Foliar Application of Magnesium at Critical Stages Improved the Productivity of Rice Crop Grown under Different Cultivation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crop Husbandry
2.2. Statistical Analysis
3. Results
3.1. Growth Pattern of Rice Crop
3.2. Response of Yield Attributes
3.3. Kernel Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Challinor, A.J.; Watson, J.; Lobell, D.B.; Howden, S.M.; Smith, D.R.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Sarwar, N.; Maqsood, M.; Wajid, S.A.; Anwar-ul-Haq, M. Impact of nursery seeding density, nitrogen, and seedling age on yield and yield attributes of fine rice. Chil. J. Agric. Res. 2011, 71, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, N.; Ali, H.; Ahmad, A.; Ullah, E.; Ahmad, S.; Mubeen, K.; Hill, J.E. Water wise rice cultivation on calcareous soil with the addition of essential micronutrients. J. Anim. Plant Sci. 2013, 23, 244. [Google Scholar]
- Sarwar, N.; Ali, A.; Maqsood, M.; Ullah, E.; Shahzad, M.; Mubeen, K.; Shahzad, A.N.; Shahid, M.A.; Ahmad, A. Phenological response of rice plants to different micronutrients application under water saving paddy fields on calcareous soil. Turk. J. Field Crop. 2013, 18, 52–57. [Google Scholar]
- Sarwar, N.; Ali, H.; Maqsood, M.; Ahmad, A.; Ullah, E.; Khaliq, T.; Hill, J.E. Influence of nursery management and seedling age on growth and economic performance of fine rice. J. Plant Nutr. 2014, 37, 1287–1303. [Google Scholar] [CrossRef]
- Sarwar, N.; Javaid, M.H.; Neelam, A.; Rehaman, A.; Farooq, O.; Wasaya, A.; Mubeen, K.; Ghani, A.; Mushtaq, M.Z. Application of spermidine to manage water stress for improved fine rice yield and quality. Pure Appl. Biol. 2020, 9, 1813–1819. [Google Scholar] [CrossRef]
- Sarwar, N.; Rehman, A.; Farooq, O.; Wasaya, A.; Saliq, S.; Mubeen, K. Improved auxin level at panicle initiation stage enhance the heat stress tolerance in rice plants. In Proceedings of the 2019 Agronomy Australia Conference, Wagga Wagga, Australia, 25–29 August 2019. [Google Scholar]
- Fu, G.; Zhang, C.; Yang, X.; Yang, Y.; Chen, T.; Zhao, X.; Fu, W.; Feng, B.; Zhang, X.; Tao, L.; et al. Action mechanism by which SA alleviates high temperatureginduced inhibition to spikelet differentiation. Chin. J. Rice Sci. 2015, 29, 637–647. [Google Scholar]
- Zhang, C.X.; Feng, B.H.; Chen, T.T.; Zhang, X.F.; Tao, L.X.; Fu, G.F. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress. Plant Growth Regul. 2017, 83, 313–323. [Google Scholar] [CrossRef]
- USDA. USDA’s April 2019 World Agricultural Supply and Demand Estimates Report; USDA: Washington, DC, USA, 2019.
- Fahad, S.; Muhammad, Z.I.; Abdul, K.; Ihsanullsh, D.; Saud, S.A. Consequences of high temperature under changing climate optima for rice pollen characteristics-concepts and perspectives. Arch. Agron. Soil Sci. 2018. [Google Scholar] [CrossRef]
- Gao, X.; Zou, C.; Fan, X.; Zhang, F.; Hoffland, E. From flooded to aerobic conditions in rice cultivation: Consequences for zinc uptake. Plant Soil. 2006, 280, 41–47. [Google Scholar] [CrossRef]
- Mikkelsen, R. Soil and fertilizer magnesium. Better Crops 2010, 94, 26–28. [Google Scholar]
- Scheffer, F.; Schachtschabel, P.; der Bodenkunde, L.; Verlag, S.A.; Senthilkumar, H.K.; Bindraban, P.S.; Thiyagarajan, T.M. Water-Wise Rice Production; International Rice Research Institute: Los Banos, CA, USA, 2002. [Google Scholar]
- Choudhury, T.M.A.; Khanif, Y.M. Evaluation of Effects of Nitrogen and Magnesium Fertilization on Rice Yield and Fertilizer Nitrogen Efficiency Using 15n Tracer Technique. J. Plant Nutr. 2001, 24, 855–871. [Google Scholar] [CrossRef]
- Ding, Y.; Luo, W.; Xu, G. Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Ann. Appl. Biol. 2006, 149, 111–123. [Google Scholar] [CrossRef]
- Römheld, V.; Kirkby, E.A. Magnesium Functions in Crop Nutrition and Yield; The International Fertiliser Society: York, UK, 2007; pp. 151–171. [Google Scholar]
- Bybordi, A.; Jasarat, A.S. Effects of the foliar application of magnesium and zinc on the yield and quality of three grape cultivars grown in the calcareous soils of iran. Not. Sci. Biol. 2010, 2, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Ladha, J.K. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Deng, W.; Luo, K.; Li, D.; Zheng, X.; Wei, X.; Smith, W.; Thammina, C.; Lu, L.; Li, Y.; Pei, Y. Over expression of an Arabidopsis magnesium transport gene, At MGT1, in Nicotiana benthamiana confers Al tolerance. J. Exp. Bot. 2006, 57, 4235–4243. [Google Scholar] [CrossRef] [Green Version]
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 309–323. [Google Scholar] [CrossRef]
- Gardner, R.C. Genes for magnesium transport. Curr. Opin. Plant Biol. 2003, 6, 263–267. [Google Scholar] [CrossRef]
- Maguire, M.E.; Cowan, J.E. Magnesium chemistry and biochemistry. Biometals 2002, 15, 203–210. [Google Scholar] [CrossRef]
- Hussain, M.; Shah, S.H.; Nazir, M.S. Effect of foliar application of calcium cum magnesium on different agronomic traits of three genotypes of Lentil (Lens culinaaris Medic). Pak. J. Agric. Sci. 2002, 39, 123–125. [Google Scholar]
- Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Gupta, R.K.; Naresh, R.K.; Hobbs, P.R.; Jiaguo, Z.; Ladha, J.K. Sustainability of post-green revolution agriculture: The rice–wheat cropping systems of the Indo-Gangetic Plains and China. In Improving the Productivity and Sustainability of Rice–Wheat Systems: Issues and Impacts; Ladha, J.K., Hill, J.E., Duxbury, J.M., Gupta, R.K., Buresh, R.J., Eds.; American Society of Agronomy: Madison, WI, USA, 2003; pp. 1–25. [Google Scholar]
- Khalifa, R.; Shaaban, K.M.S.; Rawia, A. Effect of foliar application of zinc sulfate and boric acid on growth, yield and chemical constituents of iris plants. Ozean J. Appl. Sci. 2011, 4, 129–144. [Google Scholar]
- Dobermann, A.; Fairhurst, T. Rice: Nutrient Disorders & Nutrient Management; Potash & Phosphate Institute: Atlanta, GA, USA, 2002. [Google Scholar]
- Sharma, P.K.; Bhushan, L.; Ladha, J.K.; Naresh, R.K.; Gupta, R.K.; Balasubramanian, B.V.; Bouman, B.A.M. Crop-water relations in rice-wheat cropping under different tillage systems and water management practices in a marginally sodic, medium-textured soil. In Water-Wise Rice Production; International Rice Research Institute: Los Baños, CA, USA, 2002; pp. 223–235. [Google Scholar]
- Alam, S.S.; Moslehuddin, A.Z.M.; Islam, M.R.; Kamal, A.M. Soil and foliar application of nitrogen for Boro rice (BRRI dhan 29). J. Bangladesh Agril. Univ. 2010, 8, 199–202. [Google Scholar] [CrossRef] [Green Version]
- Rajakumar, D.; Gurumurthy, S. Effect of plant density and nutrient spray on the yield attributes and yield of direct sown and polybag seedling planted hybrid cotton. Agric. Sci. Digest 2008, 28, 174–177. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Patrick, W.H., Jr.; Mahapatra, I.C. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv. Agron. 1968, 20, 323–356. [Google Scholar]
- Hunt, R. Plant Growth Analysis; Edward Arnold: London, UK, 1978; pp. 26–28. [Google Scholar]
- Yoshida, S.; Forno, D.A.; Cock, D.H.; Gomez, K.A. Laboratory Manual for Physiological Studies of Rice, 3rd ed.; IRRI: Los Banos, CA, USA, 1976. [Google Scholar]
- Ramanathan, K.M.; Krishnamoorthy, K.K. Nutrient uptake by paddy during the main three stages of growth. Plant Soil 1973, 39, 29–33. [Google Scholar] [CrossRef]
- Gransee, A.; Führs, H. Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant Soil 2012, 368, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.W.; Grunes, D.L. Effects of root temperature and nitrogen form on magnesium uptake and translocation by wheat seedlings. J. Plant Nutr. 1992, 15, 991–1005. [Google Scholar] [CrossRef]
- Brohi, A.R.; Karaman, M.R.; Topbaş, M.T.; Aktaş, A.; Savaşli, E. Effect of Potassium and Magnesium Fertilization on Yield and Nutrient Content of Rice Crop Grown on Artificial Siltation Soil. Turk. J. Agric. For. 2000, 24, 429–435. [Google Scholar]
- Peng, S.; Bouman, B.; Visperas, R.M.; Castaneda, A.; Nie, L.; Park, H.K. Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight season experiment. Field Crops Res. 2006, 96, 252–259. [Google Scholar] [CrossRef]
Determination | 2016 | 2017 |
---|---|---|
(a) Physical | ||
Sand (%) | 50.28 | 50.19 |
Silt (%) | 23.70 | 23.61 |
Clay (%) | 26.02 | 26.20 |
Texture Class | Sandy Clay Loam | |
(b) Chemical | ||
pH | 7.5 | 7.80 |
Total Soluble Salts (%) | 0.23 | 0.24 |
Organic Matter (%) | 0.79 | 0.82 |
Total Nitrogen (%) | 0.054 | 0.045 |
Available Phosphorus (ppm) | 7.30 | 7.40 |
Potassium (ppm) | 171 | 185 |
DTPA Mg (ppm) | 11 | 14 |
Foliar Application of Mg (2% MgSO4) | Rice Cultivation Systems | |
---|---|---|
Aerobic Rice (T1) | Flooded Rice (T2) | |
Seedling (F1) | F1T1 | F1T2 |
Tillering (F2) | F2T1 | F2T2 |
Panicle initiation (F3) | F3T1 | F3T2 |
Seedling + Panicle initiation F4) | F4T1 | F4T2 |
Tillering + Panicle initiation (F5) | F5T1 | F5T2 |
Seedling + Tillering + Panicle initiation (F6) | F6T1 | F6T2 |
Treat | 2016 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|
LAI | LAD (Days) | CGR (g/m2/Day) | NAR (g/m2/Day) | LAI | LAD (Days) | CGR (g/m2/Day) | NAR (g/m2/Day) | |
F1T1 | 4.96 ± 0.74 f | 70.3 ± 2.4 i | 8 ± 1.2 h | 2.12 ± 1.2 g | 4.98 ± 05 f | 85 ± 3.1 i | 9 ± 2.1 h | 2.19 ± 0.5 g |
F2T1 | 5.48 ± 0.54 e | 80.3 ± 2.9 hi | 10 ± 0.8 g | 3.26 ± 1.8 f | 5.59 ± 0.41 e | 98.3 ± 2.8 g | 11 ± 3.1 g | 3.27 ± 0.9 f |
F3T1 | 5.48 ± 0.74 e | 80.67 ± 3.1 h | 13 ± 0.8 f | 3.27 ± 0.9 f | 5.59 ± 0.2 e | 73.3 ± 3.2 j | 13 ± 1.2 f | 3.26 ± 0.12 f |
F4T1 | 5.82 ± 0.47 d | 95.33 ± 4 f | 16 ± 0.7 e | 5.70 ± 1.8 e | 5.92 ± 0.4 d | 84 ± 2.5 i | 17 ± 1.5 e | 5.70 ± 0.9 e |
F5T1 | 5.81 ± 0.58 d | 120 ± 5.2 e | 19 ± 0.9 d | 5.70 ± 2.1 e | 5.91 ± 0.51 d | 128 ± 2.8 e | 19 ± 0.9 d | 5.71 ± 1.2 e |
F6T1 | 5.91 ± 0.74 c | 142.3 ± 9.2 b | 22 ± 1.2 b | 8.76 ± 2.5 b | 6.01 ± 0.4 c | 123 ± 2.4 f | 23 ± 1.2 b | 8.78 ± 1.3 b |
F1T2 | 5.22 ± 0.84 e | 85 ± 3.1 g | 13 ± 1.9 f | 3.26 ± 3.1 f | 5.58 ± 0.21 e | 98 ± 3.2 g | 13 ± 2.1 f | 3.27 ± 0.25 f |
F2T2 | 5.90 ± 0.45 c | 95 ± 4.2 f | 16 ± 2.1 e | 5.70 ± 2.4 e | 6 ± 0.41 c | 88 ± 4.2 h | 17 ± 0.9 e | 5.72 ± 1.2 e |
F3T2 | 5.90 ± 0.74 c | 125 ± 8.2 d | 19 ± 3.2 d | 6.61 ± 4.1 d | 6 ± 0.51 c | 145 ± 4 b | 19 ± 1.2 d | 6.60 ± 1.3 d |
F4T2 | 5.94 ± 0.46 b | 129.6 ± 9.6 c | 20 ± 4.2 c | 7.72 ± 3.2 c | 6.3 ± 0.12 b | 148.3 ± 5.2 a | 20 ± 2.1 c | 7.77 ± 1.7 c |
F5T2 | 5.98 ± 0.25 a | 140 ± 12.2 ab | 22 ± 4 b | 8.76 ± 3.5 b | 6.81 ± 0.41 a | 132.7 ± 5.8 d | 23 ± 2.5 b | 8.76 ± 1.3 b |
F6T2 | 5.98 ± 0.31 a | 144 ± 14.2 a | 24 ± 4.5 a | 9.77 ± 3.1 a | 6.82 ± 0.24 a | 143.33 ± 6.1 c | 25 ± 2.4 a | 9.79 ± 2.1 a |
Treat | 2016 | 2017 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
PH (cm) | TT | K/P | 1000-GW (g) | PY (g/Plant) | PH (cm) | TT | K/P | 1000-GW (g) | PY (g/Plant) | |
F1T1 | 89 ± 1.8 j | 166 ± 4.2 h | 68.7 ± 1.3 h | 6 ± 0.3 k | 12.2 ± 0.02 g | 91 ± 2.1 j | 166 ± 1.7 i | 70.6 ± 1.7 h | 8 ± 0.8 l | 13.1 ± 0.8 f |
F2T1 | 101 ± 1.2 i | 179 ± 4.8 g | 81 ± 1.5 g | 11 ± 0.7 i | 15.2 ± 0.8 e | 103 ± 1 i | 179 ± 2.8 g | 83 ± 0.54 g | 13 ± 1.2 j | 16.2 ± 0.7 e |
F3T1 | 104 ± 2.1 h | 185 ± 3.8 f | 87 ± 0.9 f | 14 ± 1.1 h | 16.3 ± 0.4 e | 106 ± 1.2 h | 185 ± 1.8 f | 89.0 ± 0.9 f | 16 ± 1.2 i | 15.6 ± 0.8 e |
F4T1 | 107 ± 2.4 g | 190 ± 3.8 e | 93 ± 0.78 e | 17 ± 0.9 f | 17.6 ± 0.8 de | 109 ± 1.9 g | 190 ± 2.2 e | 95.0 ± 1.2 e | 19 ± 0.9 g | 18.6 ± 1.2 d |
F5T1 | 109 ± 2.3 f | 196 ± 3.7 d | 98 ± 1.1 d | 19 ± 1.4 e | 18.6 ± 0.7 d | 111 ± 0.9 f | 196 ± 2.3 d | 100 ± 1.9 d | 21 ± 1.2 f | 19.6 ± 1.4 d |
F6T1 | 113 ± 1.9 bc | 202 ± 4.1 bc | 104 ± 1.4 c | 23 ± 1.7 c | 19.7 ± 0.4 c | 115 ± 1.1 d | 202 ± 2.8 cd | 107 ± 2.3 c | 25 ± 1.8 d | 24 ± 0.9 c |
F1T2 | 100 ± 1.8 i | 178.7 ± 4.2 gh | 81 ± 1.1 g | 10 ± 1.2 j | 17.3 ± 0.6 f | 102 ± 1.8 i | 178 ± 2.4 h | 83 ± 0.2 g | 12 ± 1.9 k | 17.3 ± 1.4 e |
F2T2 | 106 ± 2.1 g | 191 ± 2.9 e | 93 ± 1.2 e | 16 ± 0.9 g | 21.4 ± 0.2 c | 108 ± 2 g | 191 ± 1.9 e | 95 ± 0.7 e | 18 ± 2.1 h | 18.7 ± 2.1 c |
F3T2 | 111 ± 1.9 c | 197 ± 4.3 d | 99 ± 0.9 d | 21 ± 1.3 d | 19.2 ± 0.7 d | 113 ± 2.1 e | 197 ± 1.2 d | 101 ± 1.1 d | 23 ± 4 e | 20.1 ± 2.3 d |
F4T2 | 111 ± 2.5 c | 203 ± 4.4 c | 105.2 ± 1.3 c | 25 ± 1.4 bc | 24.7 ± 0.6 b | 117 ± 2.4 c | 203 ± 2.3 c | 107 ± 2.1 c | 27 ± 2.8 c | 24.9 ± 1.9 c |
F5T2 | 119 ± 2.4 b | 212 ± 3.1 b | 114 ± 0.78 b | 29 ± 2.1 b | 25.7 ± 0.8 ab | 121 ± 1.7 b | 212 ± 2.8 b | 116 ± 2.3 b | 31 ± 1.9 b | 25.8 ± 1.5 b |
F6T2 | 126 ± 2.8 a | 231 ± 3.4 a | 133 ± 0.94 a | 36 ± 1.4 a | 25.8 ± 0.9 a | 124 ± 1.9 a | 231 ± 1.9 a | 135 ± 0.9 a | 39 ± 1.7 a | 25.9 ± 1.8 a |
Treat | 2016 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|
Normal Kernel (%) | Abortive Kernel (%) | Opaque Kernel (%) | Sterile Kernel (%) | Normal Kernel (%) | Abortive Kernel (%) | Opaque Kernel (%) | Sterile Kernel (%) | |
F1T1 | 40.3 ± 5.1 h | 16.3 ± 0.8 a | 15.9 ± 0.4 a | 13.4 ± 0.2 b | 44. 9 ± 1.5 g | 17.9 ± 0.2 a | 15.9 ± 0.21 ab | 13.5 ± 0.21 b |
F2T1 | 67.9 ± 8.1 e | 14.5 ± 0.7 b | 15.9 ± 0.2 ab | 11.2 ± 0.5 h | 69.6 ± 1.8 e | 15.4 ± 0.24 c | 15.9 ± 0.41 a | 11.4 ± 0.34 h |
F3T1 | 65.2 ± 7.3 g | 14.6 ± 1.2 b | 16.0 ± 0.3 a | 12.2 ± 0.21 f | 66.9 ± 1.6 f | 15.4 ± 0.34 c | 16 ± 0.33 a | 12.3 ± 0.24 f |
F4T1 | 66.9 ± 5.4 f | 11.3 ± 1.3 d | 15.8 ± 0.41 ab | 12.8 ± 0.3 c | 69.9 ± 1.7 de | 15.3 ± 0.21 c | 15.8 ± 0.31 b | 12.9 ± 0.10 c |
F5T1 | 68.2 ± 6.2 e | 14.1 ± 0.7 b | 15.8 ± 0.24 bc | 12.4 ± 0.5 d | 70.9 ± 2.3 cde | 15.1 ± 0.27 c | 15.8 ± 0.38 bc | 11.4 ± 0.12 h |
F6T1 | 69.2 ± 4.2 d | 14.3 ± 0.21 b | 14.6 ± 0.54 bc | 12.1 ± 0.4 g | 70 ± 8.1 cde | 12.1 ± 0.34 f | 14.6 ± 0.21 d | 12.5 ± 0.31 d |
F1T2 | 64.3 ± 5.8 g | 14.5 ± 0.34 b | 15.12 ± 0.31 b | 12.3 ± 0.4 e | 67 ± 2.3 f | 16.1 ± 0.47 b | 15.1 ± 0.41 bc | 12.4 ± 0.34 e |
F2T2 | 69.6 ± 6.1 d | 14.5 ± 0.41 b | 14.9 ± 0.24 c | 14 ± 0.5 a | 71.3 ± 2.6 bc | 15.3 ± 0.61 c | 14.9 ± 0.34 c | 14.1 ± 0.21 a |
F3T2 | 69.6 ± 7.1 c | 13.5 ± 0.12 c | 14.2 ± 0.8 cd | 12.4 ± 0.4 d | 71.7 ± 1.9 ab | 14.4 ± 0.51 d | 14.2 ± 0.36 cd | 12.5 ± 0.25 d |
F4T2 | 69.5 ± 4.2 d | 14.5 ± 1.2 b | 13.2 ± 0.4 d | 11 ± 0.21 i | 71.9 ± 1.7 ab | 11.8 ± 0.31 g | 13.2 ± 0.31 e | 11.1 ± 0.31 j |
F5T2 | 70.2 ± 5.2 b | 10.9 ± 0.9 d | 10.2 ± 0.7 de | 11.1 ± 0.3 i | 71.1 ± 2.5 bcd | 11.2 ± 0.27 h | 10.1 ± 0.21 ef | 12.2 ± 0.24 g |
F6T2 | 73.2 ± 4.3 a | 7.4 ± 0.21 e | 9.5 ± 0.3 e | 11.2 ± 0.1 h | 75.9 ± 2.7 a | 8.1 ± 0.29 i | 9.5 ± 0.24 f | 11.2 ± 0.12 i |
Treat | 2016 | 2017 | ||||||
---|---|---|---|---|---|---|---|---|
TCC (mg g−1 FW) | KAC (%) | KPC (%) | LMgC (ppm) | TCC (mg g−1 FW) | KPC (%) | KAC (%) | LMgC (ppm) | |
F1T1 | 1.19 ± 0.01 f | 5.51 ± 0.05 i | 3.19 ± 0.07 f | 213.1 ± 0.01 f | 1.23 ± 0.07 f | 3.1 ± 0.05 g | 7.51 ± 0.04 i | 223.1 ± 0.04 g |
F2T1 | 2.27 ± 0.05 e | 8.45 ± 0.07 h | 5.27 ± 0.03 e | 255.2 ± 0.08 e | 2.29 ± 0.07 e | 5.2 ± 0.02 f | 8.45 ± 0.01 h | 265.2 ± 0.07 f |
F3T1 | 2.27 ± 0.04 e | 10.87 ± 0.03 g | 5.27 ± 0.04 e | 355.2 ± 0.07 e | 2.29 ± 0.01 e | 5.2 ± 0.09 f | 10.87 ± 0.05 g | 345.2 ± 0.01 f |
F4T1 | 2.61 ± 0.08 cd | 12.12 ± 0.05 f | 6.61 ± 0.06 d | 366.6 ± 0.04 d | 2.62 ± 0.02 de | 6.6 ± 0.07 e | 12.12 ± 0.06 f | 376.6 ± 0.03 e |
F5T1 | 2.60 ± 0.04 d | 15.23 ± 0.06 e | 6.6 ± 0.05 cd | 406.60 ± 0.06 cd | 2.61 ± 0.07 d | 6.6 ± 0.06 cd | 15.23 ± 0.04 e | 416.6 ± 0.07 cd |
F6T1 | 2.70 ± 0.02 c | 17.34 ± 0.08 d | 6.7 ± 0.07 c | 416.70 ± 0.07 c | 2.71 ± 0.05 cd | 6.7 ± 0.07 d | 17.34 ± 0.02 d | 436.7 ± 0.09 d |
F1T2 | 2.26 ± 0.09 ef | 10.87 ± 0.07 g | 5.2 ± 0.07 ef | 215.2 ± 0.02 ef | 2.28 ± 0.06 ef | 5.26 ± 0.06 fg | 10.87 ± 0.06 g | 235.2 ± 1.0 fg |
F2T2 | 2.27 ± 0.07 e | 17.34 ± 0.03 d | 6.6 ± 0.06 d | 266.61 ± 0.06 d | 2.28 ± 0.04 e | 6.6 ± 0.02 cd | 17.34 ± 0.08 d | 286.6 ± 0.8 cd |
F3T2 | 2.70 ± 0.05 c | 20.41 ± 0.07 c | 7.7 ± 0.04 c | 377.7 ± 0.07 c | 2.70 ± 0.02 c | 7.7 ± 0.03 bc | 20.41 ± 0.07 c | 387.7 ± 1.2 bc |
F4T2 | 2.72 ± 0.04 b | 20.43 ± 0.09 c | 7.7 ± 0.02 bc | 387.7 ± 0.02 bc | 3.00 ± 0.01 bc | 7.69 ± 0.07 c | 20.43 ± 0.06 c | 397.6 ± 0.05 c |
F5T2 | 2.76 ± 0.3 ab | 22.54 ± 0.02 b | 9.7 ± 0.04 b | 419.7 ± 0.01 b | 3.51 ± 0.03 ab | 9.76 ± 0.02 b | 22.54 ± 0.02 b | 429.7 ± 0.06 b |
F6T2 | 2.77 ± 0.08 a | 24.74 ± 0.04 a | 10.7 ± 0.07 a | 460.7 ± 0.07 a | 3.52 ± 0.04 a | 11.7 ± 0.09 a | 28.74 ± 0.07 a | 471.7 ± 0.04 a |
Years | Treatments | Cultivation Method | Grain Yield kg ha−1 | Gross Value (Rs/ha) | Total Cost (Rs/ha) | Net Return (Rs/ha) | BCR |
---|---|---|---|---|---|---|---|
2016 | Seedling stage | Aerobic | 1400 | 169,650 | 111,000 | 58,650 | 1.53 |
Tillering | Aerobic | 1500 | 181,650 | 112,000 | 69,650 | 1.62 | |
Panicle initiation | Aerobic | 1500 | 181,650 | 112,500 | 69,150 | 1.61 | |
Seedling + Panicle initiation | Aerobic | 1600 | 193,650 | 113,000 | 80,650 | 1.71 | |
Tillering + Panicle initiation | Aerobic | 1650 | 199,650 | 110,000 | 89,650 | 1.82 | |
Seedling + Tillering + Panicle initiation | Aerobic | 1720 | 208,050 | 112,000 | 96,050 | 1.86 | |
Seedling stage | Flooded | 1800 | 217,650 | 112,500 | 105,150 | 1.93 | |
Tillering | Flooded | 1970 | 238,050 | 113,000 | 125,050 | 2.11 | |
Panicle initiation | Flooded | 2100 | 253,650 | 113,500 | 140,150 | 2.23 | |
Seedling + Panicle initiation | Flooded | 2250 | 271,650 | 114,000 | 157,650 | 2.38 | |
Tillering + Panicle initiation | Flooded | 2400 | 289,650 | 115,000 | 174,650 | 2.52 | |
Seedling + Tillering + Panicle initiation | Flooded | 2500 | 301,650 | 117,000 | 184,650 | 2.58 | |
2017 | At seedling stage | Aerobic | 1450 | 180,250 | 112,000 | 68,250 | 1.61 |
Tillering | Aerobic | 1550 | 192,550 | 113,000 | 79,550 | 1.70 | |
Panicle initiation | Aerobic | 1600 | 198,700 | 113,500 | 85,200 | 1.75 | |
Seedling + Panicle initiation | Aerobic | 1700 | 211,000 | 114,000 | 97,000 | 1.85 | |
Tillering + Panicle initiation | Aerobic | 1750 | 217,150 | 111,000 | 106,150 | 1.96 | |
Seedling + Tillering + Panicle initiation | Aerobic | 1820 | 225,760 | 113,000 | 112,760 | 2.00 | |
At seedling stage | Flooded | 1900 | 235,600 | 113,500 | 122,100 | 2.08 | |
Tillering | Flooded | 2070 | 256,510 | 114,000 | 142,510 | 2.25 | |
Panicle initiation | Flooded | 2200 | 272,500 | 114,500 | 158,000 | 2.38 | |
Seedling + Panicle initiation | Flooded | 2350 | 290,950 | 115,000 | 175,950 | 2.53 | |
Tillering + Panicle initiation | Flooded | 2500 | 309,400 | 116,000 | 193,400 | 2.67 | |
Seedling + Tillering + Panicle initiation | Flooded | 2550 | 315,550 | 118,000 | 197,550 | 2.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, H.; Sarwar, N.; Muhammad, S.; Farooq, O.; Rehman, A.-u.; Wasaya, A.; Yasir, T.A.; Mubeen, K.; Akhtar, M.N. Foliar Application of Magnesium at Critical Stages Improved the Productivity of Rice Crop Grown under Different Cultivation Systems. Sustainability 2021, 13, 4962. https://doi.org/10.3390/su13094962
Ali H, Sarwar N, Muhammad S, Farooq O, Rehman A-u, Wasaya A, Yasir TA, Mubeen K, Akhtar MN. Foliar Application of Magnesium at Critical Stages Improved the Productivity of Rice Crop Grown under Different Cultivation Systems. Sustainability. 2021; 13(9):4962. https://doi.org/10.3390/su13094962
Chicago/Turabian StyleAli, Hakoomat, Naeem Sarwar, Shah Muhammad, Omer Farooq, Atique-ur Rehman, Allah Wasaya, Tauqeer Ahmad Yasir, Khurram Mubeen, and Muhammad Naeem Akhtar. 2021. "Foliar Application of Magnesium at Critical Stages Improved the Productivity of Rice Crop Grown under Different Cultivation Systems" Sustainability 13, no. 9: 4962. https://doi.org/10.3390/su13094962
APA StyleAli, H., Sarwar, N., Muhammad, S., Farooq, O., Rehman, A. -u., Wasaya, A., Yasir, T. A., Mubeen, K., & Akhtar, M. N. (2021). Foliar Application of Magnesium at Critical Stages Improved the Productivity of Rice Crop Grown under Different Cultivation Systems. Sustainability, 13(9), 4962. https://doi.org/10.3390/su13094962