.6629) | −0.0372 *** (−3.8592) | −0.0191 (−0.5838) | −0.0562 * (−1.7985) |
pd | −0.0126 ** (−2.1921) | −0.0132 ** (−2.3131) | −0.0401 *** (−2.6743) | −0.0533 *** (−3.2808) | −0.0123 ** (−2.0738) | −0.0126 ** (−2.1601) | −0.0356 ** (−2.2761) | −0.0483 *** (−2.8305) |
es | 0.2251 *** (4.0044) | 0.2203 *** (4.0207) | −0.4305 *** (−3.2637) | −0.2102 (−1.5737) | 0.2387 *** (4.2626) | 0.2330 *** (4.2609) | −0.4025 *** (−2.7963) | −0.1695 (−1.1986) |
tech | 0.0255 ** (2.4111) | 0.0225 ** (2.1796) | −0.2141 *** (−6.8873) | −0.1916 *** (−6.475) | 0.0365 ** (2.5612) | 0.0312 ** (2.1568) | −0.3939 *** (−6.9306) | −0.3627 *** (−6.2507) |
er | 0.1244 *** (7.0482) | 0.1240 *** (7.0615) | −0.0881 *** (−3.5677) | 0.0359 * (1.7885) | 0.1265 *** (7.2056) | 0.1264 *** (7.0982) | −0.0741 *** (−2.8293) | 0.0523 ** (2.418) |
rc × f | −0.0043 * (−1.6724) | −0.0038 (−1.4543) | 0.0394 *** (3.9685) | 0.0356 *** (3.564) | ||||
W × f | −0.0284 (−1.187) | −0.0386 (−1.612) | ||||||
W × fin | −0.0301 (−1.0589) | −0.0142 (−0.4972) | ||||||
W × pd | −0.0340 ** (−2.4711) | −0.0301 ** (−2.1853) | ||||||
W × es | −0.4085 *** (−3.1792) | −0.3915 *** (−3.0596) | ||||||
W × rc | 0.0099 (0.6838) | −0.0649 *** (−2.8003) | ||||||
W × tech | −0.1943 *** (−6.8679) | −0.3527 *** (−7.305) | ||||||
W × er | −0.0929 *** (−3.8817) | −0.0799 *** (−3.3212) | ||||||
W × rc × f | 0.0353 *** (4.1514) | |||||||
ρ | 0.1190 *** (2.5905) | 0.1280 *** (2.7983) | ||||||
R² | 0.9082 | 0.9093 | ||||||
Log-L | 2731.4987 | 2741.9474 | ||||||
σ² | 0.0035 | 0.0035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhang, X.; Yang, L.; Shen, Y. Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China. Sustainability 2021, 13, 4927. https://doi.org/10.3390/su13094927
Liu Z, Zhang X, Yang L, Shen Y. Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China. Sustainability. 2021; 13(9):4927. https://doi.org/10.3390/su13094927
Chicago/Turabian StyleLiu, Zhangsheng, Xiaolu Zhang, Liuqingqing Yang, and Yinjie Shen. 2021. "Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China" Sustainability 13, no. 9: 4927. https://doi.org/10.3390/su13094927
APA StyleLiu, Z., Zhang, X., Yang, L., & Shen, Y. (2021). Access to Digital Financial Services and Green Technology Advances: Regional Evidence from China. Sustainability, 13(9), 4927. https://doi.org/10.3390/su13094927