Optimal Congestion Pricing with Day-to-Day Evolutionary Flow Dynamics: A Mean–Variance Optimization Approach
Abstract
:1. Introduction
2. Preliminaries
3. Mathematical Formulations
3.1. A Discrete DTD Dynamics Model
3.2. Mean–Variance-Based Robust Optimization Model
4. Solution Algorithms
4.1. Encircling Prey
4.2. Bubble-Net Attacking
4.3. Search for Prey
Algorithm 1. |
Initialize the population |
Calculate the distance-based toll for each path with Equation (3) |
Conduct the day-to-day dynamics evolution process with Equations (4)–(7) |
Evaluate the fitness for all the agents in the population with Equation (9), and set as the best search agent |
while (t < maxIterations): |
for each search agent |
update , , , l and p |
if (p < 0.5): |
if (): |
update the location of the present search agent by Equation (11) |
else if (): |
randomly select a search agent |
update the location of the randomly selected agent with Equation (18) |
end if |
else if (p 0.5): |
update the location of the present search agent with Equation (15) |
end if |
Calculate the toll value for each path with Equation (3) for each search agent |
Conduct the day-to-day dynamics evolution process with Equations (4)–(7) for each search agent |
end for |
Revise the search agent if it is out of the search space |
Evaluate the fitness for all the agents with Equation (9), and update if a better solution is found |
Update |
end while |
Output |
5. Numerical Experiment
- planning period: 90 days;
- : 0.4, : 0.5, : 0.6, : 0.5, : 1.0;
- upper bound of the toll: 1;
- lower bound of the toll: 5;
- predetermined target of the average ETTC: 280000;
- number of populations per generation in the WOA: 50;
- maximum iteration in the WOA: 100.
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Federal Highway Administration. FHWA Fiscal Year 2019 Budget; U.S. Department of Transportation: Washington, DC, USA, 2018.
- INRIX. 2018 Global Traffic Scorecard Report; INRIX Research: Altrincham, UK, 2019. [Google Scholar]
- Huang, D.; Gu, Y.; Wang, S.; Liu, Z.; Zhang, W. A two-phase optimization model for the demand-responsive customized bus network design. Transp. Res. Part C 2020, 111, 1–21. [Google Scholar] [CrossRef]
- Huang, D.; Chen, X.; Liu, Z.; Lyu, C.; Wang, S.; Chen, X. A static bike repositioning model in a hub-and-spoke network framework. Transp. Res. Part E 2020, 141, 102031. [Google Scholar] [CrossRef]
- Huang, D.; Xing, J.; Liu, Z.; An, Q. A multi-stage stochastic optimization approach to the stop-skipping and bus lane reservation schemes. Transp. A 2020, 1–33. [Google Scholar]
- Ma, J.; Xu, M.; Meng, Q.; Cheng, L. Ridesharing user equilibrium problem under OD-based surge pricing strategy. Transp. Res. Part B 2020, 134, 1–24. [Google Scholar] [CrossRef]
- Beijing Transport Institute. 2019 Beijing Transport Annual Report; Beijing Transport Institute: Beijing, China, 2019. [Google Scholar]
- Braess, D. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 1968, 12, 258–268. [Google Scholar] [CrossRef]
- Braess, D.; Nagurney, A.; Wakolbinger, T. On a paradox of traffic planning. Transp. Sci. 2005, 39, 446–450. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, P.; Xie, L. Modelling the effects of road pricing on traffic in Singapore. Transp. Res. Part A 2005, 39, 755–772. [Google Scholar] [CrossRef]
- Tang, C.K. The cost of traffic: Evidence from the London congestion charge. J. Urban Econ. 2021, 121, 103302. [Google Scholar] [CrossRef]
- Percoco, M. Is road pricing effective in abating pollution? Evidence from Milan. Transp. Res. Part D 2013, 25, 112–118. [Google Scholar] [CrossRef]
- Borjesson, M.; Eliasson, J.; Hugosson, M.B.; Brundell-Freij, K. The Stockholm congestion charges—5 years on effects, acceptability and lessons learnt. Transp. Policy 2012, 20, 1–12. [Google Scholar] [CrossRef]
- Yang, H.; Huang, H.-J. Mathematical and Economic Theory of Road Pricing; Elsevier Ltd.: Amsterdam, The Netherlands, 2005. [Google Scholar]
- de Palma, A.; Lindsey, R. Traffic congestion pricing methodologies and technologies. Transp. Res. Part C 2011, 19, 1377–1399. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, Z.; Liu, F.; Jia, R. Urban dynamic congestion pricing: An overview and emerging research needs. Int. J. Urban Sci. 2017, 21, 3–18. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, Z.; Cheng, Q.; Saberi, M. Congestion pricing practices and public acceptance: A review of evidence. Case Stud. Transp. Policy 2018, 6, 94–101. [Google Scholar] [CrossRef]
- Selmoune, A.; Cheng, Q.; Wang, L.; Liu, Z. Influencing factors in congestion pricing acceptability: A literature review. J. Adv. Transp. 2020, 2020, 4242964. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Zhou, B.; Cheng, Q. Robust optimization of distance-based tolls in a network considering stochastic day to day dynamics. Transp. Res. Part C 2017, 79, 58–72. [Google Scholar] [CrossRef]
- Wie, B.; Tobin, R. Dynamic congestion pricing models for general traffic networks. Transp. Res. Part B 1998, 32, 313–327. [Google Scholar] [CrossRef]
- Sandholm, W.H. Evolutionary implementation and congestion pricing. Rev. Econ. Stud. 2002, 69, 667–689. [Google Scholar] [CrossRef] [Green Version]
- Friesz, T.L.; Bernstein, D.; Kydes, N. Dynamic congestion pricing in disequilibrium. Netw. Spat. Econ. 2004, 4, 181–202. [Google Scholar] [CrossRef]
- Yang, F.; Szeto, W. Day-to-day dynamic congestion pricing policies towards system optimal. In Proceedings of the First International Symposium on Dynamic Traffic Assignment, Leeds, UK, 21 June 2006; pp. 266–275. [Google Scholar]
- Yang, F.; Yin, Y.; Lu, J. Steepest descent day-to-day dynamic toll. Transp. Res. Rec. 2007, 2039, 83–90. [Google Scholar] [CrossRef]
- Yang, F. Day-to-day dynamic optimal tolls with elastic demand. In Proceedings of the 87th Transportation Research Board Annual Meeting, Washington, DC, USA, 13 January 2008. [Google Scholar]
- Guo, X. Toll sequence operation to realize target flow pattern under bounded rationality. Transp. Res. Part B 2013, 56, 203–216. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Han, K.; Friesz, T.L.; Yao, T. Day-to-day congestion pricing and network resilience. Transp. A 2015, 11, 873–895. [Google Scholar] [CrossRef]
- Ma, X.; Xu, W.; Chen, C. A day-to-day dynamic evolution model and pricing scheme with bi-objective user equilibrium. Transp. B 2021, 9, 283–302. [Google Scholar]
- Guo, R.-Y.; Yang, H.; Huang, H.-J.; Tan, Z. Day-to-day flow dynamics and congestion control. Transp. Sci. 2016, 50, 982–997. [Google Scholar] [CrossRef]
- Ye, H.; Yang, H.; Tan, Z. Learning marginal-cost pricing via a trial-and-error procedure with day-to-day flow dynamics. Transp. Res. Part B 2015, 81, 794–807. [Google Scholar] [CrossRef]
- Xu, M.; Meng, Q.; Huang, Z. Global convergence of the trial-and-error method for the traffic-restraint congestion-pricing scheme with day-to-day flow dynamics. Transp. Res. Part C 2016, 69, 276–290. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Zhang, Y. A trial-and-error toll design method for traffic congestion mitigation on large river-crossing channels in a megacity. Sustainability 2021, 13, 2749. [Google Scholar] [CrossRef]
- Tan, Z.; Yang, H.; Guo, R.Y. Dynamic congestion pricing with day-to-day flow evolution and user heterogeneity. Transp. Res. Part C 2015, 61, 87–105. [Google Scholar] [CrossRef]
- Wang, X.; Ye, H.; Yang, H. Decentralizing Pareto-efficient network flow/speed patterns with hybrid schemes of speed limit and road pricing. Transp. Res. Part E Logist. Transp. Rev. 2015, 83, 51–64. [Google Scholar] [CrossRef]
- Gehlot, H.; Honnappa, H.; Ukkusuri, S. V An optimal control approach to day-to-day congestion pricing for stochastic transportation networks. Comput. Oper. Res. 2020, 119, 104929. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Ng, W.-L. Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Math. Financ. 2000, 10, 387–406. [Google Scholar] [CrossRef]
- Björk, T.; Murgoci, A.; Zhou, X.Y. Mean-variance portfolio optimization with state-dependent risk aversion. Math. Financ. 2014, 24, 1–24. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, Z.; Wang, S. Optimal distance tolls under congestion pricing and continuously distributed value of time. Transp. Res. Part E 2012, 48, 937–957. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, Z.; Szeto, W.Y. A cell-based dynamic congestion pricing scheme considering travel distance and time delay. Transp. B 2019, 7, 1286–1304. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Meng, Q. Optimal joint distance and time toll for cordon-based congestion pricing. Transp. Res. Part B 2014, 69, 81–97. [Google Scholar] [CrossRef]
- LTA. Land Transport Master Plan 2013; Singapore Land Transport Authority: Singapore, 2013.
- Ye, H.; Xiao, F.; Yang, H. Day-to-day dynamics with advanced traveler information. Transp. Res. Part B 2021, 144, 23–44. [Google Scholar] [CrossRef]
- Cantarella, G.E.; Cascetta, E. Dynamic processes and equilibrium in transportation networks: Towards a unifying theory. Transp. Sci. 1995, 29, 305–329. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, S.; Liu, Z.; Yuan, Y. Surrogate-based simulation optimization approach for day-to-day dynamics model calibration with real data. Transp. Res. Part C 2019, 105, 422–438. [Google Scholar] [CrossRef]
- Elton, E.J.; Gruber, M.J. Modern portfolio theory, 1950 to date. J. Bank. Financ. 1997, 21, 1743–1759. [Google Scholar] [CrossRef] [Green Version]
- Gharehchopogh, F.S.; Gholizadeh, H. A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm Evol. Comput. 2019, 48, 1–24. [Google Scholar] [CrossRef]
- Sony, B.; Chakravarti, A.; Reddy, M.M. Traffic congestion detection using whale optimization algorithm and multi-support vector machine. Int. J. Recent Technol. Eng. 2019, 7, 589–593. [Google Scholar]
- Zhang, H.; Tang, L.; Yang, C.; Lan, S. Locating electric vehicle charging stations with service capacity using the improved whale optimization algorithm. Adv. Eng. Inform. 2019, 41, 100901. [Google Scholar] [CrossRef]
Notation | Explanations |
---|---|
Index of calendar days | |
The total planning period, which is 90 days in this paper | |
The congestion toll scheme | |
The expected total travel cost on day with the toll scheme | |
The predetermined target of the average expected total travel cost during the total planning period | |
Travel demand between OD pair | |
The flow on route on day | |
The traveler’s predicted route travel cost for on day | |
The ATIS’s predicted route travel cost for on day | |
The actual (i.e., experienced) route travel cost for on day |
Origin | Destination | Demand |
---|---|---|
1 | 8 | 6000 |
1 | 9 | 6000 |
From | To | Distance | FFTT | Capacity | ||
---|---|---|---|---|---|---|
1 | 2 | 2 | 2 | 6000 | 0.15 | 4 |
1 | 8 | 26 | 26 | 3000 | 0.15 | 4 |
2 | 3 | 7 | 2 | 4000 | 0.15 | 4 |
2 | 5 | 8 | 8 | 6000 | 0.15 | 4 |
2 | 7 | 9 | 9 | 2000 | 0.15 | 4 |
3 | 4 | 2 | 2 | 2000 | 0.15 | 4 |
3 | 5 | 4 | 4 | 2000 | 0.15 | 4 |
4 | 6 | 6 | 6 | 1000 | 0.15 | 6 |
5 | 6 | 2 | 2 | 4000 | 0.15 | 4 |
5 | 7 | 3 | 3 | 4000 | 0.15 | 4 |
6 | 9 | 6 | 6 | 6000 | 0.15 | 4 |
7 | 8 | 5 | 5 | 3000 | 0.15 | 4 |
8 | 9 | 4 | 4 | 3000 | 0.15 | 4 |
OD Pair | Route | Node Sequence |
---|---|---|
(1, 8) | 1 | 1, 2, 3, 5, 7, 8 |
2 | 1, 2, 5, 7, 8 | |
3 | 1, 2, 7, 8 | |
4 | 1, 8 | |
(1, 9) | 5 | 1, 2, 3, 4, 6, 9 |
6 | 1, 2, 3, 5, 6, 9 | |
7 | 1, 2, 3, 5, 7, 8, 9 | |
8 | 1, 2, 5, 6, 9 | |
9 | 1, 2, 5, 7, 8, 9 | |
10 | 1, 2, 7, 8, 9 | |
11 | 1, 8, 9 |
Route | Node Sequence Inside the Cordon | Travel Distance Inside the Cordon |
---|---|---|
1 | 2, 3, 5, 7 | 7 + 4+3 = 14 |
2 | 2, 5, 7 | 8 + 3=11 |
3 | 2, 7 | 9 |
5 | 2, 3, 4, 6 | 7 + 2+6 = 15 |
6 | 2, 3, 5, 6 | 7 + 4+2 = 13 |
7 | 2, 3, 5, 7 | 7 + 4+3 = 14 |
8 | 2, 5, 6 | 8 + 2=10 |
9 | 2, 5, 7 | 8 + 3=11 |
10 | 2, 7 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Chen, J.; Zhang, H.; Liu, Z. Optimal Congestion Pricing with Day-to-Day Evolutionary Flow Dynamics: A Mean–Variance Optimization Approach. Sustainability 2021, 13, 4931. https://doi.org/10.3390/su13094931
Cheng Q, Chen J, Zhang H, Liu Z. Optimal Congestion Pricing with Day-to-Day Evolutionary Flow Dynamics: A Mean–Variance Optimization Approach. Sustainability. 2021; 13(9):4931. https://doi.org/10.3390/su13094931
Chicago/Turabian StyleCheng, Qixiu, Jun Chen, Honggang Zhang, and Zhiyuan Liu. 2021. "Optimal Congestion Pricing with Day-to-Day Evolutionary Flow Dynamics: A Mean–Variance Optimization Approach" Sustainability 13, no. 9: 4931. https://doi.org/10.3390/su13094931
APA StyleCheng, Q., Chen, J., Zhang, H., & Liu, Z. (2021). Optimal Congestion Pricing with Day-to-Day Evolutionary Flow Dynamics: A Mean–Variance Optimization Approach. Sustainability, 13(9), 4931. https://doi.org/10.3390/su13094931