Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Measurements
2.3. Structure from Motion (SfM)
2.4. ANOVA
3. Results and Discussion
3.1. Three-Dimensional Tree Structure
3.2. Characteristics of Tree Structure
3.3. Forest Management in the Highlands
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bishaw, B. Deforestation and land degredation in the Ethiopian highlands: A strategy for physical recovery. Northeast Afr. Stud. 2001, 8, 7–25. [Google Scholar] [CrossRef]
- Lemenih, M.; Karltun, E.; Olsson, M. Soil organic matter dynamics after deforestation along a farm field chronosequence in southern highlands of Ethiopia. Agric. Ecosyst. Environ. 2005, 109, 9–19. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Drivers of land use/land cover changes in Munessa-Shashemene landscape of the south-central highlands of Ethiopia. Environ. Monit. Assess. 2015, 187. [Google Scholar] [CrossRef] [PubMed]
- Solomon, N.; Hishe, H.; Annang, T.; Pabi, O.; Asante, I.K.; Birhane, E. Forest cover change, key drivers and community perception in Wujig Mahgo Waren forest of northern Ethiopia. Land 2018, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Gebreselassie, S.; Kirui, O.K.; Mirzabaev, A. Economics of land degradation and improvement in Ethiopia. In Economics of Land Degradation and Improvement—A Global Assessment for Sustainable Development; Nkonya, E., Mirzabaev, A., von Braun, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 401–430. ISBN 978-3-319-19168-3. [Google Scholar]
- Hurni, H. Degradation and conservation of the resources in the Ethiopian highlands. Mt. Res. Dev. 1988, 8, 123–130. [Google Scholar] [CrossRef]
- FAO. Etiopian Highlands Reclamation Study; Ethiopia final report; Food and Agriculture Organization of the United Nations: Roma, Italy, 1986; Volume 2, Available online: http://www.fao.org/3/ar864e/ar864e.pdf (accessed on 1 April 2021).
- Wood, A. Natural resource management and rural development in Ethiopia. In Ethiopia: Rural Development Options; Pausewang, S., Cheru, F., Bruene, S., Chole, E., Eds.; Zed Books: London, UK, 2010; pp. 187–195. [Google Scholar]
- Teketay, D. Deforestation, wood famine, and environmental degradation in Ethiopia’s highland ecosystems: Urgent need for action. Northeast Afr. Stud. 2001, 8, 53–76. [Google Scholar] [CrossRef]
- Yami, M.; Gebrehiwot, K.; Stein, M.; Mekuria, W. Impact of area enclosures on density and diversity of large wild mammals: The case of May Ba’ti, Douga Tembien District, Central Tigray, Ethiopia. East Afr. J. Sci. 2007, 1, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Woldu, G.; Solomon, N.; Hishe, H.; Gebrewahid, H.; Gebremedhin, M.A.; Birhane, E. Topographic variables to determine the diversity of woody species in the exclosure of Northern Ethiopia. Heliyon 2020, 6, e03121. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Homma, K.; Vetrova, V.P.; Florenzev, S.; Hara, T. Stand structure and regeneration in a Kamchatka mixed boreal forest. J. Veg. Sci. 2001, 12, 627–634. [Google Scholar] [CrossRef]
- Hou, J.H.; Mi, X.C.; Liu, C.R.; Ma, K.P. Spatial patterns and associations in a Quercus-Betula forest in northern China. J. Veg. Sci. 2004, 15, 407–414. [Google Scholar] [CrossRef]
- Teketay, D. Seed and regeneration ecology in dry Afromontane forests of Ethiopia: I. seed production—Population structures. Trop. Ecol. 2005, 46, 29–44. [Google Scholar]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Erasmi, S.; King, D.J.; Magdon, P.; Heurich, M. Understanding forest health with remote sensing-Part II-a review of approaches and data models. Remote Sens. 2017, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.L.; Rosenqvist, A.; Mora, B. Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sens. 2003, 29, 564–577. [Google Scholar] [CrossRef]
- Côté, J.F.; Widlowski, J.L.; Fournier, R.A.; Verstraete, M.M. The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens. Environ. 2009, 113, 1067–1081. [Google Scholar] [CrossRef]
- Takahashi, T.; Awaya, Y.; Hirata, Y.; Furuya, N.; Sakai, T.; Sakai, A. Stand volume estimation by combining low laser-sampling density LiDAR data with QuickBird panchromatic imagery in closed-canopy Japanese cedar (Cryptomeria japonica) plantations. Int. J. Remote Sens. 2010, 31, 1281–1301. [Google Scholar] [CrossRef]
- Itakura, K.; Hosoi, F. Estimation of leaf inclination angle in three-dimensional plant images obtained from lidar. Remote Sens. 2019, 11, 344. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Hernández, J.; González-Ferreiro, E.; Monleón, V.J.; Faias, S.P.; Tomé, M.; Díaz-Varela, R.A. Use of multi-temporal UAV-derived imagery for estimating individual tree growth in Pinus pinea stands. Forests 2017, 8, 300. [Google Scholar] [CrossRef]
- Mlambo, R.; Woodhouse, I.H.; Gerard, F.; Anderson, K. Structure from Motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests 2017, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Bauwens, S.; Fayolle, A.; Gourlet-Fleury, S.; Ndjele, L.M.; Mengal, C.; Lejeune, P. Terrestrial photogrammetry: A non-destructive method for modelling irregularly shaped tropical tree trunks. Methods Ecol. Evol. 2017, 8, 460–471. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion photogrammetry in forestry: A review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Birhane, E.; Mengistu, T.; Seyoum, Y.; Hagazi, N.; Putzel, L.; Rannestad, M.M.; Kassa, H. Exclosures as forest and landscape restoration tools: Lessons from Tigray region, Ethiopia. Int. For. Rev. 2017, 19, 37–50. [Google Scholar] [CrossRef]
- Ubuy, M.H.; Eid, T.; Bollandsås, O.M.; Birhane, E. Aboveground biomass models for trees and shrubs of exclosures in the drylands of Tigray, northern Ethiopia. J. Arid Environ. 2018, 156, 9–18. [Google Scholar] [CrossRef]
- Larjavaara, M.; Muller-Landau, H.C. Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods Ecol. Evol. 2013, 4, 793–801. [Google Scholar] [CrossRef]
- Persson, A.; Holmgren, J.; Soderman, U. Detecting and measuring individual trees using an airborne laser scanner. Photogramm. Eng. Remote Sens. 2002, 68, 925–932. [Google Scholar]
- Sibona, E.; Vitali, A.; Meloni, F.; Caffo, L.; Dotta, A.; Lingua, E.; Motta, R.; Garbarino, M. Direct measurement of tree height provides different results on the assessment of LiDAR accuracy. Forests 2017, 8, 7. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Abdollahnejad, A.; Surový, P.; Chiteculo, V. Determining tree height and crown diameter from high-resolution UAV imagery. Int. J. Remote Sens. 2017, 38, 2392–2410. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; de Castro, A.I.; Peña, J.M.; Jiménez-Brenes, F.M.; Arquero, O.; Lovera, M.; López-Granados, F. Mapping the 3D structure of almond trees using UAV acquired photogrammetric point clouds and object-based image analysis. Biosyst. Eng. 2018, 176, 172–184. [Google Scholar] [CrossRef]
- Ploton, P.; Mortier, F.; Barbier, N.; Cornu, G.; Réjou-Méchain, M.; Rossi, V.; Alonso, A.; Bastin, J.F.; Bayol, N.; Bénédet, F.; et al. A map of African humid tropical forest aboveground biomass derived from management inventories. Sci. Data 2020, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ganamé, M.; Bayen, P.; Ouédraogo, I.; Balima, L.H.; Thiombiano, A. Allometric models for improving aboveground biomass estimates in West African savanna ecosystems. Trees. For. People 2021, 4. [Google Scholar] [CrossRef]
- Kikuzawa, K.; Lechowicz, M.J. Toward synthesis of relationships among leaf longevity, instantaneous photosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests. Am. Nat. 2006, 168, 373–383. [Google Scholar] [CrossRef]
- Galia Selaya, N.; Anten, N.P.R. Leaves of pioneer and later-successional trees have similar lifetime carbon gain in tropical secondary forest. Ecology 2010, 91, 1102–1113. [Google Scholar] [CrossRef]
- Miller, J.; Morgenroth, J.; Gomez, C. 3D modelling of individual trees using a handheld camera: Accuracy of height, diameter and volume estimates. Urban For. Urban Green. 2015, 14, 932–940. [Google Scholar] [CrossRef]
- Mikita, T.; Janata, P.; Surovỳ, P. Forest stand inventory based on combined aerial and terrestrial close-range photogrammetry. Forests 2016, 7, 165. [Google Scholar] [CrossRef] [Green Version]
- Piermattei, L.; Karel, W.; Wang, D.; Wieser, M.; Mokroš, M.; Surový, P.; Koreň, M.; Tomaštík, J.; Pfeifer, N.; Hollaus, M. Terrestrial structure from motion photogrammetry for deriving forest inventory data. Remote Sens. 2019, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- Marzulli, M.I.; Raumonen, P.; Greco, R.; Persia, M.; Tartarino, P. Estimating tree stem diameters and volume from smartphone photogrammetric point clouds. Forestry 2020, 93, 411–429. [Google Scholar] [CrossRef]
- Weaver, S.A.; Ucar, Z.; Bettinger, P.; Merry, K.; Faw, K.; Cieszewski, C.J. Assessing the accuracy of tree diameter measurements collected at a distance. Croat. J. For. Eng. 2015, 36, 73–84. [Google Scholar]
- Scher, C.L.; Griffoul, E.; Cannon, C.H. Drone-based photogrammetry for the construction of high-resolution models of individual trees. Trees Struct. Funct. 2019, 33, 1385–1397. [Google Scholar] [CrossRef] [Green Version]
- Rose, J.; Paulus, S.; Kuhlmann, H. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level. Sensors (Switzerland) 2015, 15, 9651–9665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, R.; Hirata, M.; Gebremedhin, B.G.; Uchida, S.; Sakai, T.; Koda, K.; Takenaka, K. Impact of differences in land management on natural vegetation in semi-dry areas: The case study of the Adi Zaboy watershed in the Kilite Awlaelo district, eastern Tigray region, Ethiopia. Environments 2019, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Kassa, H.; Mezgebe, K.; Hagazi, N.; Cunningham, P.; Rinauldo, T.; Gebremeskel, G.; Darcha, G. Introduction and evaluation of Acacia saligna trees as backyard agroforestry system in eastern Tigray. In Proceedings of the International Conference of World Vision, Mekelle, Ethiopia, 7–8 March 2014; pp. 43–49. [Google Scholar]
- Melese, S.M.; Ayele, B. Woody plant diversity, structure and regeneration in the Ambo State forest, South Gondar zone, Northwest Ethiopia. J. For. Res. 2017, 28, 133–144. [Google Scholar] [CrossRef]
- Gelasso, M.; Li, J. Structure and regeneration status of woody species in the Munessa forest, Southern Ethiopia. J. For. Res. 2021, 32, 493–501. [Google Scholar] [CrossRef]
- Aubert, S.; Boucher, F.; Lavergne, S.; Renaud, J.; Choler, P. 1914-2014: A revised worldwide catalogue of cushion plants 100 years after Hauri and Schröter. Alp. Bot. 2014, 124, 59–70. [Google Scholar] [CrossRef]
- Bekele, T.; Berhan, G.; Ersado, M.; Taye, E. Regeneration status of moist Montane forests of Ethiopia: Part 11. Godere, Setema and Tiro-Boter becho forests. Walia 2003, 23, 19–32. [Google Scholar]
- Brown, S.; Gillespie, A.J.R.; Lugo, A.E. Biomass estimation methods for tropical forests with applications to forest inventory data. For. Sci. 1989, 35, 881–902. [Google Scholar] [CrossRef]
Plot # | Tree # | Tree Height (m) | Mean Canopy Width (m) | Basal Area (cm2) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Max | Min | Mean | SD | Max | Min | Mean | SD | Max | Min | |||
Ridge | 1 | 9 | 1.45 | 0.45 | 2.20 | 0.70 | 2.41 | 1.18 | 4.95 | 0.70 | 59.5 | 57.3 | 159.3 | 5.3 |
2 | 9 | 1.54 | 0.35 | 2.11 | 1.12 | 2.54 | 0.78 | 3.45 | 1.00 | 80.6 | 47.8 | 148.5 | 16.6 | |
3 | 8 | 1.60 | 0.40 | 2.07 | 1.00 | 3.19 | 0.97 | 4.35 | 1.80 | 102.3 | 90.5 | 291.5 | 18.3 | |
4 | 11 | 1.79 | 0.16 | 2.02 | 1.57 | 3.31 | 0.77 | 4.20 | 2.15 | 123.9 | 53.3 | 189.8 | 48.7 | |
5 | 14 | 1.71 | 0.33 | 2.19 | 0.85 | 2.54 | 0.77 | 3.80 | 0.98 | 85.5 | 50.3 | 194.0 | 7.1 | |
Valley | 6 | 11 | 1.64 | 0.52 | 2.61 | 0.83 | 2.25 | 0.73 | 3.35 | 1.00 | 60.6 | 42.3 | 129.6 | 6.2 |
7 | 9 | 2.11 | 1.03 | 3.28 | 0.81 | 2.73 | 1.64 | 5.10 | 1.15 | 109.4 | 105.4 | 252.8 | 5.3 | |
8 | 13 | 2.14 | 0.71 | 3.24 | 0.74 | 2.95 | 1.01 | 4.55 | 1.60 | 125.8 | 87.4 | 273.2 | 8.0 | |
9 | 14 | 1.82 | 0.35 | 2.56 | 1.23 | 2.80 | 0.62 | 4.05 | 1.75 | 92.4 | 43.1 | 181.5 | 39.3 | |
10 | 12 | 1.53 | 0.29 | 1.93 | 1.01 | 2.57 | 0.77 | 3.70 | 1.35 | 64.4 | 51.6 | 144.3 | 10.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakai, T.; Birhane, E.; Abebe, B.; Gebremeskel, D. Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands. Sustainability 2021, 13, 5282. https://doi.org/10.3390/su13095282
Sakai T, Birhane E, Abebe B, Gebremeskel D. Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands. Sustainability. 2021; 13(9):5282. https://doi.org/10.3390/su13095282
Chicago/Turabian StyleSakai, Toru, Emiru Birhane, Buruh Abebe, and Destaalem Gebremeskel. 2021. "Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands" Sustainability 13, no. 9: 5282. https://doi.org/10.3390/su13095282
APA StyleSakai, T., Birhane, E., Abebe, B., & Gebremeskel, D. (2021). Applicability of Structure-from-Motion Photogrammetry on Forest Measurement in the Northern Ethiopian Highlands. Sustainability, 13(9), 5282. https://doi.org/10.3390/su13095282