The First City Organizational LCA Case Study: Feasibility and Lessons Learned from Vienna
Abstract
:1. Introduction
2. Methodology
2.1. The City-OLCA Framework
2.2. Vienna’s City Characteristics and Its Organizational Structure According to the City-OLCA Framework
2.2.1. Level 1: City-Owned Public Service Provision
2.2.2. Level 2: Contracted Public Service Provision
2.2.3. Level 3: Activities beyond Public Service Provision
2.3. Reporting Organization, System Boundary and Reporting Flow
2.4. Life Cycle Impact Assessment and Software Used
3. Material and Modeling Approach
3.1. Energy
3.1.1. Electricity
3.1.2. District Heating
3.2. Transport
3.3. Buildings
3.4. Waste Management
3.5. Industry and Agriculture
3.6. Goods and Food Consumption
4. Results
4.1. Global Warming (CO2 eq.)
4.2. Environmental Impacts beyond Climate Change (Environmental Profile)
4.3. Contribution of Life Cycle Stages
5. Discussion
5.1. Case Study Vienna
- Includes food and goods consumption;
- Calculates CO2 eq. based on all greenhouse gases;
- Follows a life cycle approach;
5.2. Methodological Findings I: Energy Modeling Perspectives Change Mitigation Target Sectors
5.3. Methodological Findings II: Life Cycle Stages Logic Suitable for City-OLCA
5.4. Methodological Findings III: Data Availability Considered Good
5.5. Transferability and Feasibility
- Underestimating environmental burdens;
- Having blind spots regarding a diverse set of environmental indicators.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Abbreviation | Definition |
---|---|
BLI | Austria’s greenhouse gas monitoring scheme as reported in the Austrian federal air pollution inventory (German: Bundesluftschadstoffinventur) |
CHP | Combined heat and power |
eq. | equivalents |
ETS | Emission trading scheme |
GHG | Greenhouse gas |
GPC | Global protocol on community-scale greenhouse gas accounting |
ISO | International organization for standardization |
KliP | Vienna’s greenhouse gas monitoring scheme as reported in the climate program (German: Klimaprogramm) |
LCA | Life cycle assessment |
MRIO | Multi-region input-output |
OGD | Open government data |
OLCA | Organizational life cycle assessment |
UNFCCC | United Nations Framework Convention on Climate Change |
References
- Kennedy, C.; Baker, L.; Dhakal, S.; Ramaswami, A. Sustainable Urban Systems. J. Ind. Ecol. 2012, 16, 775–779. [Google Scholar] [CrossRef]
- United Nations Pupulation Fund—Urbanization. Available online: https://www.unfpa.org/urbanization (accessed on 16 April 2021).
- Rosenzweig, C.; Solecki, W.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Bowman, T.; Ali Ibrahim, S. ARC3.2 Summary for City Leaders. Urban Climate Change Research Network; Columbia University: New York, NY, USA, 2015. [Google Scholar]
- Currie, P.K.; Musango, J.K.; May, N.D. Urban metabolism: A review with reference to Cape Town. Cities 2017, 70, 91–110. [Google Scholar] [CrossRef]
- Lugaric, L.; Krajcar, S. Transforming cities towards sustainable low-carbon energy systems using emergy synthesis for support in decision making. Energy Policy 2016, 98, 471–482. [Google Scholar] [CrossRef]
- Lombardi, M.; Laiola, E.; Tricase, C.; Rana, R. Assessing the urban carbon footprint: An overview. Environ. Impact Assess. Rev. 2017, 66, 43–52. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, L.; Chen, X.; Xue, B.; Fujita, T.; Dong, H. Urban ecological footprint analysis: A comparative study between Shenyang in China and Kawasaki in Japan. J. Clean. Prod. 2014, 75, 130–142. [Google Scholar] [CrossRef]
- Beloin-Saint-Pierre, D.; Rugani, B.; Lasvaux, S.; Mailhac, A.; Popovici, E.; Sibiude, G.; Benetto, E.; Schiopu, N. A review of urban metabolism studies to identify key methodological choices for future harmonization and implementation. J. Clean. Prod. 2016, 163, S223–S240. [Google Scholar] [CrossRef]
- Dong, H.; Fujita, T.; Geng, Y.; Dong, L.; Ohnishi, S.; Sun, L.; Dou, Y.; Fujii, M. A review on eco-city evaluation methods and highlights for integration. Ecol. Indic. 2016, 60, 1184–1191. [Google Scholar] [CrossRef]
- Yetano Roche, M.; Lechtenböhmer, S.; Fischedick, M.; Gröne, M.-C.; Xia, C.; Dienst, C. Concepts and Methodologies for Measuring the Sustainability of Cities. Annu. Rev. Environ. Resour. 2014, 39, 519–547. [Google Scholar] [CrossRef] [Green Version]
- Mirabella, N.; Allacker, K.; Sala, S. Current trends and limitations of life cycle assessment applied to the urban scale: Critical analysis and review of selected literature. Int. J. Life Cycle Assess. 2018, 20, 3. [Google Scholar] [CrossRef]
- Albertí, J.; Brodhag, C.; Fullana-I-Palmer, P. First steps in life cycle assessments of cities with a sustainability perspective: A proposal for goal, function, functional unit, and reference flow. Sci. Total Environ. 2019, 646, 1516–1527. [Google Scholar] [CrossRef] [PubMed]
- Cremer, A.; Müller, K.; Berger, M.; Finkbeiner, M. A framework for environmental decision support in cities incorporating organizational LCA. Int. J. Life Cycle Assess. 2020, 25, 2204–2216. [Google Scholar] [CrossRef]
- Holzmann, A.; Knaus, K.; Siebenhofer, M. Fortschrittsbericht über die Umsetzung des Klimaschutzprogramms (KliP) der Stadt Wien; Austrian Energy Agency: Vienna, Austria, 2019. [Google Scholar]
- Anderl, M.; Gangl, M.; Haider, S.; Ibesich, N.; Lampert, C.; Poupa, S.; Purzner, M.; Schieder, W.; Schodl, B.; Titz, M.; et al. Bundesländer Luftschadstoff-Inventur 1990–2018. In Regionalisierung der nationalen Emissionsdaten auf Grundlage von EU-Berichtspflichten (Datenstand 2019); Umweltbundesamt (UBA): Vienna, Austria, 2019. [Google Scholar]
- Vienna Tops Mercer’s 21st Quality of Living Ranking. Available online: https://www.mercer.com/newsroom/2019-quality-of-living-survey.html (accessed on 23 February 2021).
- ISO, ISO/TS 14072: Environmental Management—Life Cycle Assessment—Requirements and Guidelines for Organizational Life Cycle Assessment; International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
- Pollak, P. Energiemanagement von Objekten der Stadt Wien; Stadtrechnungshof Wien: Vienna, Austria, 2017. [Google Scholar]
- Prahler, C.; Simander, G. Bericht Über den Jährlichen Energieverbrauch in Erfassten Gebäuden Gemäß § 23 Abs. 4 EEffG; Austrian Energy Agency: Vienna, Austria, 2017. [Google Scholar]
- Vogl, B.; Ritter, H.; Watzak-Helmer, M.; Cerveny, M.; Schmid, W.; Valuch, M. Energie! Voraus—Energiebericht der Stadt Wien (Daten 2016); Magistrat der Stadt Wien: Vienna, Austria, 2018. [Google Scholar]
- Gollner, M. Energiedaten Österreich 2016; Statistik Austria: Vienna, Austria, 2017. [Google Scholar]
- Vogl, B.; Geier, S.; Kinsperger, A.; Hemis, H.; Dabringer, M.; Grgic, K.; Reisenbichler, M.; Emrich, H.; Huber, D.; Vlay, B.; et al. Fachkonzept Energieraumplanung—STEP 2025; Magistratsabteilung 20—Energieraumplanung: Vienna, Austria, 2019. [Google Scholar]
- Virág, D. Das Verkehrssystem im Stock-Flow-Nexus. In Analyse der Materialbestände und-Flüsse für Verschiedene Formen von Mobilität in Wien; Social Ecology Working Paper 179; Institute of Social Ecology: Vienna, Austria, 2019. [Google Scholar]
- BMVIT. Ergebnisbericht zur Österreichweiten Mobilitätserhebung “Österreich unterwegs 2013/2014“; Bundesministerium für Verkehr, Innovation und Technologie (BMVIT): Vienna, Austria, 2016. [Google Scholar]
- Heidinger, K.; Verdis, S.; Wandaller, P. Vienna 2025—Comparing the Benefits of Vienna’s Infrastructure Choices; Siemens: London, UK, 2014. [Google Scholar]
- Egle, L.; Rolland, C.; Broukal, S. Ist-Zustand der Wiener Abfallwirtschaft 2017 (Langfassung); Magistratsabteilung 48-Abfallwirtschaft Straßenreinigung und Fuhrpark: Vienna, Austria, 2017. [Google Scholar]
- BMNT. Die Bestandsaufnahme der Abfallwirtschaft in Österreich. Statusbericht 2018; Bundesministerium für Nachhaltigkeit und Tourismus (BMNT): Vienna, Austria, 2018. [Google Scholar]
- Über Wiener Wohnen. Available online: https://www.wienerwohnen.at/ueber-uns/ueber.html (accessed on 25 February 2021).
- Smetschka, B.; Wiedenhofer, D.; Egger, C.; Haselsteiner, E.; Moran, D.; Gaube, V. Time matters: The carbon footprint of everyday activities in Austria. Ecol. Econ. 2019, 164, 106357. [Google Scholar] [CrossRef] [PubMed]
- Schmid, F. Vienna’s GHG Emissions from a Production vs. Consumption-Based Accounting Perspective: A comparative Analysis; Social Ecology Working Paper 183; Institute of Social Ecology: Vienna, Austria, 2020. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; vsn Zelm, R. ReCiPe 2016—A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2016. [Google Scholar]
- SimaPro—LCA Software for Fact-Based Sustainability. Available online: https://simapro.com/ (accessed on 16 April 2021).
- Ecoinvent 3.4. Available online: https://www.ecoinvent.org/database/older-versions/ecoinvent-34/ecoinvent-34.html (accessed on 16 April 2021).
- Emami, N.; Heinonen, J.; Marteinsson, B.; Säynäjoki, A.; Junnonen, J.-H.; Laine, J.; Junnila, S. A life cycle assessment of two residential buildings using two different LCA database-software combinations: Recognizing uniformities and inconsistencies. Buildings 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- The Eora Global Supply Chain Database. Available online: https://www.worldmrio.com (accessed on 16 April 2021).
- UNFCCC Reporting Requirements. Available online: https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/reporting-requirements (accessed on 16 April 2021).
- DigitalesWien—Was ist OGT? Available online: https://digitales.wien.gv.at/open-data/ (accessed on 23 February 2021).
- Fong, W.K.; Sotos, M.; Doust, M.; Schultz, S.; Marques, A.; Deng-Beck, C. Global Protocol for Community-Scale Greenhouse Gas Emission Inventories: An Accounting and Reporting Standard for Cities; World Resources Institute: Washington, DC, USA; Canadian Electronic Library: Ottawa, ON, Canada, 2015. [Google Scholar]
- Toronto’s 2018 Greenhouse Gas Emissions Inventory. Available online: https://www.toronto.ca/services-payments/water-environment/environmentally-friendly-city-initiatives/transformto/torontos-greenhouse-gas-inventory/ (accessed on 16 April 2021).
- Multinational Time Use Study. Available online: https://www.timeuse.org/mtus (accessed on 23 February 2021).
Level | Reporting Flow | 2016 Value | Sources |
---|---|---|---|
Level 1 | Administration | 30,219 Employees | [18,19] |
Electricity production | 5747 GWh/a | [20,21] | |
Heat production | 6205 GWh/a | [20,22] | |
Public transport | 8,285,773,793 pkm/a | [23,24,25] | |
Waste management | 763,325 t/a | [26,27] | |
Community housing | 18,344,800 m2 | [28] | |
Level 2 | N/A | N/A | |
Level 3a | Individual transport | 10,983,467,586 pkm/a | [23,24,25] |
Residential buildings | 55,034,400 m2 | [20] | |
Non-residential buildings | 35,328,000 m2 | [20] | |
Level 3b | Freight transport | 4,242,399 tkm/a | [25] |
Industry | Heat & Power 1 | [20] | |
Agriculture | Heat & Power & Fuel 1 | [20] | |
Goods consumption | 3887 kt CO2 eq. | [29,30] | |
Food consumption | 2333 kt CO2 eq. | [29,30] |
Impact Category | Unit | Value |
---|---|---|
Global warming | kg CO2 eq. | 1.47 × 1010 |
Stratospheric ozone depletion | kg CFC-11 eq. | 6.80 × 103 |
Ionizing radiation | kBq Co-60 eq. | 7.01 × 108 |
Ozone formation, human health | kg NOx eq. | 1.58 × 107 |
Fine particulate matter formation | kg PM2.5 eq. | 7.40 × 106 |
Ozone formation, Terrestrial ecosystems | kg NOx eq. | 1.64 × 107 |
Terrestrial acidification | kg SO2 eq. | 1.80 × 107 |
Marine eutrophication | kg N-eq. | 3.10 × 105 |
Freshwater ecotoxicity | kg 1,4-DCB | 4.82 × 108 |
Human carcinogenic toxicity | kg 1,4-DCB | 1.90 × 1010 |
Mineral resource scarcity | kg Cu eq. | 2.37 × 107 |
Fossil resource scarcity | kg oil eq. | 2.96 × 109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cremer, A.; Berger, M.; Müller, K.; Finkbeiner, M. The First City Organizational LCA Case Study: Feasibility and Lessons Learned from Vienna. Sustainability 2021, 13, 5062. https://doi.org/10.3390/su13095062
Cremer A, Berger M, Müller K, Finkbeiner M. The First City Organizational LCA Case Study: Feasibility and Lessons Learned from Vienna. Sustainability. 2021; 13(9):5062. https://doi.org/10.3390/su13095062
Chicago/Turabian StyleCremer, Alexander, Markus Berger, Katrin Müller, and Matthias Finkbeiner. 2021. "The First City Organizational LCA Case Study: Feasibility and Lessons Learned from Vienna" Sustainability 13, no. 9: 5062. https://doi.org/10.3390/su13095062
APA StyleCremer, A., Berger, M., Müller, K., & Finkbeiner, M. (2021). The First City Organizational LCA Case Study: Feasibility and Lessons Learned from Vienna. Sustainability, 13(9), 5062. https://doi.org/10.3390/su13095062