Adoption of Advanced Technologies in Palm Oil Milling Firms in Malaysia: The Role of Technology Attributes, and Environmental and Organizational Factors
Abstract
:1. Introduction
2. Literature Review
2.1. Advanced Milling Technologies
2.2. PESTEL Analysis
2.3. TOE Framework
2.3.1. Technology Attributes
2.3.2. Organizational Constructs
2.3.3. Environmental Constructs
3. Methodology and Data
4. Results
4.1. Descriptive Statistics
4.2. Model Parameters
4.3. Hypotheses Testing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Begum, H.; Alam, A.S.A.F.; Er, A.C.; Ghani, A.B.A. Environmental sustainability practices among palm oil millers. Clean Technol. Environ. Policy 2019, 21, 1979–1991. [Google Scholar] [CrossRef]
- MPOB. Overview of the Malaysian Oil Palm Industry. 2019. Available online: http://bepi.mpob.gov.my/images/overview/Overview_of_Industry_2019.pdf (accessed on 23 June 2019).
- Gan, P.Y.; Li, Z.D. Econometric study on Malaysia's palm oil position in the world market to 2035. Renew. Sustain. Energy Rev. 2014, 39, 740–747. [Google Scholar] [CrossRef]
- Tai-Yue, W.; Shih-Chien, C. The Influences of Technology Development on Economic Performance-The Example of ASEAN Countries. Technovation 2007, 27, 471–488. [Google Scholar]
- Jin, Z. Soft Technology—The Essential of Innovation. Futures Res. Q. 2002, 18, 1–24. [Google Scholar]
- Karlsson, C.; Taylor, M.; Taylor, A. Integrating new technology in established organizations: A mapping of integration mechanisms. Int. J. Oper. Prod. Manag. 2010, 30, 672–699. [Google Scholar] [CrossRef]
- Mat, A.; Razak, R.C. Empirical Research on the Relationship between Organizational Learning Capability and Success of Technological Product Innovation Implementation in Electrical and Electronics Sector. Aust. J. Basic Appl. Sci. 2011, 5, 730–738. [Google Scholar]
- Hassan, A.; Muhammad, N.H.; Ab Rahman, Z.; Halim, R.M.; Alias, H.; Sabtu, M. Improving Mill Oil Extraction Rate under the Malaysian National Key Economic Area. Palm Oil Eng. 2012, 103, 32–47. [Google Scholar]
- Yahaya, S.M.; Lau, S. Palm oil mill effluent (POME) from Malaysia palm oil mills: Waste or resource. Int. J. Sci. Environ. Technol. 2013, 2, 1138–1155. [Google Scholar]
- Pawanchik, A.; Sulaiman, S. Alpha Catalyst Consulting. In Search of InnovAsian: The Malaysian Innovation Climate Report 2010. 2010. Available online: https://www.alphacatalyst.com/uploads/4/5/6/0/45601163/accmalaysianinnovationclimatereport2010-100208204939-phpapp01.pdf (accessed on 25 January 2010).
- Jayaselan, H.A.J.; Ismail, W.I.W. Kinematics Analysis for Five DOF Fresh Fruit Bunch Harvester. Int. J. Agric. Biol. Eng. 2010, 3, 1–7. [Google Scholar]
- Chaminade, C.; Edquist, C. From Theory to Practice: The Use of the Systems of Innovation Approach in innovation Policy. In Innovation, Science and Institutional Change: A Research Handbook; Hage, J., Meeus, M., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 141–162. [Google Scholar]
- Woolthuis, R.K.; Lankhuizen, M.; Gilsing, V.A. System failure framework for innovation policy design. Technovation 2005, 25, 609–619. [Google Scholar] [CrossRef]
- D′Este, P.; Iammarino, S.; Savona, M.; von Tunzelmann, N. What Hampers Innovation? Evidence from the UK CIS4. Sci. Technol. Res. 2008, 168, 477–500. [Google Scholar]
- Dennis, A.; Romanus, N. Adoption of recommended palm oil processing technology in Isoko North Local Government Area, Delta State, Nigeria. Asian J. Agric. Ext. Econ. Sociol. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Nur, S.; Baba, M.D.; Norani, N. Barriers of adopting harvesting technology in Malaysian oil palm industry. Aust. J. Basic Appl. Sci. 2014, 8, 198–200. [Google Scholar]
- Ajayi, M.T.; Solomon, O. Influence of Extension Contact and Farmers’ Socio-economic Characteristics on Adoption of Oil Palm Technologies in Aniocha North Local Government, Delta State, Nigeria. J. Agric. Sci. Technol. 2010, 12, 35–46. [Google Scholar]
- Tornatsky, L.; Fleischer, M. The Process of Technology Innovation; Lexington Books: Lexington, MA, USA, 1990. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations; A Division of Simon & Schuster Inc.: New York, NY, USA, 2003. [Google Scholar]
- Nelson, R.R. Economic Development from the Perspective of Evolutionary Economic Theory. Oxf. Dev. Stud. 2008, 36, 9–21. [Google Scholar] [CrossRef]
- Lim, C.L. The use of spherical sterilizer for sterilization of fresh fruit bunches. PIPOC Int. Palm Oil Cong. 2007, 89, 29–38. [Google Scholar]
- Loh, T. The way forward in the palm oil milling process with the advent of TILTING STERILIZER. Int. Palm Oil Cong. 2009, 94, 29–42. [Google Scholar]
- Schuchardt, F.; Wulfert, K.; Darnoko, D.; Herawan, T. Effect of new palm oil mill processes on the EFB and POME Utilization. J. Oil Palm Res. 2008, D1743, 115–126. [Google Scholar]
- Chew, C.L.; Low, L.E.; Chia, W.Y.; Chew, K.W.; Liew, Z.K.; Chan, E.S.; Chan, Y.J.; Kong, P.S.; Show, P.L. Prospects of palm fruit extraction technology: Palm oil recovery processes and quality enhancement. Food Rev. Int. 2021, 17, 1–28. [Google Scholar] [CrossRef]
- Hashim, K.; Tahiruddin, S.; Jaril Asis, A. Palm and Palm Kernel Oil Production and Processing in Malaysia and Indonesia. In Palm oil Production, Processing, Characterization, and Uses; Oi-Ming, L., Ching-Ping, T., Casimir, C.A., Eds.; AOCS Press: Urbana, IL, USA, 2012; pp. 232–250. [Google Scholar]
- Bello, M.M.; Abdul Raman, A.A. Trend and Current Practices of Palm Oil Mill Effluent Polishing: Application of Advanced Oxidation Processes and Their Future Perspectives. J. Environ. Manag. 2017, 198, 170–182. [Google Scholar] [CrossRef]
- Stringer, L.C.; Fraser, E.D.G.; Harris, D.; Lyon, C.; Pereira, L.; Ward, C.F.M.; Simelton, E. Adaptation and development pathways for different types of farmers. Environ. Sci. Policy 2020, 104, 174–189. [Google Scholar] [CrossRef]
- Borowski, P.F. Adaptation strategy on regulated markets of power companies in Poland. Energy Environ. 2019, 30, 3–26. [Google Scholar] [CrossRef]
- Geels, F.W.; Johnson, V. Towards a modular and temporal understanding of system diffusion: Adoption models and socio-technical theories applied to Austrian biomass district-heating (1979–2013). Energy Res. Soc. Sci. 2018, 38, 138–153. [Google Scholar] [CrossRef]
- Agwu, A.E. Adoption of Improved Oil Palm Production and Processing Technologies in Arochukwu local government area of Abia State, Nigeria. Agro-Sci. 2006, 5, 26–35. [Google Scholar] [CrossRef]
- Ugwu, D.S. Problems and prospects of commercial small and medium scale cocoa and oil palm production in Cross River State, Nigeria. Res. J. Appl. Sci. 2009, 5, 827–832. [Google Scholar]
- Biodiin, M.B.; Akinlabi, E.T.; Okokpujie, I.P.; Fayomi, O.S.I. An Overview of Palm Oil Production Processing in Nigeria: A Case Study of Ilashe, Nigeria. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107, 012134. [Google Scholar] [CrossRef]
- Rasiah, R. Developmental States: Land Schemes, Parastatals and Poverty Alleviation in Malaysia; University Kebangsaan Malaysia: Bangi, Malaysia, 2018. [Google Scholar]
- Ngah, A.H.; Zainuddin, Y.; Ramayah, T. Applying the TOE framework in the Halal warehouse adoption study. J. Islam. Account. Bus. Res. 2017, 8, 161–181. [Google Scholar] [CrossRef]
- Lin, C.Y.; Alam, S.S.; Ho, Y.H.; Al-Shaikh, M.E.; Sultan, P. Adoption of Green Supply Chain Management among SMEs in Malaysia. Sustainability 2020, 12, 6454. [Google Scholar] [CrossRef]
- Malik, S.; Chadhar, M.; Vatanasakdakul, S.; Chetty, M. Factors Affecting the Organizational Adoption of Blockchain Technology: Extending the Technology-Organization-Environment (TOE) Framework in the Australian Context. Sustainability 2021, 13, 9404. [Google Scholar] [CrossRef]
- Awa, H.O.; Ukoha, O.; Emecheta, B.C. Using T-O-E theoretical framework to study the adoption of ERP solution. Cogent. Bus. Manag. 2016, 3, 1196571. [Google Scholar] [CrossRef]
- Ochola, P. An empirical study of determinants of e-commerce adoption amongst micro, small and medium enterprises (MSMEs) in Kenya. Int. J. Econ. Commer. Manag. 2015, 3, 223–240. [Google Scholar]
- Mata, F.J.; Fuerst, W.L.; Barney, J.B. Information Technology and Sustained Competitive Advantage: A Resource-Based Analysis. MIS Q. 1995, 19, 487–505. [Google Scholar] [CrossRef]
- Gunasekera, D.; Valenzuela, E. Adoption of blockchain technology in the australian grains trade: An assessment of potential economic effects. Econ. Pap. 2020, 39, 152–161. [Google Scholar] [CrossRef]
- Yadav, V.S.; Singh, A.R.; Raut, R.D.; Govindarajan, U.H. Blockchain technology adoption barriers in the Indian agricultural supply chain: An integrated approach. Resour. Conserv. Recycl. 2020, 161, 104877. [Google Scholar] [CrossRef]
- Ngongo, B.P.; Ochola, P.; Ndegwa, J.; Katuse, P. The technological, organizational and environmental determinants of adoption of mobile health applications (m-health) by hospitals in Kenya. PLoS ONE 2019, 14, e0225167. [Google Scholar] [CrossRef] [Green Version]
- Ramdani, B.; Kawalek, P.; Lorenzo, O. Knowledge management and enterprise systems adoption by SMEs: Predicting SMEs’ adoption of enterprise systems. J. Enterp. Inf. Manag. 2009, 22, 10–24. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Mohammed, R.R.; Fong, C.M.; Gomes, R.L.; Manickam, S.A. Novel hybrid approach of activated carbon and ultrasound cavitation for the intensification of palm oil mill effluent (POME) polishing. J. Clean. Prod. 2016, 112, 1218–1226. [Google Scholar] [CrossRef] [Green Version]
- Said, M.; Ahmad, A.; Mohammad, A.W.; Nor, M.T.M.; Sheikh Abdullah, S.R. Blocking mechanism of PES membrane during ultrafiltration of POME. J. Ind. Eng. Chem. 2015, 21, 182–188. [Google Scholar] [CrossRef]
- Sivasothy, K.; Basiron, Y.; Anhar, S.; Ramli, T.; Tan, H.; Mohammad, S. Continuous Sterilization: The new Paradigm for modernizing palm oil milling. J. Oil Palm Res. 2006, 144–152. [Google Scholar]
- Wahid, M.B.; Simeh, M.A. Issue related to production cost of palm oil in Malaysia. Oil Palm Indus. Econ. J. 2009, 9, 1–12. [Google Scholar]
- Clarke, L.; Bishop, C. Farm power-present and future availability in developing countries. Int. J. Agric. Eng. 2002, 4, 1–19. [Google Scholar]
- Nordin, A.Z.A.; Rahman, Z.A.; Hashim, Z.; Hadi, N.A.; Ismail, A.; Balu, N. Economic Assessment of Zero Waste Technology for Palm Oil Mills in Malaysia. In Proceedings of the Palm Oil Economic and Review and Outlook (R&O) Seminar 2019, Malaysian Palm Oil Board, Selangor, Malaysia, 17 January 2019. [Google Scholar]
- Baluch, N.; Sobry Abdullah, C.; Mohtar, S. Evaluating Effective Spare-parts Inventory Management for Equipment Reliability in Manufacturing Industries. Eur. J. Manag. Bus. Manag. 2013, 5, 69–75. [Google Scholar]
- Barrantes, J.O. System of Innovation and Cleaner Technologies in the Palm Oil Sector Costa Rica. In DRUID’s Nelson and Winter Conference. 2001. Available online: http//www.business.auc.dk/druid/conferences/nw/paper1/barrantes.pdf (accessed on 24 June 2021).
- Ravi Menon, N. Possible changes in milling technology. Palm Oil Eng. Bull. 2017, 123, 11–17. [Google Scholar]
- Wymer, S.A.; Regan, E.A. Factors influencing e-commerce adoption and use by small and medium businesses. Electron. Mark. 2005, 15, 438–453. [Google Scholar] [CrossRef]
- Burns, T.; Stalker, G.M. The Management of Innovation; Tavistock Publication: London, UK, 1961; pp. 120–122. [Google Scholar]
- Daft, R.L.; Becker, S.W. Innovation in Organizations: Innovation Adoption in School Organizations; Elsevier: Amsterdam, The Netherlands, 1978; 229p. [Google Scholar]
- Ukobitz, D.V. Organizational adoption of 3D printing technology: A semisystematic literature review. J. Manuf. Technol. Manag. 2020, 32, 1–27. [Google Scholar] [CrossRef]
- Baker, J. The Technology-Organization-Environment Framework. Inf. Syst. Theory 2012, 1, 231–245. [Google Scholar]
- Zaltman, G.; Duncan, R.; Holbeck, J. Innovations and Organizations; Wiley: New York, NY, USA, 1973. [Google Scholar]
- Brynjolfsson, E.; Hitt, L. Paradox Lost? Firm-Level Evidence on the Returns to Systems Spending. Manag. Sci. 1996, 42, 541–558. [Google Scholar] [CrossRef] [Green Version]
- Munyua, A.W. Global Information Society Watch Focus on ICTs and Environmental Sustainability; APC: Johannesburg, East Africa; HIVOS: The Hague, The Netherlands, 2010; pp. 161–163. [Google Scholar]
- Cetindamar, D.; Phaal, R.; Probert, D. Understanding technology management as a dynamic capability: A framework for technology management activities. Technovation 2009, 29, 237–246. [Google Scholar] [CrossRef]
- Knight, R. Convincing Skeptical Employees to Adopt New Technology. Harv. Bus. Rev. 2015, 2–7. Available online: https://hbr.org/2015/03/convincing-skeptical-employees-to-adopt-new-technology (accessed on 23 May 2018).
- Tushman, M.; Nadler, D. Organizing for Innovation. Calif. Manag. Rev. 1986, 28, 74–94. [Google Scholar] [CrossRef]
- Griliches, Z. Patent Statistics as Economic Indicators: A Survey. J. Econ. Lit. 1990, 28, 1661–1707. [Google Scholar]
- Herold, D.M.; Jayaraman, N.; Narayanaswamy, C.R. What is the relationship between organizational slack and innovation? J. Manag. Issues 2006, 18, 372–392. [Google Scholar]
- Hameed, M.A.; Counsell, S.; Swift, S. A conceptual model for the process of IT innovation adoption in organizations. J. Eng. Technol. Manag. 2012, 29, 358–390. [Google Scholar] [CrossRef]
- Hutchinson, K.; Donnell, L.V.; Gilmore, A.; Reid, A. Loyalty card adoption in SME retailers: The impact upon marketing management. Eur. J. Mark. 2015, 49, 467–490. [Google Scholar] [CrossRef]
- Markus, M.L.; Loebbecke, C. Commoditized digital processes and business community platforms: New opportunities and challenges for digital business strategies. MIS Q. 2013, 37, 649–654. [Google Scholar]
- Alali, F.A.; Yeh, C.L. Cloud computing: Overview and risk analysis. J. Inf. Syst. 2012, 26, 13–33. [Google Scholar] [CrossRef]
- Govindan, K.; Kaliyan, M.; Kannan, D.; Haq, A. Barriers analysis for green supply chain management implementation in Indian industries using analytic hierarchy process. Int. J. Prod. Econ. 2014, 47, 555–568. [Google Scholar] [CrossRef]
- Chandra, S.; Kumar, K.N. Exploring factors influencing organizational adoption of augmented reality in e-commerce: Empirical analysis using technology-organization-environment model. J. Electron. Commer. Res. 2018, 19, 237–265. [Google Scholar]
- Wongsim, M. The Importance of Influences Factors for Chooses and Use of Software and Hardware to Support Operations in Accounting Information Systems Adoption. J. Southeast Asian Res. 2013, 2013, 503638. [Google Scholar]
- Kuan, K.K.; Chau, P.Y. A perception-based model for EDI adoption in small businesses using a Technology-Organization-Environment framework. Inf. Manag. 2001, 38, 507–521. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Sabouri, M.S.; Hong, T.S.; Zulkifli, N. Information technology adoption in small and medium- sized enterprises; An Appraisal of Two Decades Literature. Interdiscip. J. Res. Bus. 2011, 1, 53–80. [Google Scholar]
- Thong, J.; Yap, C. CEO characteristics, organisational characteristics and information technology adoption in small business. Omega Int. J. Manag. Sci. 1995, 23, 429–442. [Google Scholar] [CrossRef]
- Pan, M.-J.; Jang, W.-Y. Determinants of the adoption of enterprise resource planning within the technology-organization-environment framework: Taiwan’s communications industry. J. Comput. Inf. Syst. 2008, 48, 94–102. [Google Scholar]
- Kim, D.Y.; Jang, S.; Morrison, A.M. Factors Affecting Organizational Information Technology Acceptance: A Comparison of Convention and Visitor Bureaus and Meeting Planners in the United States. J. Conv. Event Tour. 2011, 12, 1–24. [Google Scholar] [CrossRef]
- Qureshi, M.I.; Rasiah, R.A.; Al-Ghazali, B.M.; Haider, M.; Jambari, H. Modeling work practices under socio-technical systems for sustainable manufacturing performance. Sustainability 2019, 11, 4294. [Google Scholar] [CrossRef] [Green Version]
- Grover, V. From business reengineering to business process change management: A longitudinal study of trends and practices. IEEE Trans. Eng. Manag. 1999, 46, 36–46. [Google Scholar] [CrossRef]
- Lee, J.C.; Shiue, Y.C.; Chen, C.Y. Examining the impacts of organizational culture and top management support of knowledge sharing on the success of software process improvement. Comput. Hum. Behav. 2016, 54, 462–474. [Google Scholar] [CrossRef]
- Sila, I. Factors Affecting the Adoption of B2B E-commerce Technologies. J. Electron. Commer. Res. 2013, 13, 199–236. [Google Scholar] [CrossRef]
- Wüstenhagen, R.M.; Wolsink, R.M.; Bürer, M.J. Social Acceptance of Renewable Energy Innovation: An Introduction to the Concept. Energy Policy 2007, 35, 2683–2691. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.F.; Lee, G.G. Impact of Organizational Learning and Knowledge Management Factors on E-Business Adoption. Manag. Decis. 2005, 43, 171–188. [Google Scholar] [CrossRef]
- Thong, J.Y.L. An integrated model of information systems adoption in small businesses. Manag. Inf. Syst. 1999, 15, 187–214. [Google Scholar] [CrossRef]
- Madaki, Y.S.; Seng, L. Pollution Control: How Feasible is Zero Discharge Concepts in Malaysia Palm Oil Mills. Am. J. Eng. Res. 2013, 2, 239–252. [Google Scholar]
- Abdullah, M.; Zailani, S.; Iranmanesh, M.; Jayaraman, K. Barriers to green innovation initiatives among manufacturers: The Malaysian case. Rev. Manag. Sci. 2015, 10, 683–709. [Google Scholar] [CrossRef]
- Baluch, N. Maintenance Management Performance of Malaysian Palm Oil Mills. Ph.D. Thesis, University Utara Malaysia, Kedah, Malaysia, 2012. [Google Scholar]
- Bennett, J.; Pokingtorne, M. Technology Transfer for SMEs. J. Manuf. Eng. 1998, 6, 234–245. [Google Scholar] [CrossRef]
- Schumpeter, J.A. The Theory of Economic Development; Harvard University Press: Cambridge, MA, USA, 1934. [Google Scholar]
- David, P.A. Technical Innovation and Economic Growth; Cambridge University Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Davies, S. The Diffusion of Process Technologies; Cambridge University Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Nelson, R.; Winter, S. An Evolutionary Theory of Economic Change; Harvard Business Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Lall, S. India’s Manufactured Exports: Comparative Structure and Prospects. World Dev. 1999, 27, 1769–1786. [Google Scholar] [CrossRef]
- Geroski, P.A. Models of Technology Diffusion. Res. Policy 2000, 29, 603–625. [Google Scholar] [CrossRef]
- Hall, B.H.; Khan, B. Adoption of New Technology. In New Economy Handbook; Jones, D.C., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2003; pp. 230–251. [Google Scholar]
- Zhu, K.; Kraemer, K. Post-adoption variations in usage and value of E-business by organizations: Cross-country evidence from the retail industry. Inf. Syst. Res. 2005, 16, 61–84. [Google Scholar] [CrossRef] [Green Version]
- Piore, M.J.; Sabel, C.F. The Second Industrial Divide: Possibilities for Prosperity; Basic Books: New York, NY, USA, 1984. [Google Scholar]
- Ahmad, N.A.; Drus, S.M.; Kasim, H. Factors That Influence the Adoption of Enterprise Architecture by Public Sector Organizations: An Empirical Study. IEEE Access. 2020, 8, 98847–98873. [Google Scholar] [CrossRef]
- Gallego, J.M.; Gutierrez, L.H.; Lee, S.H.A. A firm-level analysis of ICT adoption in an emerging economy: Evidence from the Colombian manufacturing industries. Ind. Corp. Chang. 2014, 24, 191–221. [Google Scholar] [CrossRef] [Green Version]
- Gallego, J.M.; Gutiérrez, L.H.; Taborda, R. Innovation and productivity in the Colombian service and manufacturing industries. Emerg. Mark. Finance Trade 2015, 51, 612–634. [Google Scholar] [CrossRef]
- Jeyaraj, A.; Rottman, J.; Lacity, M. A review of the predictors, linkages, and biases in IT innovation adoption research. J. Inf. Technol. 2006, 21, 1–23. [Google Scholar] [CrossRef]
- Maqueira-Marin, J.M.; Bruque-Cámara, S.; Minguela-Rata, B. Environment Determinants in Business Adoption of Cloud Computing. Ind. Manag. Data Syst. 2017, 117, 228–246. [Google Scholar] [CrossRef]
- Oh, K.Y.; Cruickshank, D.; Anderson, A.R. The Adoption of E-trade Innovations by Korean Small and Medium Sized Firms. Technovation 2009, 29, 110–121. [Google Scholar] [CrossRef]
- Zhu, K.; Kraemer, K.; Xu, S. Electronic business adoption by European firms: A cross-country assessment of the facilitators and inhibitors. Eur. J. Inf. Syst. 2003, 12, 251–268. [Google Scholar] [CrossRef]
- Zailani, S.; Iranmanesh, M.; Sean Hyun, S.; Ali, M.H. Barriers of Biodiesel Adoption by Transportation Companies: A Case of Malaysian Transportation Industry. Sustainability 2019, 11, 931. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Ardura, I.; Meseguer-Artola, A. Toward a Longitudinal Model of e-Commerce: Environmental, Technological, and Organizational Drivers of B2C Adoption. Inf. Soc. 2010, 26, 209–227. [Google Scholar] [CrossRef]
- Bayo-Moriones, A.; Lera-Lopez, F. A Firm-Level Analysis of Determinants of ICT Adoption in Spain. Technovation 2007, 27, 352–366. [Google Scholar] [CrossRef]
- Hambali, M.S. Palm oil demand up in Turkey: Pricing a key factor. Glob. Oils Fats Bus. Mag. 2015, 12, 18–20. [Google Scholar]
- Rasiah, R.; Sharin, A. The Development of Palm Oil and Related Products in Malaysia and Indonesia. Unpublished Paper. 2006. Available online: https://www.researchgate.net/publication/237474157_Development_of_Palm_Oil_and_Related_Products_in_Malaysia_and_Indonesia (accessed on 14 December 2021).
- Taha, M.R.; Ibrahim, A.H. COD removal from anaerobically treated palm oil mill effluent (AT-POME) via aerated heterogeneous Fenton process: Optimization study. J. Water Process Eng. 2014, 1, 8–16. [Google Scholar] [CrossRef]
- Abas, R.; Kamarudin, M.F.; Nordin, A.A.B.; Simeh, M.A. A study on the Malaysian oil palm biomass sector-supply and perception of palm oil millers. Oil Palm Indus. Econ. J. 2011, 11, 28–41. [Google Scholar]
- Wu, H.-L.; Lin, B.-W.; Chen, C.-J. Examining governance-innovation relationship in the high-tech industries: Monitoring, incentive and a fit with strategic posture. Int. J. Technol. Manag. 2007, 39, 86–104. [Google Scholar] [CrossRef]
- Egwu, E.W. Factors affecting farmer’s adoption of agricultural innovation in Delta State. J. Agric. Ext. Rural Dev. 2015, 3, 177–182. [Google Scholar]
- Onwude, D.; Abdulstter, R.; Gomes, C.; Hashim, N. Mechanisation of large-scale agricultural fields in developing countries—A review. J. Sci. Food Agric. 2016, 96, 3969–3976. [Google Scholar] [CrossRef]
- Borowski, P.F. Significance and directions of energy development in African countries. Energies 2021, 14, 4479. [Google Scholar] [CrossRef]
- Creswell, J.W.; Hanson, W.E.; Clark Plano, V.L.; Morales, A. Qualitative Research Designs. Couns. Psychol. 2007, 35, 236–264. [Google Scholar] [CrossRef]
- Keller, G. Managerial Statistics, 8th ed.; South-Western Cengage Learning: Mason, OH, USA, 2008. [Google Scholar]
- Berenson, M.; Leveine, D.; Szabat, K.A. Basic Business Statistics: Concepts and Applications, 13th ed.; Pearson Higher Education: Melbourne, Australia, 2014. [Google Scholar]
- Lahaut, V.M.; Jansen, H.A.; van de Mheen, D.; Garretsen, H.F.; Verdurmen, J.E.; Van Dijk, A. Estimating non-response bias in a survey on alcohol consumption: Comparison of response waves. Alcohol Alcohol. 2003, 38, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, J.S.; Overton, T.S. Estimating nonresponse bias in mail surveys. J. Market. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef] [Green Version]
- De Winter, J.F.C.; Dodou, D. Five-point likert items: T test versus Mann-Whitney-Wilcoxon (Addendum added October 2012). Pract. Assess. Res. Eval. 2010, 15, 11. [Google Scholar]
- Adéoti, O.; Tamò, R.; Coulibaly, M. Facteurs affectant l′adoption des nouvelles technologies du niébé Vigna unguiculata en Afrique de l’Ouest’. Bull. Rech. Agron. Bénin. 2003, 36, 19–32. [Google Scholar]
- Bagozzi, R.P.; Yi, Y. On the Evaluation of Structural Equation Models. Acad. Mark. Sci. Rev. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: A Global Perspective, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Multivariate Data Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Moore, G.C.; Benbasat, I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef] [Green Version]
- Sulo, T.; Koech, P.; Chumo, C.; Chepngeno, W. Socio-economic Factors Affecting the Adoption of Improved Agricultural Technologies among Women in Marakwet County Kenya. J. Emerg. Trends Econ. Manag. Sci. 2012, 3, 312–317. [Google Scholar]
- Ghobakhloo, M.; Arias-Aranda, D.; Benitez-Amado, J. Adoption of e-commerce applications in SMEs. Ind. Manag. Data Syst. 2011, 111, 1238–1269. [Google Scholar] [CrossRef]
- Jeon, B.N.; Han, K.S.; Lee, M.J. Determining Factors for the Adoption of e-Business: The Case of SMEs in Korea. Appl. Econ. 2006, 38, 1905–1916. [Google Scholar] [CrossRef]
- Zhu, K.; Dong, S.; Xu, S.X.; Hally, M. Innovation diffusion in global contexts: Determinants of post-adoption digital transformation of European companies. Eur. J. Inf. Syst. 2006, 15, 601–616. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Kleinbaum, D.; Kupper, L.; Muller, K. Applied Regression Analysis and Other Multivariate Methods; PWS: Boston, MA, USA, 1988. [Google Scholar]
- Bowerman, B.; Connell, R. Business Statistics in Practice, 2nd ed.; McGraw-Hill/Irwin: Boston, MA, USA, 2001. [Google Scholar]
- Henriksen, H. Motivators for IOS adoption in Denmark. J. Electron. Commer. Organ. 2006, 4, 25–39. [Google Scholar] [CrossRef]
- Harun, M.Y.; Yunus, M.A.C.; Morad, N.A.; Ismail, M.H.S. An industry survey of the screw press system in palm oil mills: Operational data and malfunction issues. Eng. Fail. Anal. 2015, 54, 146–149. [Google Scholar] [CrossRef]
- Ogada, M.J.; Mwabu, G.; Muchai, D. Farm technology adoption in Kenya: A simultaneous estimation of inorganic fertilizer and improved maize variety adoption decisions. Agric. Food Econ. 2014, 2, 1–18. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Wamba, S.F.A. Conceptual Framework of RFID Adoption in Retail Using TOE Framework. Int. J. Technol. Manag. 2015, 6, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Ho¨lzl, W.; Janger, J. Distance to the frontier and the perception of innovation barriers across European countries. Res. Policy 2014, 43, 707–725. [Google Scholar] [CrossRef]
- Baluch, N.H.; Abdullah, C.S.; Mohtar, S. Maintenance management performance—An overview towards evaluating Malaysian palm oil mill. Asian J. Technol. Manag. 2010, 3, 1–5. [Google Scholar]
- Silva, M.J.; Leitao, J.; Raposo, M. Barriers to innovation faced by manufacturing firms in Portugal: How to overcome it for fostering business excellence? Int. J. Bus. Excell. 2008, 1, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Perron, M. Barriers to Environmental Performance Improvements in Canadian SMEs. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 2005. [Google Scholar]
- Canepa, A.; Stoneman, P. Financing constraints in the inter-firm diffusion of new process technologies. J. Technol. Transf. 2005, 30, 159–169. [Google Scholar] [CrossRef]
- Schumpeter, J. Capitalism, Socialism and Democracy; Allen & Unwin: London, UK, 1943. [Google Scholar]
- Johari, A.; Nyakuma, B.B.; Nor, S.H.M.; Mat, R.; Hashim, H.; Ahmad, A.; Zakaria, Z.Y.; Abdullah, T.A.T. The challenges and prospects of palm oil based biodiesel in Malaysia. Energy 2015, 81, 255–261. [Google Scholar] [CrossRef]
- Runhaar, H.; Tigchelaar, C.; Vermeulen, W.J. Environmental leaders: Making a difference. A typology of environmental leaders and recommendations for a differentiated policy approach. Bus. Strateg. Environ. 2008, 17, 160–178. [Google Scholar] [CrossRef] [Green Version]
Process | Frequency | Mean | Percentage (%) |
---|---|---|---|
Sterilization | 26 | 0.48 | 48.1 |
Oil extraction | 35 | 0.65 | 64.8 |
Oil recovery | 0 | 0 | 0 |
Kernel recovery | 18 | 0.33 | 33.3 |
Boiler operation | 15 | 0.28 | 27.8 |
Wastewater treatment | 11 | 0.20 | 20.4 |
Adoption of New Milling Technology | SME | Large | N |
---|---|---|---|
YES 1 | 14(38.9%) | 21(61.1%) | 35 |
NO 0 | 16(84.2%) | 3(15.8%) | 19 |
30 | 24 | 54 |
Mill No. | Size | Sterilization | Oil Extraction | Oil Recovery | Kernel Recovery | Boiler Operation | Wastewater Treatment | Adopter | Non-Adopter |
---|---|---|---|---|---|---|---|---|---|
1 | large | x | X | - | x | x | x | ||
2 | large | - | X | - | x | x | x | ||
3 | SME | x | X | - | |||||
4 | large | x | X | - | x | x | |||
5 | SME | - | - | - | - | - | - | x | |
6 | large | x | X | - | x | x | |||
7 | large | - | X | - | x | x | x | ||
8 | SME | - | - | - | - | - | - | x | |
9 | large | - | X | - | x | x | x | ||
10 | SME | - | - | - | - | - | - | x | |
11 | large | x | X | - | |||||
12 | SME | - | - | - | - | - | - | x | |
13 | large | x | X | - | x | x | x | ||
14 | SME | x | X | - | |||||
15 | large | - | - | - | - | - | - | x | |
16 | SME | - | X | - | |||||
17 | large | x | X | - | x | ||||
18 | SME | - | - | - | - | - | - | x | |
19 | SME | x | X | - | |||||
20 | large | x | x | - | x | x | |||
21 | large | - | x | - | x | x | |||
22 | SME | - | - | - | - | - | - | x | |
23 | SME | x | x | - | |||||
24 | large | - | - | - | x | ||||
25 | large | x | x | - | x | x | x | ||
26 | SME | - | - | - | - | - | - | x | |
27 | large | x | x | - | x | ||||
28 | SME | x | x | - | |||||
29 | large | x | x | - | x | x | x | ||
30 | SME | - | - | - | - | - | - | x | |
31 | large | x | x | - | x | ||||
32 | SME | - | - | - | - | - | - | x | |
33 | large | x | x | - | x | ||||
34 | SME | - | - | - | - | - | - | x | |
35 | large | - | x | - | x | x | x | ||
36 | large | x | x | - | x | x | |||
37 | large | - | x | - | x | x | |||
38 | SME | - | - | - | - | - | - | x | |
39 | large | x | x | - | x | x | |||
40 | SME | - | - | - | - | - | - | x | |
41 | large | x | x | - | x | ||||
42 | SME | - | - | - | - | - | - | x | |
43 | large | x | x | - | x | x | |||
44 | SME | x | x | - | - | - | x | ||
45 | large | - | - | - | - | - | - | x | |
46 | large | x | x | - | x | x | |||
47 | SME | - | - | - | - | - | - | x | |
48 | large | x | x | - | x | x | |||
49 | SME | - | - | - | - | - | - | x | |
50 | large | x | x | - | x | x | |||
51 | SME | - | - | - | - | - | - | x | |
52 | SME | x | x | - | |||||
53 | large | - | x | - | x | x | |||
54 | large | - | x | - | x | x | x |
Scales | Items | Factor Loading | AVE | Cronbach Alpha |
---|---|---|---|---|
Complexity see [19,126] | The new technology adoption process is complicated (CX1) | 0.802 | 0.597 | 0.701 |
Learning to operate new technology is easy (CX3) | 0.778 | |||
New technology usage is understandable (CX2) | 0.736 | |||
Compatibility see [19,126] | New technology is compatible with the external environment (CP3) | 0.859 | 0.630 | 0.729 |
New technology is fitting with the current operational process (CP2) | 0.808 | |||
New technology has compatibility with the existing system of conducting the firm’s operation (CP1) | 0.705 | |||
Cost see [19,34] | New technology is expensive to install and maintain (CO2) | 0.823 | 0.649 | 0.771 |
New technology is expensive to acquire (CO1) | 0.789 | |||
Financial resource and support see [72,127] | Lack of adequate capital. (FS3) | 0.827 | 0.653 | 0.802 |
lack of financial support (FS2) | 0.812 | |||
lack of credits facilities (FS1) | 0.785 | |||
Top management support see [81,103,128] | Senior managers involve decision-making on the adoption of new technology(TM2) | 0.831 | 0.623 | 0.830 |
Senior managers support the use of new technology in the process of production(TM1) | 0.805 | |||
Senior managers are likely to be interested in adopting new technology to gain a competitive advantage (TM3) | 0.729 | |||
Technical skills see [86] | Inadequate capacity at the appointed time to obtain technical knowledge (TS3) | 0.819 | 0.516 | 0.721 |
lack of available information in new technology technical support for managers and employees (TS2) | 0.670 | |||
Inadequate technical knowledge and expertise related to new technology (TS1) | 0.655 | |||
Managers’ knowledge see [85,129] | Top managers have expertise in new technology practices(MK1) | 0.804 | 0.541 | 0.742 |
Top managers have suitable knowledge in advance technology like POME treatment (MK2) | 0.660 | |||
Size of firm see [18,130] | Number of employees (SF1) | 0.870 | 0.741 | 0.737 |
Number of the technical workforce (SF2) | 0.852 | |||
Environmental pressure see [86] | A large number of mills adopt new technology (EP3) | 0.882 | 0.674 | 0.718 |
Has experienced environmental pressure to adopt new technology (EP1) | 0.807 | |||
Most of our competitors use new technology (EP2) | 0.770 | |||
Government support and policy see [86] | Inadequate government’s new technology policies to create awareness and promote uptake of the technology (GP3) | 0.887 | 0.658 | 0.706 |
Inadequate enforcement of environmental rules by government officers for adopting new technology POME (GP1) | 0.803 | |||
Inadequate subsidies for adopting new technology (GP2) | 0.737 | |||
Adoption see [25] | Kernel recovery (AD4) | 0.864 | 0.540 | 0.762 |
Sterilization (AD1) | 0.830 | |||
Boiler operation (AD5) | 0.672 | |||
Wastewater treatment (AD6) | 0.639 | |||
Oil extraction (AD2) | 0.627 |
CX | CP | CO | FSR | TMS | MK | TS | SF | EP | GSP | AD | Tolerance | VIF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CX | 0.77 | 0.654 | 1.529 | ||||||||||
CP | −0.25 | 0.79 | 0.515 | 1.941 | |||||||||
CO | 0.44 ** | −0.23 | 0.80 | 0.621 | 1.611 | ||||||||
FSR | 0.52 ** | −0.29 * | 0.56 ** | 0.80 | 0.646 | 1.547 | |||||||
TMS | −0.02 | 0.20 | −0.08 | −0.08 | 0.79 | 0.817 | 1.223 | ||||||
MK | 0.39 ** | −0.16 | 0.02 | 0.11 | 0.09 | 0.74 | 0.590 | 1.696 | |||||
TS | 0.53 ** | −0.34 * | 0.30 * | 0.23 | −0.03 | 0.37 ** | 0.72 | 0.635 | 1.576 | ||||
SF | −0.68 ** | 0.48 ** | −0.71 ** | −0.69 ** | 0.13 | −0.23 | −0.52 ** | 0.86 | 0.532 | 1.879 | |||
EP | 0.19 | 0.41 ** | 0.15 | 0.17 | −0.27 | 0.20 | 0.36 ** | −0.22 | 0.82 | 0.749 | 1.334 | ||
GSP | 0.36 ** | −0.35 ** | 0.21 | 0.29 * | −0.18 | 0.27 * | 0.35 ** | −0.38 ** | 0.15 | 0.81 | 0.540 | 1.852 | |
AD | −0.44 * | 0.23 | −0.37 ** | −0.64 ** | 0.26 * | −0.19 | −0.35 ** | 0.54 ** | −0.22 | −0.44 ** | 0.73 | - | - |
Observed Total | Predicted | Percentage Correct | ||
---|---|---|---|---|
Adopter | Non-Adopter | |||
Adopter | 35 | 29 | 6 | 82.9 |
Non-adopter | 19 | 5 | 14 | 73.7 |
Overall | 78.3 |
Predictor | B | S.E | Wald | df | Sig. | Odds Ratio | 95% C.I. for Odds Ratio | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Compatibility | 0.976 | 0.640 | 2.326 | 1 | 0.127 | 2.653 | 0.757 | 9.294 |
Complexity | −1.705 | 0.686 | 6.182 | 1 | 0.013 | 0.182 | 0.047 | 0.697 |
Cost | −1.780 | 0.698 | 6.498 | 1 | 0.011 | 0.169 | 0.043 | 0.663 |
Constant | 1.532 | 0.717 | 4.570 | 1 | 0.033 | 4.627 | ||
Overall Model Evaluation | ||||||||
Test | Chi-Squared | Df | p-Value | |||||
Likelihood Test | 14.449 | 3 | 0.002 | |||||
Goodness-of-Fit Test | ||||||||
Homer–Lemeshow Test | 4.013 | 6 | 0.675 | |||||
−2 Logistic likelihood | 60.115 | |||||||
Cox and Snell’s R Squared | 0.235 | |||||||
Nagelkerke R Squared | 0.314 |
Predictor | B | S.E | Wald | df | Sig. | Odds Ratio | 95% C.I. for Odds Ratio | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Financial support | −1.860 | 0.841 | 4.886 | 1 | 0.027 | 0.156 | 0.030 | 0.810 |
Top management support | 1.778 | 0.881 | 4.070 | 1 | 0.044 | 5.920 | 1.052 | 33.311 |
Managers’ knowledge | −0.979 | 0.694 | 1.987 | 1 | 0.159 | 0.376 | 0.096 | 1.465 |
Technical skills | −1.823 | 0.763 | 5.704 | 1 | 0.017 | 0.162 | 0.036 | 0.721 |
Size of the firm | 1.647 | 0.758 | 4.720 | 1 | 0.030 | 5.189 | 1.175 | 22.920 |
Constant | 1.004 | 0.738 | 1.850 | 1 | 0.174 | 2.728 | ||
Overall Model Evaluation | ||||||||
Test | Chi-Squared | dfDf | p-Value | |||||
Likelihood Test | 19.868 | 5 | 0.001 | |||||
Goodness-of-Fit Test | ||||||||
Homer & Lemeshow Test | 4.980 | 7 | 0.662 | |||||
−2 Logistic likelihood | 54.696 | |||||||
Cox and Snell’s R Squared | 0.308 | |||||||
Nagelkerke R Squared | 0.411 |
Predictor | B | S.E | Wald | df | Sig. | Odds Ratio | 95% C.I. for Odds Ratio | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Environment pressure | −0.333 | 0.585 | 0.323 | 1 | 0.570 | 0.717 | 0.228 | 2.257 |
Government support | −1.473 | 0.604 | 5.948 | 1 | 0.015 | 0.229 | 0.070 | 0.749 |
Constant | 1.193 | 0.551 | 4.686 | 1 | 0.030 | 3.296 | ||
Overall Model Evaluation | ||||||||
Test | Chi-Squared | dfDf | p-Value | |||||
Likelihood Test | 7.104 | 2 | 0.029 | |||||
Goodness of-Fit Test | ||||||||
Homer & Lemeshow Test | 1.536 | 2 | 0.464 | |||||
−2 Logistic likelihood | 67.459 | |||||||
Cox and Snell’s R Squared | 0.123 | |||||||
Nagelkerke R Squared | 0.165 |
Ranks | Test Statistics | |||||||
---|---|---|---|---|---|---|---|---|
N | Mean Rank | Sum of Ranks | Mann–Whitney U | Wilcoxon W | Z | Asymp. Sig. (2-Tailed) | ||
CP1 | Non-Adopters | 19 | 29.82 | 566.50 | 288.500 | 918.500 | −1.008 | 0.314 |
Adopters | 35 | 26.24 | 918.50 | |||||
Total | 54 | |||||||
CP2 | Non-Adopters | 19 | 23.92 | 454.50 | 264.500 | 454.500 | −1.415 | 0.157 |
Adopters | 35 | 29.44 | 1030.50 | |||||
Total | 54 | |||||||
CP3 | Non-Adopters | 19 | 26.63 | 506.00 | 316.000 | 506.000 | −0.354 | 0.723 |
Adopters | 35 | 27.97 | 979.00 | |||||
Total | 54 | |||||||
CX2 | Non-Adopters | 19 | 33.37 | 634.00 | 221.000 | 851.000 | −2.895 | 0.004 |
Adopters | 35 | 24.31 | 851.00 | |||||
Total | 54 | |||||||
CX1 | Non-Adopters | 19 | 20.76 | 394.50 | 204.500 | 394.500 | −2.724 | 0.006 |
Adopters | 35 | 31.16 | 1090.50 | |||||
Total | 54 | |||||||
CX3 | Non-Adopters | 19 | 20.42 | 388.00 | 198.000 | 388.000 | −2.592 | 0.010 |
Adopters | 35 | 31.34 | 1097.00 | |||||
Total | 54 | |||||||
CO1 | Non-Adopters | 19 | 19.24 | 365.50 | 175.500 | 365.500 | −3.078 | 0.002 |
Adopters | 35 | 31.99 | 1119.50 | |||||
Total | 54 | |||||||
CO2 | Non-Adopters | 19 | 21.63 | 411.00 | 221.000 | 411.000 | −2.203 | 0.028 |
Adopters | 35 | 30.69 | 1074.00 | |||||
Total | 54 | |||||||
FSR1 | Non-Adopters | 19 | 35.53 | 675.00 | 180.000 | 810.000 | −3.208 | 0.001 |
Adopters | 35 | 23.14 | 810.00 | |||||
Total | 54 | |||||||
FSR3 | Non-Adopters | 19 | 33.37 | 634.00 | 221.000 | 851.000 | −2.895 | 0.004 |
Adopters | 35 | 24.31 | 851.00 | |||||
Total | 54 | |||||||
FSR2 | Non-Adopters | 19 | 30.85 | 617.00 | 229.500 | 859.500 | −2.139 | 0.032 |
Adopters | 35 | 25.53 | 868.00 | |||||
Total | 54 | |||||||
TMS1 | Non-Adopters | 19 | 22.29 | 423.50 | 233.500 | 423.500 | −2.051 | 0.040 |
Adopters | 35 | 30.33 | 1061.50 | |||||
Total | 54 | |||||||
TMS2 | Non-Adopters | 19 | 21.89 | 416.00 | 226.000 | 416.000 | −2.279 | 0.023 |
Adopters | 35 | 30.54 | 1069.00 | |||||
Total | 54 | |||||||
TMS3 | Non-Adopters | 19 | 20.03 | 380.50 | 190.500 | 380.500 | −2.804 | 0.005 |
Adopters | 35 | 31.56 | 1104.50 | |||||
Total | 54 | |||||||
MK1 | Non-Adopters | 19 | 30.26 | 575.00 | 280.000 | 910.000 | −1.110 | 0.267 |
Adopters | 35 | 26.00 | 910.00 | |||||
Total | 54 | |||||||
MK2 | Non-Adopters | 19 | 25.58 | 486.00 | 296.000 | 486.000 | −0.810 | 0.418 |
Adopters | 35 | 28.54 | 999.00 | |||||
Total | 54 | |||||||
TS2 | Non-Adopters | 19 | 20.24 | 384.50 | 194.500 | 384.500 | −2.937 | 0.003 |
Adopters | 35 | 31.44 | 1100.50 | |||||
Total | 54 | |||||||
TS1 | Non-Adopters | 19 | 22.13 | 420.50 | 230.500 | 420.500 | −2.072 | 0.038 |
Adopters | 35 | 30.41 | 1064.50 | |||||
Total | 54 | |||||||
TS3 | Non-Adopters | 19 | 21.00 | 399.00 | 209.000 | 399.000 | −2.687 | 0.007 |
Adopters | 35 | 31.03 | 1086.00 | |||||
Total | 54 | |||||||
SF1 | Non-Adopters | 19 | 19.76 | 375.50 | 185.500 | 375.500 | −3.093 | 0.002 |
Adopters | 35 | 31.70 | 1109.50 | |||||
Total | 54 | |||||||
SF2 | Non-Adopters | 19 | 21.37 | 406.00 | 216.000 | 406.000 | −2.312 | 0.021 |
Adopters | 35 | 30.83 | 1079.00 | |||||
Total | 54 | |||||||
EP1 | Non-Adopters | 19 | 30.58 | 581.00 | 274.000 | 904.000 | −1.135 | 0.256 |
Adopters | 35 | 25.83 | 904.00 | |||||
Total | 54 | |||||||
EP2 | Non-Adopters | 19 | 29.89 | 568.00 | 287.000 | 917.000 | −0.904 | 0.366 |
Adopters | 35 | 26.20 | 917.00 | |||||
Total | 54 | |||||||
EP3 | Non-Adopters | 19 | 28.84 | 548.00 | 307.000 | 937.000 | −0.525 | 0.600 |
Adopters | 35 | 26.77 | 937.00 | |||||
Total | 54 | |||||||
GSP1 | Non-Adopters | 19 | 20.97 | 398.50 | 208.500 | 398.500 | −2.564 | 0.010 |
Adopters | 35 | 31.04 | 1086.50 | |||||
Total | 54 | |||||||
GSP2 | Non-Adopters | 19 | 22.21 | 422.00 | 232.000 | 422.000 | −2.346 | 0.019 |
Adopters | 35 | 30.37 | 1063.00 | |||||
Total | 54 | |||||||
GSP3 | Non-Adopters | 19 | 21.53 | 409.00 | 219.000 | 409.000 | −2.289 | 0.022 |
Adopters | 35 | 30.74 | 1076.00 | |||||
Total | 54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvand, S.; Rasiah, R. Adoption of Advanced Technologies in Palm Oil Milling Firms in Malaysia: The Role of Technology Attributes, and Environmental and Organizational Factors. Sustainability 2022, 14, 260. https://doi.org/10.3390/su14010260
Parvand S, Rasiah R. Adoption of Advanced Technologies in Palm Oil Milling Firms in Malaysia: The Role of Technology Attributes, and Environmental and Organizational Factors. Sustainability. 2022; 14(1):260. https://doi.org/10.3390/su14010260
Chicago/Turabian StyleParvand, Sima, and Rajah Rasiah. 2022. "Adoption of Advanced Technologies in Palm Oil Milling Firms in Malaysia: The Role of Technology Attributes, and Environmental and Organizational Factors" Sustainability 14, no. 1: 260. https://doi.org/10.3390/su14010260
APA StyleParvand, S., & Rasiah, R. (2022). Adoption of Advanced Technologies in Palm Oil Milling Firms in Malaysia: The Role of Technology Attributes, and Environmental and Organizational Factors. Sustainability, 14(1), 260. https://doi.org/10.3390/su14010260