Gene Editing for Improved Animal Welfare and Production Traits in Cattle: Will This Technology Be Embraced or Rejected by the Public?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study 1
Data Analysis
2.2. Study 2
The Belgian Blue bovine breed has a gene that allows muscle growth approximately 20% greater than the breeds generally used in our production systems. A possible alternative to increase meat production in Brazil, maintaining other characteristics of meat quality, is to insert this gene in the desired breeds. Do you consider genetic modification of cattle to produce more meat… [image of a Belgian Blue cattle].
In Brazil, most dairy cows are raised on pasture, and in many cases have little or no access to shade. Dairy breeds have little resistance to heat and suffer from thermal stress. A possible alternative is to genetically modify cattle so that it has characteristics that give it greater resistance to heat. This method consists of integrating the ‘slick’ gene (found in some cattle breeds) in the genome of dairy breeds. As a result, all calves are born more resistant to heat. Do you consider genetic modification of cattle to make them more resistant to heat… [image of dairy cows at pasture in the shadow].
Statistical Analysis
3. Results
3.1. Study 1. Face-to-Face Interviews
3.1.1. Distribution of Benefits and Risks of Gene Editing of Cattle
3.1.2. Gene Editing and the Status Quo in the Food Animal Production Systems
3.1.3. Naturalness of Gene Editing and Violations of the Animals’ Integrity
3.1.4. Who Is Trustworthy When Seeking Information on Gene Editing?
3.2. Study 2. Descriptive Results
Study 2. Quantitative Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milne, M.J.; Gray, R. W (h) ither Ecology? The Triple Bottom Line, the Global Reporting Initiative, and Corporate Sustainability Reporting. J. Bus. Ethics 2013, 118, 13–29. [Google Scholar] [CrossRef]
- Von Keyserlingk, M.A.G.; Martin, N.P.; Kebreab, E.; Knowlton, K.F.; Grant, R.J.; Stephenson, M., II; Sniffen, C.J.; Harner, J.R., III; Wright, A.D.; Smith, S.I. Invited review: Sustainability of the US dairy industry. J. Dairy Sci. 2013, 96, 5405–5425. [Google Scholar] [CrossRef] [Green Version]
- Von Keyserlingk, M.A.G.; Hötzel, M.J. The ticking clock: Addressing farm animal welfare in emerging countries. J. Agric. Environ. Ethics 2015, 28, 179–195. [Google Scholar] [CrossRef]
- Rollin, B.E. Animal Rights as a Mainstream Phenomenon. Animals 2011, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miele, M.; Veissier, I.; Evans, A.; Botreau, R. Animal welfare: Establishing a dialogue between science and society. Anim. Welf. 2011, 20, 103–117. [Google Scholar]
- Hötzel, M.J.; Yunes, M.C.; Vandresen, B.; Albernaz-Gonçalves, R.; Woodroffe, R.E. On the Road to End Pig Pain: Knowledge and Attitudes of Brazilian Citizens Regarding Castration. Animals 2020, 10, 1826. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.; von Keyserlingk, M.; Hötzel, M.J. Brazilian citizens: Expectations regarding dairy cattle welfare and awareness of contentious practices. Animals 2017, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Verbeke, W. Stakeholder, citizen and consumer interests in farm animal welfare. Anim. Welf. 2009, 18, 325–333. [Google Scholar]
- Maria, G.A. Public perception of farm animal welfare in Spain. Livest. Sci. 2006, 103, 250–256. [Google Scholar] [CrossRef]
- De Barcellos, M.D.; Krystallis, A.; de Melo Saab, M.S.; Kuegler, J.O.; Grunert, K.G. Investigating the gap between citizens’ sustainability attitudes and food purchasing behaviour: Empirical evidence from Brazilian pork consumers. Int. J. Consum. Stud. 2011, 35, 391–402. [Google Scholar] [CrossRef]
- Teixeira, D.L.; Larraín, R.; Hötzel, M.J. Are views towards egg farming associated with Brazilian and Chilean egg consumers’ purchasing habits? PLoS ONE 2018, 13, e0203867. [Google Scholar] [CrossRef]
- Proudfoot, C.; Mcfarlane, G.; Whitelaw, C.B.A.; Lillico, S.G. Livestock breeding for the 21st century: The promise of the editing revolution. Front. Agric. Sci. Eng. 2020. [Google Scholar] [CrossRef] [Green Version]
- Lamas-Toranzo, I.; Guerrero-Sánchez, J.; Miralles-Bover, H.; Alegre-Cid, G.; Pericuesta, E.; Bermejo-Álvarez, P. CRISPR is knocking on barn door. Reprod. Domest. Anim. 2017, 52, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Maga, E.; Murray, J. Welfare applications of genetically engineered animals for use in agriculture. J. Anim. Sci. 2010, 88, 1588–1591. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Carlson, D.F.; Lancto, C.A.; Garbe, J.R.; Webster, D.A.; Hackett, P.B.; Fahrenkrug, S.C. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc. Natl Acad. Sci. USA 2013, 110, 16526–16531. [Google Scholar] [CrossRef] [Green Version]
- Dikmen, S.; Khan, F.A.; Huson, H.J.; Sonstegard, T.S.; Moss, J.I.; Dahl, G.E.; Hansen, P.J. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. J. Dairy Sci. 2014, 97, 5508–5520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonstegard, T.S.; Carlson, D.F.; Fahrenkrug, S.C. Genetically Modified Animals Having Increased Heat Tolerance. WO2017053315A1, 30 March 2017. [Google Scholar]
- Proudfoot, C.; Carlson, D.F.; Huddart, R.; Long, C.R.; Pryor, J.H.; King, T.J.; Lillico, S.G.; Mileham, A.J.; McLaren, D.G.; Whitelaw, C.; et al. Genome edited sheep and cattle. Transgenic Res. 2015, 24, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Menchaca, A.; dos Santos-Neto, P.C.; Mulet, A.P.; Crispo, M. CRISPR in livestock: From editing to printing. Theriogenology 2020. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Liu, J.; Yu, Z.; Zhang, B.; Gao, G.; Jiao, R. TALEN or Cas9–rapid, efficient and specific choices for genome modifications. J Genet Genom. 2013, 40, 281–289. [Google Scholar] [CrossRef]
- Baltimore, D.; Berg, P.; Botchan, M.; Carroll, D.; Charo, R.A.; Church, G.; Corn, J.E.; Daley, G.Q.; Doudna, J.A.; Fenner, M. A prudent path forward for genomic engineering and germline gene modification. Science 2015, 348, 36–38. [Google Scholar] [CrossRef] [Green Version]
- Bruce, A. Gene editing animals–part of a utopian future? In Food Futures: Ethics, Science and Culture; Olsson, A.S., Araújo, S.M., Vieira, M.F., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2016; pp. 513–517. [Google Scholar]
- Lusk, J.L.; McFadden, B.R.; Wilson, N. Do consumers care how a genetically engineered food was created or who created it? Food Policy 2018, 78, 81–90. [Google Scholar] [CrossRef]
- Shriver, A. Prioritizing the protection of welfare in gene-edited livestock. Anim. Front. 2020, 10, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Pardo, R.; Midden, C.; Miller, J.D. Attitudes toward biotechnology in the European Union. J. Biotechnol. 2002, 98, 9–24. [Google Scholar] [CrossRef]
- Ritter, C.; Shriver, A.; McConnachie, E.; Robbins, J.; von Keyserlingk, M.A.G.; Weary, D.M. Public attitudes toward genetic modification in dairy cattle. PLoS ONE 2019, 14, e0225372. [Google Scholar] [CrossRef] [Green Version]
- Gaskell, G.; Allum, N.; Bauer, M.; Durant, J.; Allansdottir, A.; Bonfadelli, H.; Boy, D.; de Cheveigné, S.; Fjaestad, B.; Gutteling, J.M.; et al. Biotechnology and the European public. Nat. Biotechnol. 2000, 18, 935. [Google Scholar] [CrossRef]
- Costa-Font, M.; Gil, J.M.; Traill, W.B. Consumer acceptance, valuation of and attitudes towards genetically modified food: Review and implications for food policy. Food Policy 2008, 33, 99–111. [Google Scholar] [CrossRef]
- Yunes, M.C.; Teixeira, D.L.; von Keyserlingk, M.A.G.; Hötzel, M.J. Is gene editing an acceptable alternative to castration in pigs? PLoS ONE 2019, 14, e0218176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frewer, L.J.; Howard, C.; Shepherd, R. Public concerns in the united kingdom about general and specific applications of genetic engineering: Risk, benefit, and ethics. Sci. Technol. Hum. Values 1997, 22, 98–124. [Google Scholar] [CrossRef]
- Ribeiro, T.G.; Barone, B.; Behrens, J.H. Genetically modified foods and their social representation. Food Res. Int. 2016, 84, 120–127. [Google Scholar] [CrossRef]
- Rollin, B.E. Science and Ethics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Gaskell, G.; Allansdottir, A.; Allum, N.; Fischler, C.; Hampel, J.; Jackson, J.; Kronberger, N.; Mejlgaard, N.; Revuelta, G.; Schreiner, C.; et al. Europeans and Biotechnology in 2005: Patterns and Trends. A report to the European Commission’s Directorate General for Research; London School of Economics and Political Science: London, UK, 2006. [Google Scholar]
- Slovic, P. Trust, emotion, sex, politics, and science: Surveying the risk-assessment battlefield. Risk Anal. 1999, 19, 689–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saba, A.; Messina, F. Attitudes towards organic foods and risk/benefit perception associated with pesticides. Food Qual. Pref. 2003, 14, 637–645. [Google Scholar] [CrossRef]
- Castelfranchi, Y.; Vilela, E.M.; Lima, L.B.D.; Moreira, I.D.C.; Massarani, L. Brazilian opinions about science and technology: The ‘paradox’ of the relation between information and attitudes. Hist. Cienc. Saúde-Manguinhos 2013, 20, 1163–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, J.D.P.S.; Fiedler, R.A.; Sucha Heidemann, M.; Molento, C.F.M. First glimpse on attitudes of highly educated consumers towards cell-based meat and related issues in Brazil. PLoS ONE 2019, 14, e0221129. [Google Scholar] [CrossRef] [Green Version]
- Drever, E. Using Semi-Structured Interviews in Small-Scale Research: A Teacher’s Guide; ERIC: Edinburgh, UK, 1995; p. 98. [Google Scholar]
- Braun, V.; Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef] [Green Version]
- Braun, V.; Clarke, V.; Hayfield, N.; Terry, G. Thematic Analysis. In Handbook of Research Methods in Health Social Sciences; Liamputtong, P., Ed.; Springer: Singapore, 2019; pp. 843–860. [Google Scholar]
- IBGE. Sinopse do Censo Demográfico. 2010. Available online: http://biblioteca.ibge.gov.br/visualizacao/livros/liv49230.pdf (accessed on 20 June 2020).
- IBGE. Pesquisa de Orçamentos Familiares: 2017–2018: Primeiros Resultados. Available online: https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101670 (accessed on 23 April 2020).
- Kilders, V.; Caputo, V. Is Animal Welfare Promoting Hornless Cattle? Assessing Consumer’s Valuation for Milk from Gene-edited Cows under Different Information Regimes. J. Agric. Econ. 2021. [Google Scholar] [CrossRef]
- McConnachie, E.; Hötzel, M.J.; Robbins, J.A.; Shriver, A.; Weary, D.M.; von Keyserlingk, M.A.G. Public attitudes towards genetically modified polled cattle. PLoS ONE 2019, 14, e0216542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallinson, L.; Russell, J.; Cameron, D.D.; Ton, J.; Horton, P.; Barker, M.E. Why rational argument fails the genetic modification (GM) debate. Food Secur. 2018, 10, 1145–1161. [Google Scholar] [CrossRef] [Green Version]
- Fernbach, P.M.; Light, N.; Scott, S.E.; Inbar, Y.; Rozin, P. Extreme opponents of genetically modified foods know the least but think they know the most. Nat. Hum. Behav. 2019, 3, 251–256. [Google Scholar] [CrossRef]
- Statista. Leading Countries Based on Instagram Audience size as of January 2021. Available online: https://www.statista.com/statistics/578364/countries-with-most-instagram-users/ (accessed on 15 April 2020).
- Gaskell, G.; Bard, I.; Allansdottir, A.; da Cunha, R.V.; Eduard, P.; Hampel, J.; Hildt, E.; Hofmaier, C.; Kronberger, N.; Laursen, S.; et al. Public views on gene editing and its uses. Nat. Biotechnol. 2017, 35, 1021–1023. [Google Scholar] [CrossRef] [Green Version]
- Lassen, J.; Gjerris, M.; Sandøe, P. After Dolly—Ethical limits to the use of biotechnology on farm animals. Theriogenology 2006, 65, 992–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macnaghten, P.; Guivant, J.S. Converging citizens? Nanotechnology and the political imaginary of public engagement in Brazil and the United Kingdom. Public Underst. Sci. 2011, 20, 207–220. [Google Scholar] [CrossRef]
- De Vries, A.; Overton, M.; Fetrow, J.; Leslie, K.; Eicker, S.; Rogers, G. Exploring the Impact of Sexed Semen on the Structure of the Dairy Industry. J. Dairy Sci. 2008, 91, 847–856. [Google Scholar] [CrossRef]
- Ritter, C.; Beaver, A.; von Keyserlingk, M.A.G. The complex relationship between welfare and reproduction in cattle. Reprod. Domest. Anim. 2019, 54, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigel, K.A. Exploring the Role of Sexed Semen in Dairy Production Systems. J. Dairy Sci. 2004, 87, E120–E130. [Google Scholar] [CrossRef]
- Balzani, A.; do Amaral, C.A.V.; Hanlon, A. A Perspective on the Use of Sexed Semen to Reduce the Number of Surplus Male Dairy Calves in Ireland: A Pilot Study. Front. Vet. Sci. 2021, 7. [Google Scholar] [CrossRef]
- Shriver, A.; McConnachie, E. Genetically Modifying Livestock for Improved Welfare: A Path Forward. J. Agric. Environ. Ethics 2018, 31, 161–180. [Google Scholar] [CrossRef]
- Whitall, H. Ethical challenges related to genome editing. In Proceedings of the American Association for the Advancement of Science, Boston MA, USA, 16–20 February 2017. [Google Scholar]
- Shriver, A.; McConnachie, E. Genetic Engineering and Animal Welfare. In Encyclopedia of Food and Agricultural Ethics; Thompson, P.B., Kaplan, D.M., Eds.; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Caplan, A.L.; Parent, B.; Shen, M.; Plunkett, C. No time to waste—the ethical challenges created by CRISPR. EMBO Rep. 2015, 16, 1421–1426. [Google Scholar] [CrossRef]
- Eriksson, S.; Jonas, E.; Rydhmer, L.; Röcklinsberg, H. Invited review: Breeding and ethical perspectives on genetically modified and genome edited cattle. J. Dairy Sci. 2018, 101, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Holm, L.; Frewer, L.; Robinson, P.; Sandøe, P. Beyond the knowledge deficit: Recent research into lay and expert attitudes to food risks. Appetite 2003, 41, 111–121. [Google Scholar] [CrossRef]
- Stampa, E.; Schipmann-Schwarze, C.; Hamm, U. Consumer perceptions, preferences, and behavior regarding pasture-raised livestock products: A review. Food Qual. Pref. 2020, 82, 103872. [Google Scholar] [CrossRef]
- Hötzel, M.J.; Roslindo, A.; Cardoso, C.S.; von Keyserlingk, M.A.G. Citizens’ views on the practices of zero-grazing and cow-calf separation in the dairy industry: Does providing information increase acceptability? J. Dairy Sci. 2017, 100, 4150–4160. [Google Scholar] [CrossRef] [Green Version]
- Rozin, P. Naturalness judgments by lay Americans: Process dominates content in judgments of food or water acceptability and naturalness. Judgm. Decis. Mak. 2006, 1, 91. [Google Scholar]
- Scott, S.E.; Rozin, P. Actually, natural is neutral. Nat. Hum. Behav. 2020. [Google Scholar] [CrossRef]
- Macnaghten, P. Animals in their nature: A case study on public attitudes to animals, genetic modification and ‘Nature’. Sociology 2004, 38, 533–551. [Google Scholar] [CrossRef]
- EU. Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms and repealing Council Directive 90/220/EEC. 2001. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:2001L0018:20080321:EN:PDF (accessed on 18 April 2021).
- Van Eenennaam, A.L.; Wells, K.D.; Murray, J.D. Proposed U.S. regulation of gene-edited food animals is not fit for purpose. Npj Sci. Food 2019, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Marette, S.; Disdier, A.-C.; Beghin, J.C. A comparison of EU and US consumers’ willingness to pay for gene-edited food: Evidence from apples. Appetite 2021, 159, 105064. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, G.R.; Salvesen, H.A.; Sternberg, A.; Lillico, S.G. On-Farm Livestock Genome Editing Using Cutting Edge Reproductive Technologies. Front. Sustain. Food Syst. 2019, 3. [Google Scholar] [CrossRef]
- Vigors, B.; Ewing, D.A.; Lawrence, A.B. Happy or healthy? How members of the public prioritise farm animal health and natural behaviours. PLoS ONE 2021, 16, e0247788. [Google Scholar] [CrossRef] [PubMed]
- Yunes, M.C.; von Keyserlingk, M.A.G.; Hötzel, M.J. Brazilian citizens’ opinions and attitudes about farm animal production systems. Animals 2017, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.; Stewart, G.B.; Panzone, L.A.; Kyriazakis, I.; Frewer, L.J. A systematic review of public attitudes, perceptions and behaviours towards production diseases associated with farm animal welfare. J. Agric. Environ. Ethics 2016, 29, 455–478. [Google Scholar] [CrossRef] [Green Version]
- Román, S.; Manuel Sanchez-Siles, L.; Siegrist, M. The importance of food naturalness for consumers: Results of a systematic review. Trends Food Sci. Technol. 2017, 67, 44–57. [Google Scholar] [CrossRef]
- Harvey, D.; Hubbard, C. Reconsidering the political economy of farm animal welfare: An anatomy of market failure. Food Policy 2013, 38, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Vermeir, I.; Verbeke, W. Sustainable food consumption: Exploring the consumer “attitude–behavioral intention” gap. J. Agric. Environ. Ethics 2006, 19, 169–194. [Google Scholar] [CrossRef]
- Tonsor, G.T.; Wolf, C.A. Drivers of resident support for animal care oriented ballot initiatives. J. Agric. Appl. Econ. 2010, 42, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Chriki, S.; Hocquette, J.-F. The Myth of Cultured Meat: A Review. Front. Nutr. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogueva, D.; Marinova, D. Cultured Meat and Australia’s Generation Z. Front. Nutr. 2020, 7. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, W.; Sans, P.; Van Loo, E.J. Challenges and prospects for consumer acceptance of cultured meat. J. Integr. Agric. 2015, 14, 285–294. [Google Scholar] [CrossRef]
- Bryant, C.; Barnett, J. Consumer Acceptance of Cultured Meat: An Updated Review (2018–2020). Appl. Sci. 2020, 10, 5201. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Perceived naturalness, disgust, trust and food neophobia as predictors of cultured meat acceptance in ten countries. Appetite 2020, 155, 104814. [Google Scholar] [CrossRef]
- Laestadius, L.I.; Caldwell, M.A. Is the future of meat palatable? Perceptions of in vitro meat as evidenced by online news comments. Public Health Nutr. 2015, 18, 2457–2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, C.; Barnett, J. Consumer acceptance of cultured meat: A systematic review. Meat Sci. 2018, 143, 8–17. [Google Scholar] [CrossRef]
- Bryant, C.J.; Anderson, J.E.; Asher, K.E.; Green, C.; Gasteratos, K. Strategies for overcoming aversion to unnaturalness: The case of clean meat. Meat Sci. 2019, 154, 37–45. [Google Scholar] [CrossRef]
- Newman, L. The promise and peril of “culture meat”. In Green Meat? Sustaining Eaters Animals and the Planet; Katz-Rosene, R.M., Martin, S.J., Eds.; McGill-Queen’s Press-MQUP: Montreal, QC, USA, 2020; pp. 169–182. [Google Scholar]
- Verhoog, H. The concept of intrinsic value and transgenic animals. J. Agric. Environ. Ethics 1992, 5, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Schicktanz, S. Ethical considerations of the human–animal-relationship under conditions of asymmetry and ambivalence. J. Agric. Environ. Ethics 2006, 19, 7–16. [Google Scholar] [CrossRef]
- Rollin, B.E. On telos and genetic engineering. In Animal Biotechnology and Ethics; Holland, A., Johnson, A., Eds.; Springer: Boston, MA, USA, 1998; pp. 156–171. [Google Scholar]
- Ishii, T. Genome-edited livestock: Ethics and social acceptance. Anim. Front. 2017, 7, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Kramer, K.; Meijboom, F.L.B. Using Breeding Technologies to Improve Farm Animal Welfare: What is the Ethical Relevance of Telos? J. Agric. Environ. Ethics 2021. [Google Scholar] [CrossRef]
- Fraser, D. Animal Welfare and the intensification of animal production. In Ethics of Intensification: Agricultural Development and Cultural Change; Thompson, P.B., Ed.; International Library of Environmental, Agricultural and Food Ethics; FAO: Rome, Italy, 2008; Volume 16, pp. 167–189. [Google Scholar]
- Van Eenennaam, A.L. Application of genome editing in farm animals: Cattle. Transgenic Res. 2019, 28, 93–100. [Google Scholar] [CrossRef]
- Pryce, J.E.; Haile-Mariam, M. Symposium review: Genomic selection for reducing environmental impact and adapting to climate change. J. Dairy Sci. 2020, 103, 5366–5375. [Google Scholar] [CrossRef]
- Sonstegard, T.; Carlson, D.; Lancto, C.; Fahrenkrug, S. Precision animal breeding as a sustainable, non-gmo solution for improving animal production and welfare. Bienn. Conf. Aust. Soc. Anim. Prod. 2016, 31, 316–317. [Google Scholar]
- Hötzel, M.J. Improving farm animal welfare: Is evolution or revolution needed in production systems? In Dilemmas in Animal Welfare; Appleby, M.C., Weary, D.M., Sandoe, P., Eds.; CABI: Oxfordshire, UK, 2014; pp. 67–84. [Google Scholar]
- De Graeff, N.; Jongsma, K.R.; Johnston, J.; Hartley, S.; Bredenoord, A.L. The ethics of genome editing in non-human animals: A systematic review of reasons reported in the academic literature. Philos. Trans. R. Soc. B 2019, 374, 20180106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guivant, J.S.; Macnaghten, P. Breaking the consensus: A perspective on technological governance from Brazil. In Quantum Engagements: Social Reflections of Nanoscience and Emerging Technologies; Zülsdorf, T.B., Ed.; IOS Press pp: Heidelberg, Germany; AKA Verlag: Heidelberg, Germany, 2011; pp. 109–122. [Google Scholar]
- Capalbo, D.M.F.; Arantes, O.M.N.; Maia, A.G.; Borges, I.C.; da Silveira, J.M.F.J. A study of stakeholder views to shape a communication strategy for GMO in Brazil. Front. Bioeng. Biotech. 2015, 3, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guivant, J.S.; Macnaghten, P. An analysis of the GM crop debate in Brazil. In Governing Agricultural Sustainability: Global Lessons from GM Crops; Macnaghten, P., Susana, C.R., Eds.; Routledge: London, UK, 2015; pp. 74–104. [Google Scholar]
Demographics | Participants n (%) |
---|---|
Sex | |
Female | 15 (47) |
Male | 17 (53) |
Age | |
18 to 24 years old | 6 (19) |
25 to 34 years old | 11 (34) |
35 to 44 years old | 5 (16) |
45 to 54 years old | 6 (19) |
55 years old and over | 3 (9) |
Education | |
Up to high school | 2 (6) |
Undergraduate education (complete or ongoing) | 15 (50) |
Postgraduate | 14 (44) |
Current residence urban | 31 (97) |
Involvement with livestock production | |
Not involved | 24 (75) |
Grew up in an agricultural environment | 7 (22) |
Student (Agronomy) | 1 (3) |
Variable | Participants | IBGE 2011 |
---|---|---|
(%) | (%) | |
Sex | ||
Female | 52 | 51 |
Male | 48 | 49 |
Age | ||
18 to 24 years old | 16 | 16 |
25 to 34 years old | 18 | 23 |
35 to 44 years old | 29 | 20 |
45 to 54 years old | 22 | 18 |
55 years old and over | 16 | 23 |
Current residence | ||
Urban | 89 | 85 |
Rural | 11 | 15 |
Region of Brazil | ||
South | 25 | 15 |
Southwest | 48 | 42 |
North | 4 | 8 |
Northwest | 15 | 28 |
Centre-West | 9 | 7 |
Education | ||
Up to high school | 36 | 64 |
Undergraduate (complete or ongoing) | 64 | 36 |
Household income * | ||
Up to 2 minimum wage | 19 | 24 |
2 to 5 minimum wage | 43 | 49 |
6 to 10 minimum wage | 23 | 14 |
Over 10 minimum wage | 15 | 13 |
Variable | Muscle Growth | Heat Resistance | Polled | |
---|---|---|---|---|
n | Mean | Mean | Mean | |
Sex | ||||
Male | 418 | 2.17 a | 2.69 a | 2.90 a |
Female | 446 | 1.54 b | 2.26 b | 2.37 b |
Age | ||||
18 to 24 years old | 134 | 2.14 a | 2.98 a | 2.91 a |
25 to 34 years old | 164 | 1.96 ab | 2.60 b | 2.95 ab |
35 to 44 years old | 243 | 1.85 bc | 2.42 b | 2.60 bc |
45 to 54 years old | 186 | 1.74 bc | 2.35 bc | 2.40 c |
55 years old and over | 137 | 1.56 c | 2.07 c | 2.31 c |
Education | ||||
Up to high school | 312 | 1.71 a | 2.49 | 2.54 a |
Undergraduate (complete or ongoing) | 552 | 1.92 b | 2.46 | 2.68 b |
Household income | ||||
Over 10 minimum wages | 96 | 2.09 ab | 2.59 ab | 2.81 ab |
6 to 10 minimum wages | 155 | 2.17 a | 2.79 a | 3.10 a |
2 to 5 minimum wages | 280 | 1.87 b | 2.51 ab | 2.69 b |
Up to 2 minimum wages | 121 | 1.48 c | 2.15 c | 2.13 c |
I prefer not to say | 212 | 1.67 c | 2.32 bc | 2.40 c |
Food consumption | ||||
All animal products | 791 | 1.90 a | 2.53 a | 2.69 a |
Vegetarian or vegan | 73 | 1.25 b | 1.83 b | 2.01 b |
Involvement in agriculture | ||||
No | 763 | 1.81 a | 2.41 a | 2.57 a |
Grew up in environment | 56 | 1.98 ab | 2.57 a | 2.57 a |
Yes | 45 | 2.33 b | 3.31 b | 3.71 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yunes, M.C.; Osório-Santos, Z.; von Keyserlingk, M.A.G.; Hötzel, M.J. Gene Editing for Improved Animal Welfare and Production Traits in Cattle: Will This Technology Be Embraced or Rejected by the Public? Sustainability 2021, 13, 4966. https://doi.org/10.3390/su13094966
Yunes MC, Osório-Santos Z, von Keyserlingk MAG, Hötzel MJ. Gene Editing for Improved Animal Welfare and Production Traits in Cattle: Will This Technology Be Embraced or Rejected by the Public? Sustainability. 2021; 13(9):4966. https://doi.org/10.3390/su13094966
Chicago/Turabian StyleYunes, Maria Cristina, Zimbábwe Osório-Santos, Marina A. G. von Keyserlingk, and Maria José Hötzel. 2021. "Gene Editing for Improved Animal Welfare and Production Traits in Cattle: Will This Technology Be Embraced or Rejected by the Public?" Sustainability 13, no. 9: 4966. https://doi.org/10.3390/su13094966
APA StyleYunes, M. C., Osório-Santos, Z., von Keyserlingk, M. A. G., & Hötzel, M. J. (2021). Gene Editing for Improved Animal Welfare and Production Traits in Cattle: Will This Technology Be Embraced or Rejected by the Public? Sustainability, 13(9), 4966. https://doi.org/10.3390/su13094966