Are ESG Shares a Safe Haven during COVID-19? Evidence from the Arab Region
Abstract
:1. Introduction
2. Literature Review
2.1. Stock Markets and COVID-19
2.2. ESG and COVID-19
3. Materials and Methods
3.1. Market Shock Measurement—GARCH Model
3.2. COVID-19 Impact Measurement—ARDL Model
4. Empirical Results and Discussion
4.1. Volatility Results
4.2. Performance of Market in Connection to COVID-19
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Bank. The Global Economic Outlook during the COVID-19 Pandemic: A Changed World. Available online: https://www.worldbank.org/en/news/feature/2020/06/08/the-global-economic-outlook-during-the-COVID-19-pandemic-a-changed-world (accessed on 12 July 2021).
- Wisniewski, P.T. Is there a link between politics and stock returns? A literature survey. Int. Rev. Financ. Anal. 2016, 47, 15–23. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Liu, J.; Wang, S.; Yu, J. The impact of COVID-19 on stock markets. Econ. Political Stud. 2020, 8, 275–288. [Google Scholar] [CrossRef]
- Ozili, P.; Arun, T. Spillover of COVID-19: Impact on the Global Economy; MPRA Paper 99317; University Library of Munich: Munich, Germany, 2020. [Google Scholar]
- Robeco. Four ESG Trends That Will Shape the Post-COVID-19 World. Available online: https://www.robeco.com/en/insights/2020/09/four-esg-trends-that-will-shape-the-post-COVID-19-world.html (accessed on 12 July 2021).
- International Finance Corporation (IFC). Sustainable Investment in the Middle East and North Africa 2012. Available online: http://www.ifc.org/sustainableinvesting (accessed on 12 July 2021).
- The IMF’s Regional Economic Outlook. Available online: https://www.imf.org/en/Publications/WEO/Issues/2020/04/14/weo-april-2020 (accessed on 12 July 2021).
- HSBC. ESG Investing Gathers Pace in the Middle East. Available online: https://www.gbm.hsbc.com/insights/sustainable-financing/sfi-survey-middle-east (accessed on 12 July 2021).
- Faccio, M. Politically connected firms. Am. Econ. Rev. 2006, 96, 369–386. [Google Scholar] [CrossRef] [Green Version]
- Kaplanski, G.; Levy, H. Sentiment and stock prices: The case of aviation disasters. J. Financ. Econ. 2010, 95, 174–201. [Google Scholar] [CrossRef]
- Wolfers, J.; Zitzewitz, E. Using markets to inform policy: The case of the Iraq war. Economica 2009, 76, 225–250. [Google Scholar] [CrossRef]
- Ichev, R.; Marin, M. Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. Int. Rev. Financ. Anal. 2018, 56, 153–166. [Google Scholar] [CrossRef]
- Loh, E. The impact of SARS on the performance and risk profile of airline stocks. Riv. Internaz. Econ. Trasp. 2006, 33, 401–422. [Google Scholar]
- Chen, D.; Chin, C.; Tang, W.; Huang, B. The positive and negative impacts of the Sars outbreak: A case of the Taiwan industries. J. Dev. Areas 2009, 43, 281–293. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Steven, J.D.; Kyle, K.; Marco, S.; Tasaneeya, V. The Unprecedented Stock Market Reaction to COVID-19. Rev. Asset Pricing Stud. 2020, 10, 742–758. [Google Scholar] [CrossRef]
- Khatatbeh, I.N.; Bani Hani, M.; Abu-Alfoul, M. The Impact of COVID-19 Pandemic on Global Stock Markets: An Event Study. Int. J. Econ. Bus. Adm. 2020, 8, 505–514. [Google Scholar]
- Ashraf, B.N. Stock markets’ reaction to COVID-19: Cases or fatalities? Res. Int. Bus. Financ. 2020, 54, 101249. [Google Scholar] [CrossRef] [PubMed]
- Harjoto, M.A.; Fabrizio, R.; Robert, L.; Bruno, S.S. How do equity markets react to COVID-19? Evidence from emerging and developed countries. J. Econ. Bus. 2020, 115, 105966. [Google Scholar] [CrossRef] [PubMed]
- Ben Amar, A.; Bélaïd, F.; Ben Youssef, A.; Guesmi, K. Connectedness among regional financial markets in the context of the COVID-19. Appl. Econ. Lett. 2020, 28, 1789–1796. [Google Scholar] [CrossRef]
- Al-Qudah, A.A.; Houcine, A. Stock markets’ reaction to COVID-19: Evidence from the six WHO regions. J. Econ. Stud. 2021. [Google Scholar] [CrossRef]
- Amin, A.; Arshad, M.; Sultana, N.; Raoof, R. Examination of impact of COVID-19 on stock market: Evidence from American peninsula. J. Econ. Adm. Sci. 2021. [Google Scholar] [CrossRef]
- Topcu, M.; Gulal, O.S. The impact of COVID-19 on emerging stock markets. Financ. Res. Lett. 2020, 36, 101691. [Google Scholar] [CrossRef] [PubMed]
- Saleem, A.; Bárczi, J.; Sági, J. COVID-19 and Islamic Stock Index: Evidence of Market Behavior and Volatility Persistence. J. Risk Financ. Manag. 2021, 14, 389. [Google Scholar] [CrossRef]
- Al-Awadhi, M.A.; Alsaifi, K.; AL-Awadhi, A.; Alhammadi, S. Death and contagious infectious diseases: Impact of the COVID-19 virus on stock market returns. J. Behav. Exp. Financ. 2020, 27, 100326. [Google Scholar] [CrossRef]
- Mazur, M.; Dang, M.; Vega, M. COVID-19 and the March 2020 stock market crash. Evidence from S&P1500. Financ. Res. Lett. 2020, 38, 101690. [Google Scholar]
- Mdaghri, A.; Raghibi, A.; Thanh, C.N.; Oubdi, L. Stock market liquidity, the great lockdown and the COVID-19 global pandemic nexus in MENA countries. Rev. Behav. Financ. 2021, 13, 51–68. [Google Scholar] [CrossRef]
- Arafa, A.; Alber, N. The Impact of Coronavirus Pandemic on Stock Market Return: The Case of the MENA Region. Int. J. Econ. Financ. 2020, 12, 100–106. [Google Scholar] [CrossRef]
- Hillman, A.J.; Keim, G.D. Shareholder value, stakeholder management, and social issues: What’s the bottom line? Strateg. Manag. J. 2021, 22, 125–139. [Google Scholar] [CrossRef]
- Hassel, L.; Nilsson, H.; Nyquist, S. The value relevance of environmental performance. Eur. Account. Rev. 2005, 14, 41–61. [Google Scholar] [CrossRef]
- Khan, M. Corporate Governance, ESG, and Stock Returns around the World. Financ. Anal. J. 2019, 75, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Broadstock, D.C.; Chan, K.; Cheng, L.T.; Wang, X. The role of ESG performance during times of financial crisis: Evidence from COVID-19 in China. Financ. Res. Lett. 2021, 38, 101716. [Google Scholar] [CrossRef] [PubMed]
- Gianfrate, G.; Kievid, T.; van Dijk, M.V. On the resilience of esg stocks during COVID-19: Global evidence. COVID Econ. 2021, 25, 83. [Google Scholar]
- Pavlova, I.; Maria, E.D. ESG ETFs and the COVID-19 stock market crash of 2020: Did clean funds fare better? Financ. Res. Lett. 2021, 102051, in press. [Google Scholar] [CrossRef]
- Yoo, S.; Keeley, A.R.; Managi, S. Does sustainability activities performance matter during financial crises? Investigating the case of COVID-19. Energy Policy 2021, 155, 112330. [Google Scholar] [CrossRef]
- Ferriani, F.; Natoli, F. ESG risks in times of COVID-19. Appl. Econ. Lett. 2020, 28, 1537–1541. [Google Scholar] [CrossRef]
- Díaz, V.; Ibrushi, D.; Zhao, J. Reconsidering systematic factors during the COVID-19 pandemic—The rising importance of ESG. Financ. Res. Lett. 2021, 38, 101870. [Google Scholar]
- Heinkel, R.; Kraus, A.; Zechner, J. The effect of green investment on corporate behavior. J. Financ. Quant. Anal. 2001, 36, 431–449. [Google Scholar] [CrossRef]
- Renneboog, L.; Ter Horst, J.; Zhang, C. Socially responsible investments: Institutional aspects, performance, and investor behavior. J. Bank. Financ. 2008, 32, 1723–1742. [Google Scholar] [CrossRef]
- Albuquerque, R.; Koskinen, Y.J.; Santioni, R. Mutual Fund Loyalty and ESG Stock Resilience during the COVID-19 Stock Market Crash. European Corporate Governance Institute—Finance Working Paper No. 782/2021. Available online: https://ssrn.com/abstract=3908464 (accessed on 10 December 2021).
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Bouri, E.I.; Yahchouchi, G. Do return and volatility traverse the Middle Eastern and North African (MENA) stock markets borders? J. Econ. Stud. 2014, 41, 317–344. [Google Scholar] [CrossRef]
- Choudhry, T. Stock market volatility and the crash of 1987: Evidence from six emerging markets. J. Int. Money Financ. 1996, 15, 969–981. [Google Scholar] [CrossRef]
- Poterba, J.M.; Summers, L.H. Reporting errors and labor market dynamics. Econom. J. Econom. Soc. 1986, 54, 1319–1338. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Shin, Y.; Yu, B.; Greenwood-Nimmo, M. Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework. In The Festschrift in Honor of Peter Schmidt. Econometric Methods and Applications; Horrace, W., Sickles, R., Eds.; Springer: New York, NY, USA, 2014; pp. 281–314. [Google Scholar] [CrossRef]
- Arize, A.C.; Malindretos, J.; Igwe, E.U. Do exchange rate changes improve the trade balance: An asymmetric nonlinear cointegration approach. Int. Rev. Econ. Finance 2017, 49, 313–326. [Google Scholar] [CrossRef]
- Narayan, P.K. The saving and investment nexus for China: Evidence from cointegration tests. Appl. Econ. 2005, 37, 1979–1990. [Google Scholar] [CrossRef]
- Menegaki, A.N. The ARDL method in the energy-growth nexus field; best implementation strategies. Economies 2019, 7, 105. [Google Scholar] [CrossRef] [Green Version]
- Jareño, F.; Tolentino, M.; González, M.O.; Oliver, A. Impact of changes in the level, slope and curvature of interest rates on US sector returns: An asymmetric nonlinear cointegration approach. Econ. Res. 2019, 32, 1275–1297. [Google Scholar]
- Singh, G.; Shaik, M. The Short-Term Impact of COVID-19 on Global Stock Market Indices. Contemp. Econ. 2021, 15, 1–18. [Google Scholar] [CrossRef]
- Lensing, K.J.; LeRoy, S.F. Risk Aversion, Investor Information, and Stock Market Volatility; Working Paper 2010-24; Federal Reserve Bank of San Francisco: San Francisco, CA, USA, 2014. [Google Scholar]
- Idnani, S.; Adil, M.H.; Mal, H.; Kolte, A. Economic policy uncertainty and investors’ sentiment—An Indian perspective. Int. J. Emerg. Mark. 2021. [Google Scholar] [CrossRef]
- Bod, P.Á.; Pócsik, O.; Neszmélyi, G.I. Varieties of euro adoption strategies in Visegrad countries before the pandemic crisis. Acta Oecon. 2021, 71, 519–550. [Google Scholar]
- Kolte, A.; Roy, J.K.; Patil, D.T.; Pawar, A.; Sharma, P. Global Financial Crisis in 21st Century: A Brief Analysis of Stock Exchanges. In Proceedings of the 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 17–18 March 2021; pp. 290–295. [Google Scholar] [CrossRef]
Study | Market Scope | Relationship | Methodology |
---|---|---|---|
Ashraf (2020) | 64 emerging and developed countries | [Number of confirmed cases and fatalities] and [market return] | Panel regression |
Harjoto et al. (2020) | 76 emerging and developed countries | [Number of confirmed cases and fatalities] and [market return, volatility, and volume] | Multivariate regressions |
Al-Qudah and Houcine. (2021) | 6 major affected WHO Regions (Africa, Americas, Eastern Mediterranean, Europe, South-East Asia and Western Pacific) | [Number of confirmed cases] and [daily stock return] | Panel regression |
Amin et al. (2020) | Central, North, and South America. | [Number of confirmed cases and age] and [market index] | Panel regression |
Topcu and Gulal (2020) | 26 emerging markets | [Number of confirmed cases, exchange rates, and oil price shocks] and [market return] | Panel regression |
Al-Awadhi et al. (2020) | Chinese listed companies | [Daily growth of cases and fatalities] and [return of stock] | Panel regression |
Saleem et al. (2021) | Nine Islamic indexes | Volatility of index reaction to COVID-19 | Event study and GARCH (1,1) |
Mdaghri et al. (2021) | Listed companies on six markets of MENA | [Daily growth of cases and fatalities] and [liquidity and effective spread of share] | Panel regression |
Current study | Arab region normal index and ESG index | [Number of confirmed cases and fatalities and daily new number of cases and fatalities] and [indexes return] | GARCH model & Non-linear ARDL |
Period | Index | Mean | Median | St. Dev. | Kurtosis | Jarque Bera | ADF |
---|---|---|---|---|---|---|---|
Whole period | S&P Normal | 0.00014 | 0.00015 | 0.00812 | 32.796 | 30,755.71 | 0.000 |
S&P ESG | 0.00005 | 0.00010 | 0.00780 | 58.025 | 101,002.1 | 0.000 | |
Pre-COVID | S&P Normal | −0.00032 | 0.00000 | 0.00832 | 41.763 | 30,814.15 | 0.000 |
S&P ESG | −0.00035 | −0.00010 | 0.00671 | 59.410 | 64,881.87 | 0.000 | |
Post-COVID | S&P Normal | 0.00082 | 0.00044 | 0.00777 | 14.976 | 2119.847 | 0.000 |
S&P ESG | 0.00063 | 0.00035 | 0.00922 | 49.527 | 29,339.44 | 0.000 |
Period | Index | Mean | Median | St. Dev. |
---|---|---|---|---|
Whole period | S&P Normal | 395.82 | 0.000 | Present |
S&P ESG | 181.25 | 0.000 | Present | |
Pre-COVID | S&P Normal | 271.83 | 0.000 | Present |
S&P ESG | 260.07 | 0.000 | Present | |
Post-COVID | S&P Normal | 4.642 | 0.032 | Present |
S&P ESG | 42.149 | 0.000 | Present |
Period | Index | α | β | γ | β + γ | ARCH-LM | Q24 |
---|---|---|---|---|---|---|---|
Whole period | S&P Normal | 0.000003 (2.7896) a | 0.1404 (2.484) b | 0.7700 (11.288) a | 0.910 | 0.0145 (0.904) | 13.087 (0.965) |
S&P ESG | 0.000002 (5.2828) a | 0.1176 (7.9810) a | 0.8417 (42.946) a | 0.959 | 0.0745 (0.785) | 19.404 (0.496) | |
Pre-COVID | S&P Normal | 0.000002 (3.3247) a | 0.1443 (5.7784) a | 0.8130 (19.846) a | 0.957 | 0.2968 (0.585) | 16.960 (0.766) |
S&P ESG | 0.000003 (3.2267) a | 0.1695 (5.4544) a | 0.8082 (21.713) a | 0.978 | 0.0365 (0.848) | 23.078 (0.340) | |
Post-COVID | S&P Normal | 0.000010 (2.3648) b | 0.2599 (1.4800) | 0.5589 (3.590) a | 0.808 | 0.0002 (0.989) | 6.3835 (1.00) |
S&P ESG | 0.000001 (11.7047) | 0.0009 (0.2257) | 0.9568 (201.45) a | 0.957 | 0.2889 (0.590) | 20.546 (0.424) |
ADF | PP | ZA | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
I(0) | I(1) | I(0) | I(1) | I(0) | Break Suggested | |||||
C | T & C | C | T & C | C | T & C | C | T & C | T & C | ||
Ln (new cases) | −3.1544 (0.024) | −3.4294 (0.0494) | - | - | −5.8694 (0.000) | −6.0554 (0.000) | - | - | −5.701 (0.002) | 18 July 2020 |
Ln (new deaths) | −4.7946 (0.000) | −4.8958 (0.000) | - | - | −4.557 (0.000) | −4.0276 (0.008) | - | - | −5.308 (0.047) | 22 January 2021 |
Ln (ESG index) | −0.7697 (0.825) | −4.3085 (0.0034) | −20.898 (0.0000) | −20.859 (0.0000) | −0.5504 (0.8778) | −6.0532 (0.0000) | −21.150 (0.000) | −21.107 (0.000) | −6.310 (0.033) | 27 May 2020 |
Ln (S&P Index) | −0.3345 (0.9166) | −4.4948 (0.0018) | −16.189 (0.000) | −16.154 (0.0000) | −0.4540 (0.8966) | −4.9205 (0.0003) | −16.202 (0.000) | −16.154 (0.000) | −5.288 (0.021) | 15 October 2020 |
ESG (Variance) | −7.3704 (0.000) | −7.421 (0.000) | - | - | −7.2660 (0.000) | −7.2454 (0.000) | - | - | −7.290 (0.000) | 8 August 2020 |
S&P (Variance) | −319.34 (0.000) | −253.11 (0.000) | −345.73 (0.000) | −273.14 (0.000) | −8.481 (0.000) | 3 October 2020 |
S&P ESG Arab Index | S&P Pan Arab Index | |||||||
---|---|---|---|---|---|---|---|---|
F (MIESG|NC+, NC−, ESGvar+, ESGvar−) 1 | F (MIESG|ND+, ND, ESGvar+, ESGvar−) 2 | F (MIS&P|NC+, NC−, S&Pvar+, S&Pvar−) 3 | F (MIS&P|ND+, ND−, S&Pvar+, S&Pvar−) 4 | |||||
[1,0,0,1,0] | [1,0,1,0,0] | [2,9,7,9,9] | [2,1,8,7,8] | |||||
F-statistic | 12.46679 | 15.50373 | 5.4974 | 5.9813 | ||||
I(0) | I(1) | I(0) | I(1) | I(0) | I(1) | I(0) | I(1) | |
10% | 2.2 | 3.09 | 2.45 | 3.52 | 2.2 | 3.09 | 2.45 | 3.52 |
5% | 2.56 | 3.49 | 2.86 | 4.01 | 2.56 | 3.49 | 2.86 | 4.01 |
1% | 3.29 | 4.37 | 3.74 | 5.06 | 3.29 | 4.37 | 3.74 | 5.06 |
Diagnostic tests | ||||||||
LM BG test | 2.4601 (0.0834) | 2.7217 (0.0643) | 1.2832 (0.2288) | 0.3035 (0.713) | ||||
LM BP test | 1.4275 (0.2124) | 1.4953 (0.1898) | - | 1.1716 (0.254) | ||||
Ramsay RESET | 1.5653 (0.2118) | 3.8654 (0.053) | 0.5772 (0.448) | 2.4254 (0.090) |
F (MIESG|NC+, NC−, ESGvar+, ESGvar−) 1 [1,0,0,1,0] | F (MIESG|ND+, ND, ESGvar+, ESGvar−) 2 [1,0,1,0,0] | F (MIS&P|NC+, NC−, S&Pvar+, S&Pvar−) 3 [2,9,7,9,9] | F (MIS&P|ND+, ND−, S&Pvar+, S&Pvar−) 4 [2,1,8,7,8] | |
---|---|---|---|---|
NC+ | 0.0122 (1.920) c | - | −0.0235 (−1.943) c | - |
NC− | −0.0002 (−0.0331) | - | −0.0125 (−1.758) c | - |
ND+ | - | 0.010 (1.427) | - | −0.0059 (−0.615) |
ND− | - | −0.002 (−0.243) | - | −0.0192 (−1.941) c |
Mvar+ | −420.88 (−2.776) a | −373.28 (−2.899) a | −442.96 (−2.721) a | −191.79 (−1.830) c |
Mvar− | −435.89 (−2.905) a | −353.05 (−2.745) a | −447.49 (−2.739) a | −191.92 (−1.830) c |
Constt. | 0.424 (11.980) a | 0.430 (3.578) a | −0.124 (−0.571) | 0.191 (1.194) |
Wald test for coefficient asymmetry | ||||
F-stat (Prob.) | 32.386 (0.000) | 41.68 (0.000) | 0.1203 (0.729) | 5.3391 (0.022) |
F-stat (Prob.) | 0.6430 (0.423) | 2.161 (0.143) | 11.022 (0.001) | 0.225 (0.636) |
F (MIESG|NC+, NC−, ESGvar+, ESGvar−) 1 [1,0,0,1,0] | F (MIESG|ND+, ND, ESGvar+, ESGvar−) 2 [1,0,1,0,0] | F (MIS&P|NC+, NC−, S&Pvar+, S&Pvar−) 3 [2,9,7,9,9] | F (MIS&P|ND+, ND−, S&Pvar+, S&Pvar−) 4 [2,1,8,7,8] | |
---|---|---|---|---|
D(NC+) | −0.0042 (−1.317) | - | 0.0008 (0.224) | - |
D(NC+(−1)) | - | - | 0.0075 (1.955) c | - |
D(NC−) | −0.0070 (−1.296) | - | −0.008 (−1.945) c | - |
D(NC−(−1)) | - | - | −0.0097 (−2.078) b | - |
D(ND+) | - | 0.0074 (3.102) a | - | 0.0096 (3.760) a |
D(ND+(−1)) | - | - | - | - |
D(ND−) | - | −0.0031 (−0.957) | - | −0.0069 (−2.949) a |
D(ND−(−1)) | - | - | - | 0.0023 (0.794) |
D(Mvar+) | −83.291 (−5.013) a | −78.062 (5.779) a | −36.98 (−5.464) a | −16.188 (−5.335) a |
D(Mvar+(−1)) | - | −4.970 (−2.532) b | −3.290 (−2.485) a | |
D(Mvar−) | 18.236 (1.388) | 19.722 (1.4832) | −37.364 (−5.428) a | −15.974 (−5.274) a |
D(Mvar−(−1)) | - | - | −6.963 (−3.429) a | −4.024 (−2.833) a |
CointEq(−1) | −0.0878 (−8.717) | −0.101 (−8.860) | −0.100 (−5.796) a | −0.0955 (−5.507) a |
Wald test for coefficient asymmetry | ||||
F-stat (Prob.) | 0.142 (0.706) | 5.298 (0.022) | 6.0230 (0.015) | 0.2988 (0.585) |
F-stat (Prob.) | 17.803 (0.000) | 16.841 (0.000) | 1.3362 (0.249) | 2.2749 (0.133) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousa, M.; Saleem, A.; Sági, J. Are ESG Shares a Safe Haven during COVID-19? Evidence from the Arab Region. Sustainability 2022, 14, 208. https://doi.org/10.3390/su14010208
Mousa M, Saleem A, Sági J. Are ESG Shares a Safe Haven during COVID-19? Evidence from the Arab Region. Sustainability. 2022; 14(1):208. https://doi.org/10.3390/su14010208
Chicago/Turabian StyleMousa, Musaab, Adil Saleem, and Judit Sági. 2022. "Are ESG Shares a Safe Haven during COVID-19? Evidence from the Arab Region" Sustainability 14, no. 1: 208. https://doi.org/10.3390/su14010208
APA StyleMousa, M., Saleem, A., & Sági, J. (2022). Are ESG Shares a Safe Haven during COVID-19? Evidence from the Arab Region. Sustainability, 14(1), 208. https://doi.org/10.3390/su14010208