Physical Separation of Contaminated Soil Using a Washing Ejector Based on Hydrodynamic Cavitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Characterization
2.2. A Washing Ejector Based on Hydrodynamic Cavitation
2.3. Analysis Method
3. Results
3.1. Characterization of Cavitating Flow by Using a Washing Ejector
3.2. Characterization of the Contaminated Soil
3.3. Effect of Soil Separation Using a Washing Ejector
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Step (Wenzel et al., 2001) [32] | Extractable Phase | Extraction Conditions |
F1 | Non-specially bound | 0.05 M (NH4)2SO4 |
F2 | Specially bound | 0.05 M (NH4)H2PO4 |
F3 | Fe- and Al-bound amorphous hydrous oxides | 0.2 M NH4-oxalate buffer; pH 3.25 |
F4 | Fe- and Al-bound crystalline hydrous oxides | 0.2 M NH4-oxalate buffer +0.1 M ascorbic acid; pH 3.25 |
F5 | Residual | 18 mL HNO3 + 8 mL HF + 2 mL H2O2 + 2 mL H2O |
Step (Tessier et al., 1979) [33] | Extractable Phase | Extraction Conditions |
F1 | Exchangeable | 1 M MgCl2; pH 7.0 |
F2 | Bound to carbonate | 1 M NaOAc; pH 5.0 |
F3 | Bound to amorphous Fe and Mn hydroxides | 0.04 M NH2OH-HCl in 25% (v/v) HOAc |
F4 | Bound to organic matter and sulfides | 0.02 M HNO3 + 5 mL of 30% H2O2; pH 2.0, 30% H2O2; pH 2, 3.2 M NH4OAc in 20% (v/v) HN03 |
F5 | Residual | HClO4 (2 mL) + HF (10 mL), HClO4 (1 mL) + HF (10 mL), HClO4 (1 mL), 12 N HCl |
References
- Boente, C.; Sierra, C.; Rodríguez-Valdés, E.; Menéndez-Aguado, J.; Gallego, J. Soil washing optimization by means of attributive analysis: Case study for the removal of potentially toxic elements from soil contaminated with pyrite ash. J. Clean. Prod. 2017, 142, 2693–2699. [Google Scholar] [CrossRef]
- Kang, M.-J.; Kwon, Y.K.; Yu, S.; Lee, P.-K.; Park, H.-S.; Song, N. Assessment of Zn pollution sources and apportionment in agricultural soils impacted by a Zn smelter in South Korea. J. Hazard. Mater. 2019, 364, 475–487. [Google Scholar]
- Ettler, V.; Cihlová, M.; Jarošíková, A.; Mihaljevič, M.; Drahota, P.; Kříbek, B.; Vaněk, A.; Penížek, V.; Sracek, O.; Klementová, M. Oral bioaccessibility of metal (loid) s in dust materials from mining areas of northern Namibia. Environ. Int. 2019, 124, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-K.; Kang, M.-J.; Jeong, Y.-J.; Kwon, Y.K.; Yu, S. Lead isotopes combined with geochemical and mineralogical analyses for source identification of arsenic in agricultural soils surrounding a zinc smelter. J. Hazard. Mater. 2020, 382, 121044. [Google Scholar] [CrossRef]
- Ettler, V. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 2016, 64, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.-K.; Kang, M.-J.; Yu, S.; Kwon, Y.K. Assessment of trace metal pollution in roof dusts and soils near a large Zn smelter. Sci. Total Environ. 2020, 713, 136536. [Google Scholar] [CrossRef]
- Cho, K.; Kang, J.; Kim, S.; Purev, O.; Myung, E.; Kim, H.; Choi, N. Effect of inorganic carbonate and organic matter in thermal treatment of mercury-contaminated soil. Environ. Sci. Pollut. Res. 2021, 28, 48184–48193. [Google Scholar] [CrossRef]
- Liao, X.; Li, Y.; Yan, X. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process. J. Environ. Sci. 2016, 41, 202–210. [Google Scholar] [CrossRef]
- Oh, C.; Rhee, S.; Oh, M.; Park, J. Removal characteristics of As (III) and As (V) from acidic aqueous solution by steel making slag. J. Hazard. Mater. 2012, 213, 147–155. [Google Scholar] [CrossRef]
- Im, J.; Yang, K.; Jho, E.H.; Nam, K. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties. Chemosphere 2015, 138, 253–258. [Google Scholar] [CrossRef]
- Li, Y.; Liao, X.; Li, W. Combined sieving and washing of multi-metal-contaminated soils using remediation equipment: A pilot-scale demonstration. J. Clean. Prod. 2019, 212, 81–89. [Google Scholar] [CrossRef]
- Andreozzi, R.; Fabbricino, M.; Ferraro, A.; Lerza, S.; Marotta, R.; Pirozzi, F.; Race, M. Simultaneous removal of Cr(III) from high contaminated soil and recovery of lactic acid from the spent solution. J. Environ. Manag. 2020, 268, 110584. [Google Scholar] [CrossRef]
- Bianco, F.; Race, M.; Papirio, S.; Oleszczuk, P.; Esposito, G. The addition of biochar as a sustainable strategy for the remediation of PAH-contaminated sediments. Chemosphere 2021, 263, 128274. [Google Scholar] [CrossRef]
- Lee, J.-I.; Kang, J.-K.; Oh, J.-S.; Yoo, S.-C.; Lee, C.-G.; Jho, E.H.; Park, S.-J. New insight to the use of oyster shell for removing phosphorus from aqueous solutions and fertilizing rice growth. J. Clean. Prod. 2021, 328, 129536. [Google Scholar] [CrossRef]
- Kominkova, D.; Fabbricino, M.; Gurung, B.; Race, M.; Tritto, C.; Ponzo, A. Sequential application of soil washing and phytoremediation in the land of fires. J. Environ. Manag. 2018, 206, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Laflèche, M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Howard, B.H.; Roth, E.A.; Bank, T.L.; Granite, E.J.; Soong, Y. Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel 2017, 200, 506–520. [Google Scholar] [CrossRef] [Green Version]
- Ko, I.; Chang, Y.-Y.; Lee, C.-H.; Kim, K.-W. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction. J. Hazard. Mater. 2005, 127, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Yoo, J.-C.; Baek, K. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environ. Pollut. 2014, 186, 29–35. [Google Scholar] [CrossRef]
- Ma, J.; Lei, M.; Weng, L.; Li, Y.; Chen, Y.; Islam, M.S.; Zhao, J.; Chen, T. Fractions and colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings and smelter pollution. Chemosphere 2019, 227, 614–623. [Google Scholar] [CrossRef]
- Li, M.; Bussonnière, A.; Bronson, M.; Xu, Z.; Liu, Q. Study of Venturi tube geometry on the hydrodynamic cavitation for the generation of microbubbles. Miner. Eng. 2019, 132, 268–274. [Google Scholar] [CrossRef]
- Shi, H.; Li, M.; Nikrityuk, P.; Liu, Q. Experimental and numerical study of cavitation flows in venturi tubes: From CFD to an empirical model. Chem. Eng. Sci. 2019, 207, 672–687. [Google Scholar] [CrossRef]
- Musmarra, D.; Prisciandaro, M.; Capocelli, M.; Karatza, D.; Iovino, P.; Canzano, S.; Lancia, A. Degradation of ibuprofen by hydrodynamic cavitation: Reaction pathways and effect of operational parameters. Ultrason. Sonochem 2016, 29, 76–83. [Google Scholar] [CrossRef]
- Nie, G.; Hu, K.; Ren, W.; Zhou, P.; Duan, X.; Xiao, L.; Wang, S. Mechanical agitation accelerated ultrasonication for wastewater treatment: Sustainable production of hydroxyl radicals. Water Res. 2021, 198, 117124. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; He, R.; Chen, M.; Pi, S.; Zhang, F.; Zhou, A.; Zhang, Z. Intensification on mass transfer between gas and liquid in fine bubble jet reactor. J. Environ. Chem. Eng. 2021, 9, 104718. [Google Scholar] [CrossRef]
- Song, L.; Yang, J.; Yu, S.; Xu, M.; Liang, Y.; Pan, X.; Yao, L. Ultra-high efficient hydrodynamic cavitation enhanced oxidation of nitric oxide with chlorine dioxide. Chem. Eng. J. 2019, 373, 767–779. [Google Scholar] [CrossRef]
- Fang, L.; Xu, X.; Li, A.; Wang, Z.; Li, Q. Numerical investigation on the flow characteristics and choking mechanism of cavitation-induced choked flow in a Venturi reactor. Chem. Eng. J. 2021, 423, 130234. [Google Scholar] [CrossRef]
- Hung, C.M.; Huang, C.P.; Chen, C.W.; Dong, C.D. Hydrodynamic cavitation activation of persulfate for the degradation of polycyclic aromatic hydrocarbons in marine sediments. Environ. Pollut. 2021, 286, 117245. [Google Scholar] [CrossRef]
- Bermejo, D.; Escaler, X.; Ruíz-Mansilla, R. Experimental investigation of a cavitating Venturi and its application to flow metering. Flow Meas. Instrum. 2021, 78, 101868. [Google Scholar] [CrossRef]
- Shi, H.; Li, M.; Liu, Q.; Nikrityuk, P. Experimental and numerical study of cavitating particulate flows in a Venturi tube. Chem. Eng. Sci. 2020, 219, 115598. [Google Scholar] [CrossRef]
- Badve, M.; Gogate, P.; Pandit, A.; Csoka, L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep. Purif. Technol. 2013, 106, 15–21. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar]
- Tessier, A.; Campbell, P.G.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Jeong, S.; Hong, J.K.; Jho, E.H.; Nam, K. Interaction among soil physicochemical properties, bacterial community structure, and arsenic contamination: Clay-induced change in long-term arsenic contaminated soils. J. Hazard. Mater. 2019, 378, 120729. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Baek, K. Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate. J. Hazard. Mater. 2015, 284, 19–26. [Google Scholar] [CrossRef]
- Ettler, V.; Chren, M.; Mihaljevič, M.; Drahota, P.; Kříbek, B.; Veselovský, F.; Sracek, O.; Vaněk, A.; Penížek, V.; Komárek, M. Characterization of Fe-Mn concentric nodules from Luvisol irrigated by mine water in a semi-arid agricultural area. Geoderma 2017, 299, 32–42. [Google Scholar] [CrossRef]
- Xu, J.; Kleja, D.B.; Biester, H.; Lagerkvist, A.; Kumpiene, J. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil. Chemosphere 2014, 109, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Zhang, T.C. Sorption of testosterone on partially-dispersed soil particles of different size fractions: Methodology and implications. Water Res. 2016, 92, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddiqui, S.I.; Chaudhry, S.A. Iron oxide and its modified forms as an adsorbent for arsenic removal: A comprehensive recent advancement. Process Saf. Environ. Prot. 2017, 111, 592–626. [Google Scholar] [CrossRef]
- Yang, K.; Kim, B.-C.; Nam, K.; Choi, Y. The effect of arsenic chemical form and mixing regime on arsenic mass transfer from soil to magnetite. Environ. Sci. Pollut. Res. 2017, 24, 8479–8488. [Google Scholar] [CrossRef]
Soil Physicochemical Property | Major Constituents 1 | |||||
---|---|---|---|---|---|---|
Compound | wt% | Compound | wt% | |||
pH | 8.85 | SiO2 | 65.8 | SO3 | 0.99 | |
Organic matter (%) | 4.25 | Al2O3 | 17.6 | Na2O | 0.82 | |
Texture | Sand (%) | 58.4 | Fe2O3 | 5.33 | TiO2 | 0.53 |
Silt (%) | 27.6 | K2O | 3.94 | ZnO | 0.33 | |
Clay (%) | 14.0 | CaO | 2.75 | MnO | 0.05 | |
Classification | Sandy loam | MgO | 1.45 | As2O3 | 0.02 |
Pressure (MPa) | Weight (%) | |
---|---|---|
+0.075 mm | −0.075 mm | |
1 | 88.6 | 11.4 |
3 | 87.0 | 13.0 |
5 | 81.1 | 18.9 |
Contaminants | Values (mg/kg) | Regulation Level in Korea 1 (mg/kg) |
---|---|---|
As | 135.5 ± 10.7 | 25 |
Cd | 90.2 ± 8.2 | 4 |
Cu | 524.6 ± 45.0 | 150 |
Pb | 613.4 ± 44.8 | 200 |
Zn | 5034 ± 57.5 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, K.; Kim, H.; Purev, O.; Choi, N.; Lee, J. Physical Separation of Contaminated Soil Using a Washing Ejector Based on Hydrodynamic Cavitation. Sustainability 2022, 14, 252. https://doi.org/10.3390/su14010252
Cho K, Kim H, Purev O, Choi N, Lee J. Physical Separation of Contaminated Soil Using a Washing Ejector Based on Hydrodynamic Cavitation. Sustainability. 2022; 14(1):252. https://doi.org/10.3390/su14010252
Chicago/Turabian StyleCho, Kanghee, Hyunsoo Kim, Oyunbileg Purev, Nagchoul Choi, and Jaewon Lee. 2022. "Physical Separation of Contaminated Soil Using a Washing Ejector Based on Hydrodynamic Cavitation" Sustainability 14, no. 1: 252. https://doi.org/10.3390/su14010252
APA StyleCho, K., Kim, H., Purev, O., Choi, N., & Lee, J. (2022). Physical Separation of Contaminated Soil Using a Washing Ejector Based on Hydrodynamic Cavitation. Sustainability, 14(1), 252. https://doi.org/10.3390/su14010252