Digitalization as a Strategic Means of Achieving Sustainable Efficiencies in Construction Management: A Critical Review
Abstract
:1. Introduction
2. The Digital Transformation of the Construction Industry
- Integration of digital technologies into existing systems to exchange information among all construction market contributors.
- Improve business procedures with the aim of smoother exchange of data and information, control of products, and managing methods.
- Modification of organizational structures and human resources with the aim of choosing skillful workforces according to the digital transformation needs.
- Ensure that digital transformation is supported by all the staff and business contributors.
- Digital transformation investments must be assessed according to both financial and economic activities, not just economic ones.
3. The Need for a Digital Transformation Strategy
4. Challenges in Developing Such a Strategy
5. Considerations in Formulating a Digital Transformation Strategy
6. Approaches to Defining a Digital Transformation Strategy
7. The Process of Developing a Digital Transformation Strategy
- Efficient construction focuses on expediting the construction procedure and enhancing efficiency. This can be achieved by concentrating on perspectives such as off-site construction, AI, BIM, lean construction, standardization, modularization, automation of design tasks, and alliancing business models.
- A user-data-driven built environment focuses on gathering real data, for instance, by IoT systems in the built environment. This vision requires the use of big data, IoT-based asset management, VR and 3D design, AR and maintenance, IoT-based energy utilization, sustainability, and health, and comfort of users.
- Value-driven computational design focuses on simulating various digital design alternatives and changing the design to satisfy various design criteria and clients’ priorities within the construction procedure. This vision can be earned by concentrating on “digital fabrication on-site, gig economy, design simulations, blockchain, bespoke semi-automation, data-driven companies, distributed off-site production, and digital twin of the city.”
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barbosa, F.; Woetzel, J.; Mischke, J.; Ribeirinho, M.J.; Sridhar, M.; Parsons, M.; Bertram, N.; Brown, S. Reinventing Construction Through a Productivity Revolution. Available online: https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/reinventing-construction-through-a-productivity-revolution (accessed on 12 September 2020).
- Sategna, L.G.; Meinero, D.; Volontà, M. Digitalising the Construction Sector; Committee for European Construction Equipment: Brussels, Belgium, 2019. [Google Scholar]
- Leviäkangas, P.; MokPaik, S.; Moon, S. Keeping up with the pace of digitization: The case of the Australian construction industry. Technol. Soc. 2017, 50, 33–43. [Google Scholar] [CrossRef]
- Ghodoosi, F.; Bagchi, A.; Hosseini, M.R.; Vilutienė, T.; Zeynalian, M. Enhancement of bid decision-making in construction projects: A reliability analysis approach. J. Civ. Eng. Manag. 2021, 27, 149–161. [Google Scholar] [CrossRef]
- Loosemore, M. Australia’s Construction Industry Must Unite around a Cohesive Strategy. Available online: https://www.thefifthestate.com.au/innovation/building-construction/australias-construction-industry-must-unite-around-a-cohesive-strategy/ (accessed on 30 October 2020).
- Fathalizadeh, A.; Hosseini, M.R.; Vaezzadeh, S.S.; Edwards, D.J.; Martek, I.; Shooshtarian, S. Barriers to sustainable construction project management: The case of Iran. Smart Sustain. Built Environ. 2021. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Banihashemi, S.; Martek, I.; Golizadeh, H.; Ghodoosi, F. Sustainable Delivery of Mega projects in Iran: Integrated Model of Contextual Factors. J. Manag. Eng. 2018, 34, 05017011. [Google Scholar] [CrossRef]
- Gruszka, A.; Jupp, J.R.; DeValence, G. Digital Foundations: How Technology Is Transforming Australia’s Construction Sector. Available online: https://opus.lib.uts.edu.au/handle/10453/124861 (accessed on 30 October 2020).
- Hampson, K.D.; Brandon, P. Construction 2020—A Vision for Australia’s Property and Construction Industry; CRC Construction Innovation: Queensland University of Technology: Brisbane City, QLD, Australia, 2004. [Google Scholar]
- The Productivity Commission Growing the Digital Economy in Australia and New Zealand: Maximising Opportunities for Small Medium Enterprises (SMEs). Available online: https://www.pc.gov.au/research/completed/growing-digital-economy (accessed on 30 October 2020).
- Hilty, L.M.; Aebischer, B. Ict for sustainability: An emerging research field. In ICT Innovations for Sustainability; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–36. [Google Scholar]
- Grubic, T.; Jennions, I. Remote monitoring technology and servitised strategies–factors characterizing the organizational application. Int. J. Prod. Res. 2018, 56, 2133–2149. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Zavadskas, E.K.; Binkyte-Veliene, A.; Kuzminske, A.; Cerkauskas, J.; Cerkauskiene, A.; Valaitiene, R. Multiple Criteria Evaluation of the EU Country Sustainable Construction Industry Lifecycles. Appl. Sci. 2020, 10, 3733. [Google Scholar] [CrossRef]
- Nosratabadi, S.; Mosavi, A.; Shamshirband, S.; Zavadskas, E.K.; Rakotonirainy, A.; Chau, K.W. Sustainable business models: Areview. Sustainability 2019, 11, 1663. [Google Scholar] [CrossRef] [Green Version]
- Stanujkic, D.; Popovic, G.; Zavadskas, E.K.; Karabasevic, D.; Binkyte-Veliene, A. Assessment of Progress towards Achieving Sustainable Development Goals of the “Agenda 2030” by Using the CoCoSo and the Shannon Entropy Methods: The Case of the EU Countries. Sustainability 2020, 12, 5717. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Banihashemi, S.; Chan, A.P.; Darko, A.; Tahmasebi, M. Distinguishing characteristics of corruptionrisks in Iranian construction projects: A weighted correlation network analysis. Sci. Eng. Ethics 2020, 26, 205–231. [Google Scholar] [CrossRef] [PubMed]
- Gartner Gartner Glossary: Digitalization. Available online: https://www.gartner.com/en/information-technology/glossary/digitalization (accessed on 5 January 2020).
- Plekhanov, D.; Netland, T. Digitalisation stages in firms: Towards a framework. In Proceedings of the 26th EurOMA Conference, Helsinki, Finland, 17–19 June 2019. [Google Scholar]
- Lipsmeier, A.; Kühn, A.; Joppen, R.; Dumitrescu, R. Process for the development of a digital strategy. Procedia CIRP 2020, 88, 173–178. [Google Scholar] [CrossRef]
- Jafari, K.G.; Noorzai, E.; Hosseini, M.R. Assessing the capabilities of computing features in addressing the most common issues in the AEC industry. Constr. Innov. 2021. [Google Scholar] [CrossRef]
- Ghansah, F.A.; Owusu-Manu, D.-G.; Ayarkwa, J.; Edwards, D.J.; Hosseini, M.R. Exploration of latent barriers inhibiting project management processes in adopting smart building technologies (SBTs) in the developing countries. Constr. Innov. 2021. [Google Scholar] [CrossRef]
- Ianenko, M.; Ianenko, M.; Kirillova, T.; Amakhina, S.; Nikitina, N. Digital transformation strategies of trade enterprises: Key areas, development and implementation algorithms. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: London, UK, 2020; Volume 940, p. 012051. [Google Scholar]
- Elghaish, F.; Matarneh, S.; Talebi, S.; Kagioglou, M.; Hosseini, M.R.; Abrishami, S. Toward digitalization in the construction industry with immersive and drones technologies: A critical literature review. Smart Sustain. Built Environ. 2020. [Google Scholar] [CrossRef]
- Ghosh, A.; Hosseini, M.R.; Al-Ameri, R.; Kaklauskas, G.; Nikmehr, B. Internet of Things (IoT) for digital concrete quality control (DCQC): A conceptual framework. In Proceedings of the 13th International Conference Modern Building Materials, Structures and Techniques; VGTU Press: Vilnius, Lithuania, 2019. [Google Scholar]
- Ghosh, A.; Edwards, D.J.; Hosseini, M.R. Patterns and trends in Internet of Things (IoT) research: Future applications in the construction industry. Eng. Constr. Archit. Manag. 2020, 28, 457–481. [Google Scholar] [CrossRef]
- Golizadeh, H.; Hosseini, M.R.; Martek, I.; Edwards, D.; Gheisari, M.; Banihashemi, S.; Zhang, J. Scientometric analysis of research on “remotely piloted aircraft”. Eng. Constr. Archit. Manag. 2019, 27, 634–657. [Google Scholar] [CrossRef]
- York, D.D.; Al-Bayati, A.J.; Al-Shabbani, Z.Y. Potential Applications of UAV within the Construction Industry and the Challenges Limiting Implementation. In Construction Research Congress 2020: Project Management and Controls, Materials, and Contracts, 2020; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 31–39. [Google Scholar]
- Romdhane, L.; El-Sayegh, S.M. 3D Printingin Construction: Benefits and Challenges. Int. J. Struct. Civ. Eng. Res. 2020, 9, 314–317. [Google Scholar] [CrossRef]
- El-Sayegh, S.; Romdhane, L.; Manjikian, S. A critical review of 3D printing in construction: Benefits, challenges, and risks. Arch. Civ. Mech. Eng. 2020, 20, 34. [Google Scholar] [CrossRef] [Green Version]
- Noghabaei, M.; Heydarian, A.; Balali, V.; Han, K. Trend Analysis on Adoption of Virtual and Augmented Reality in the Architecture, Engineering, and Construction Industry. Data 2020, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Fenais, A.S.; Ariaratnam, S.T.; Ayer, S.; Smilovsky, N. A review of augmented reality applied to underground construction. J. Inf. Technol. Constr. 2020, 25, 308–324. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Kang, S.-C.; Al-Hussein, M. Virtual reality applications for the built environment: Research trends and opportunities. Autom. Constr. 2020, 118, 103311. [Google Scholar] [CrossRef]
- Lucas, J. Rapid development of Virtual Reality based construction sequence simulations: A case study. ITcon 2020, 25, 72–86. [Google Scholar] [CrossRef]
- Ahmed, S. A review on using opportunities of augmented reality and virtual reality in construction project management. Organ. Technol. Manag. Constr. Int. J. 2018, 10, 1839–1852. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.C.; Chen, K.; Chen, W. State-of-the-art review on mixed reality applications in the AECO industry. J. Constr. Eng. Manag. 2020, 146, 03119009. [Google Scholar] [CrossRef]
- Rokhsaritalemi, S.; Sadeghi-Niaraki, A.; Choi, S.-M. A Review on Mixed Reality: Current Trends, Challenges and Prospects. Appl. Sci. 2020, 10, 636. [Google Scholar] [CrossRef] [Green Version]
- Elghaish, F.; Abrishami, S.; Hosseini, M.R.; Abu-Samra, S. Revolutionising cost structure for integrated project delivery: A BIM-based solution. Eng. Constr. Archit. Manag. 2020. [Google Scholar] [CrossRef]
- Hamidavi, T.; Abrishami, S.; Hosseini, M.R. Towards intelligent structural design of buildings: A BIM-based solution. J. Build. Eng. 2020, 32, 101685. [Google Scholar] [CrossRef]
- Khalesi, H.; Balali, A.; Valipour, A.; Antucheviciene, J.; Migilinskas, D.; Zigmund, V. Application of Hybrid SWARA–BIM in Reducing Reworks of Building Construction Projects from the Perspective of Time. Sustainability 2020, 12, 8927. [Google Scholar] [CrossRef]
- Pavlovskis, M.; Migilinskas, D.; Antucheviciene, J.; Kutut, V. Ranking of heritage building conversion alternatives by applying BIM and MCDM: A case of Sapieha Palace in Vilnius. Symmetry 2019, 11, 973. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Shi, Y.; Lyu, K.; Mo, Y. Usinga TAM-TOE model to explore factors of Building Information Modelling (BIM) adoption in the construction industry. J. Civ. Eng. Manag. 2020, 26, 259–277. [Google Scholar] [CrossRef]
- Wang, G.; Wang, P.; Cao, D.; Luo, X. Predicting behavioural resistance to BIM implementation in construction projects: Ane mpirical study integrating technology acceptance model and equity theory. J. Civ. Eng. Manag. 2020, 26, 651–665. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, J.; Xia, N.; Ning, Y.; Ma, J.; Skibniewski, M.J. Measuring value-added-oriented BIM climate in construction projects: Dimensions and indicators. J. Civ. Eng. Manag. 2020, 26, 800–818. [Google Scholar] [CrossRef]
- Vilutiene, T.; Kalibatiene, D.; Hosseini, M.R.; Pellicer, E.; Zavadskas, E.K. Building information modeling (BIM) for structural engineering: A bibliometric analysis of the literature. Adv. Civ. Eng. 2019, 2019, 5290690. [Google Scholar] [CrossRef]
- Vilutiene, T.; Hosseini, M.R.; Pellicer, E.; Zavadskas, E.K. Advanced BIM applications in the construction industry. Adv. Civ. Eng. 2019, 2019, 6356107. [Google Scholar] [CrossRef]
- Kaklauskas, A.; Abraham, A.; Dzemyda, G.; Raslanas, S.; Seniut, M.; Ubarte, I.; Kurasova, O.; Binkyte-Veliene, A.; Cerkauskas, J. Emotional, affective and biometrical states analytics of a built environment. Eng. Appl. Artif. Intell. 2020, 91, 103621. [Google Scholar] [CrossRef]
- Stojčić, M.; Zavadskas, E.K.; Pamučar, D.; Stević, Ž.; Mardani, A. Application of MCDM methods in sustainability engineering: A literature review 2008–2018. Symmetry 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Antucheviciene, J.; Kar, S. Multi-objective and multi-attribute optimization for sustainable development decision aiding. Sustainability. 2019, 11, 3069. [Google Scholar] [CrossRef] [Green Version]
- Fallahpour, A.; Wong, K.Y.; Rajoo, S.; Olugu, E.U.; Nilashi, M.; Turskis, Z. A fuzzy decision support system for sustainable construction project selection: An integrated FPP-FIS model. J. Civ. Eng. Manag. 2020, 26, 247–258. [Google Scholar] [CrossRef]
- Koscheyev, V.; Rapgof, V.; Vinogradova, V. Digital transformation of construction organizations. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Saint-Petersburg, Russian, 2019; Volume 97, p. 012010. [Google Scholar]
- Mignone, G.; Hosseini, M.R.; Chileshe, N.; Arashpour, M. Enhancing collaboration in BIM-based construction networks through organisational discontinuity theory: A case study of the new Royal Adelaide Hospital. Archit. Eng. Des. Manag. 2016, 12, 333–352. [Google Scholar] [CrossRef]
- Merschbrock, C.; Hosseini, M.R.; Martek, I.; Arashpour, M.; Mignone, G. Collaborative role of sociotechnical components in BIM-based construction networks in two hospitals. J. Manag. Eng. 2018, 34, 05018006. [Google Scholar] [CrossRef]
- Elghaish, F.; Abrishami, S.; Hosseini, M.R. Integrated project delivery with blockchain: An automated financial system. Autom. Constr. 2020, 114, 103182. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Adabre, M.A.; Edwards, D.J.; Hosseini, M.R.; Ameyaw, E.E. Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Autom. Constr. 2020, 112, 103081. [Google Scholar] [CrossRef]
- Vial, G. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Sackey, E.; Tuuli, M.; Dainty, A. Sociotechnical systems approach to BIM implementation in a multi-disciplinary construction context. J. Manag. Eng. 2015, 31, A4014005. [Google Scholar] [CrossRef]
- Ismail, M.H.; Khater, M.; Zaki, M. Digital business transformation and strategy: What do we know so far. Camb. Serv. Alliance 2017, 10. [Google Scholar] [CrossRef]
- Bharadwaj, A.; ElSawy, O.A.; Pavlou, P.A.; Venkatraman, N. Digital business strategy: Toward a next generation of insights. MIS Q. 2013, 37, 471–482. [Google Scholar] [CrossRef]
- Schallmo, D.; Williams, C.A.; Lohse, J. Clarifying Digital Strategy–Detailed Literature Review of Existing Approaches. In ISPIM Conference Proceedings, 2018; The International Society for Professional Innovation Management (ISPIM): Stockholm, Sweden, 2018; pp. 1–21. [Google Scholar]
- Dang, D.; Vartiainen, T. Digital strategy patterns in information systems research. In Proceedings of the PACIS 2019 Proceedings, Xi’an, China, 8–12 July 2019. [Google Scholar]
- Holotiuk, F.; Beimborn, D. Critical success factors of digital business strategy. In Proceedings of the Track 9—Business Innovations and Business Models, St. Gallen, Switzerland, 12–15 February 2017. [Google Scholar]
- Korachi, Z.; Bounabat, B. General Approach for Formulating a Digital Transformation Strategy. J. Comput. Sci. 2020, 16, 493–507. [Google Scholar]
- Matt, C.; Hess, T.; Benlian, A. Digital transformation strategies. Bus. Inf. Syst. Eng. 2015, 57, 339–343. [Google Scholar] [CrossRef]
- Gimpel, H.; Hosseini, S.; Huber, R.X.R.; Probst, L.; Röglinger, M.; Faisst, U. Structuring Digital Transformation: A Framework of Action Fields and its Application at ZEISS. J. Inf. Technol. Theory Appl. 2018, 19, 31–54. [Google Scholar]
- Schallmo, D.; Williams, C.A.; Lohse, J. Digital Strategy—Integrated Approach and Generic Options. Int. J. Innov. Manag. 2019, 23, 1940005. [Google Scholar] [CrossRef]
- Pflaum, A.A.; Gölzer, P. The IoT and digital transformation: Toward the data-driven enterprise. IEEE Pervasive Comput. 2018, 17, 87–91. [Google Scholar] [CrossRef]
- Albukhitan, S. Developing Digital Transformation Strategy for Manufacturing. Procedia Comput. Sci. 2020, 170, 664–671. [Google Scholar] [CrossRef]
- Morris, P.W. Project management in the construction industry. Wiley Guide Manag. Proj. 2004, 1350–1367. [Google Scholar]
- Behera, P.; Mohanty, R.P.; Prakash, A. An investigation of implementation issues, process phases and knowledge areas of project management in the performance of construction supply chains. Int. J. Proj. Organ. Manag. 2018, 10, 137–157. [Google Scholar] [CrossRef]
- Patanakul, P.; Kwak, Y.H.; Zwikael, O.; Liu, M. What impacts the performance of large-scale government projects? Int. J. Proj. Manag. 2016, 34, 452–466. [Google Scholar] [CrossRef]
- Stoyanova, M. Good Practices and Recommendations for Success in Construction Digitalization. TEM J. 2020, 9, 42–47. [Google Scholar]
- Ernstsen, S.N.; Whyte, J.; Thuesen, C.; Maier, A. How Innovation Champions Frame the Future: Three Visions for Digital Transformation of Construction. J. Constr. Eng. Manag. 2020, 147, 05020022. [Google Scholar] [CrossRef]
- Mitroulis, D.; Kitsios, F. Digital Transformation Strategy: A literature review. In Proceedings of the 6th National Student Conference of HELORS, Xanthi, Greece, 28 February–2 March 2019; pp. 59–61. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikmehr, B.; Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Antucheviciene, J. Digitalization as a Strategic Means of Achieving Sustainable Efficiencies in Construction Management: A Critical Review. Sustainability 2021, 13, 5040. https://doi.org/10.3390/su13095040
Nikmehr B, Hosseini MR, Martek I, Zavadskas EK, Antucheviciene J. Digitalization as a Strategic Means of Achieving Sustainable Efficiencies in Construction Management: A Critical Review. Sustainability. 2021; 13(9):5040. https://doi.org/10.3390/su13095040
Chicago/Turabian StyleNikmehr, Bahareh, M. Reza Hosseini, Igor Martek, Edmundas Kazimieras Zavadskas, and Jurgita Antucheviciene. 2021. "Digitalization as a Strategic Means of Achieving Sustainable Efficiencies in Construction Management: A Critical Review" Sustainability 13, no. 9: 5040. https://doi.org/10.3390/su13095040
APA StyleNikmehr, B., Hosseini, M. R., Martek, I., Zavadskas, E. K., & Antucheviciene, J. (2021). Digitalization as a Strategic Means of Achieving Sustainable Efficiencies in Construction Management: A Critical Review. Sustainability, 13(9), 5040. https://doi.org/10.3390/su13095040