Mitigating Harmful Effects of Climate Warming on Ceiling Paintings by Ceiling Insulation: An Evaluation Using Timed IR Imaging and Numeric Modelling
Abstract
:1. Introduction
2. Research Aim
3. Materials and Methods
3.1. In Situ Measurements
3.2. FE Model
4. Results and Discussion
4.1. Microclimatic Analysis of the Stair Hall
4.2. Air Humidity
4.3. Water Vapour Diffusion
4.4. Surface Temperatures at the Ceiling
4.5. Results of the Numeric Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zentralanstalt für Meterologie und Geodynamik. Klima Aktuell—Klimamonitoring—Tagesmitteltemperaturen Wien Hohe Warte. Available online: https://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring/?param=t&period=period-ymd-2020-04-02&ref=3 (accessed on 3 April 2020).
- Umweltbundesamt GmbH. Der Klimawandel in Wien. Available online: https://data.ccca.ac.at/dataset/factsheet_der_klimawandel_in_wien-v01/resource/445ce4cf-7d12-464e-b9ec-0b10f65e1ca8 (accessed on 5 April 2020).
- Sesana, E.; Bertolin, C.; Gagnon, A.; Hughes, J. Mitigating Climate Change in the Cultural Built Heritage Sector. Climate 2019, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Sesana, E.; Gagnon, A.; Bertolin, C.; Hughes, J. Adapting Cultural Heritage to Climate Change Risks: Perspectives of Cultural Heritage Experts in Europe. Geosciences 2018, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Kain, G.; Idam, F.; Huber, A.; Goldsteiner, M. Luftbrunnenanlage des Burgtheaters Wien: Nachhaltige Klimatisierungsstrategien (Air well system of the Burgtheater Vienna: Sustainable cooling strategies). Bauphysik 2021, 43, 1–11. [Google Scholar] [CrossRef]
- Sabbioni, X.; Cassar, M.; Brimblecombe, P.; Lefevre, R. Vulnerability of Cultural Heritage to Climate Change: European and Mediterranean Major Hazards Agreement; Council of Europe: Strasbourg, France, 2008. [Google Scholar]
- Balocco, C. Daily natural heat convection in a historical hall. J. Cult. Herit. 2007, 8, 370–376. [Google Scholar] [CrossRef]
- Camuffo, D.; Bernardi, A.; Sturaro, G.; Valentino, A. The microclimate inside the Pollaiolo and Botticelli rooms in the Uffizi Gallery, Florence. J. Cult. Herit. 2002, 3, 155–161. [Google Scholar] [CrossRef]
- Heydecke, F. Aus Alt mach Neu—Meine Klimaanlage macht nicht was ich will. Beiträge Zur Erhalt. Von Kunst-Kult. VDR Fachz. 2008, 1, 101–106. [Google Scholar]
- Huber, A. Ökosystem Museum. Grundlagen zu Einem Konservatorischen Betriebskonzept für die Neue Burg in Wien. Ph.D. Thesis, Akademie der Bildenden Künste Wien, Wien, Austria, 2011. [Google Scholar]
- Sreshthaputra, A.; Haberl, J.; Andrews, M. Improving building design and operation of a Thai Buddhist temple. Energy Build. 2004, 36, 481–494. [Google Scholar] [CrossRef]
- Doménech-Carbó, M.T.; Edwards, H.G.; Doménech-Carbó, A.; del Hoyo-Meléndez, J.M.; de La Cruz-Cañizares, J. An authentication case study: Antonio Palomino versus Vicente Guillo paintings in the vaulted ceiling of the Sant Joan del Mercat church (Valencia, Spain). J. Raman Spectrosc. 2012, 43, 1250–1259. [Google Scholar] [CrossRef]
- Koller, M. Untersuchung der Deckenbilder und Stuckrahmungen in der SO-Ecke der südlichen Feststiege des Burgtheaters. Expert Opinion. 2020, unpublished. [Google Scholar]
- Byrne, A.; Byrne, G.; Davies, A.; Robinson, A.J. Transient and quasi-steady thermal behaviour of a building envelope due to retrofitted cavity wall and ceiling insulation. Energy Build. 2013, 61, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Drobiec, Ł.; Wyczółkowski, R.; Kisiołek, A. Numerical Modelling of Thermal Insulation of Reinforced Concrete Ceilings with Complex Cross-Sections. Appl. Sci. 2020, 10, 2642. [Google Scholar] [CrossRef] [Green Version]
- Kain, G.; Gschwandtner, F.; Idam, F. Der Wärmedurchgang bei Doppelfenstern—Konzept zur In-situ-Bewertung historischer Konstruktionen. Bauphysik 2017, 39, 144–147. [Google Scholar] [CrossRef]
- Kain, G.; Idam, F.; Federspiel, F.; Réh, R.; Krišťák, Ľ. Suitability of Wooden Shingles for Ventilated Roofs: An Evaluation of Ventilation Efficiency. Appl. Sci. 2020, 10, 6499. [Google Scholar] [CrossRef]
- Mudri, M. Möglichkeiten und Grenzen der Thermografie. Bauforschung an historischen Gebäuden mittels Infrarot-Untersuchung. Sachverständige 2017, 4, 188–196. [Google Scholar]
- Bodnar, J.L.; Candoré, J.C.; Nicolas, J.L.; Szatanik, G.; Detalle, V.; Vallet, J.M. Stimulated infrared thermography applied to help restoring mural paintings. NDT E Int. 2012, 49, 40–46. [Google Scholar] [CrossRef]
- Cadelano, G.; Bison, P.; Bortolin, A.; Ferrarini, G.; Peron, F.; Girotto, M.; Volinia, M. Monitoring of historical frescoes by timed infrared imaging analysis. Opto-Electron. Rev. 2015, 23, 100–106. [Google Scholar] [CrossRef]
- Grinzato, E.; Bison, P.; Marinetti, S.; Vavilov, V. Nondestructive evaluation of delaminations in fresco plaster using transient infrared thermography. Res. Nondestruct. Eval. 1994, 5, 257–274. [Google Scholar] [CrossRef]
- Wehdorn, M. Die Bautechnik der Wiener Ringstraße; Steiner: Wiesbaden, Germany, 1979. [Google Scholar]
- Stadler, G. Expert Opinion on the Construction of the Vault in the Burgtheater Vienna. 2020, unpublished. [Google Scholar]
- Heindl, K. Photography splendour stair hall Burgtheater Vienna, Vienna. unpublished.
- Fritze, R. Deckenaufbau Burgtheater Decke Über Feststiege. Expert Opinion 2020, unpublished. [Google Scholar]
- Koller, M. Marouflagemalerei um 1900: Zur Restaurierung des Wiener Parlamentfrieses. Restauro 1996, 102, 406–409. [Google Scholar]
- Arendt, C. The role of the architectural fabric in the preservation of wall painting. In Proceedings of the Conservation of Wall Paintings: Proceedings of a Symposium Organized by the Courtauld Institute of Art and the Getty Conservation Institute, London, UK, 13–16 July 1987. [Google Scholar]
- Bundestheaterholding. Plans of the Burgtheater Vienna, Vienna. unpublished.
- Merello, P.; García-Diego, F.-J.; Zarzo, M. Microclimate monitoring of Ariadne’s house (Pompeii, Italy) for preventive conservation of fresco paintings. Chem. Cent. J. 2012, 6, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauklimatik Dresden Software GmbH. Delphin—Programm- und Modelldokumentation. Available online: www.bauklimatik-dresden.de/delphin/documentation (accessed on 18 April 2020).
- Sontag, L.; Nicolai, A.; Vogelsang, S. Validierung der Solverimplementierung des Hygrothermischen Simulationsprogramms Delphin; Technical Report; Technische Universität Dresden: Dresden, Germany, 2013. [Google Scholar]
- UNI 10829. Works of Art of Historical Importance—Ambient Conditions or the Conservation—Measurement and Analysis; Uni: Rome, Italy, 1999. [Google Scholar]
- Zarzo, M.; Fernández-Navajas, A.; García-Diego, F.-J. Long-term monitoring of fresco paintings in the cathedral of Valencia (Spain) through humidity and temperature sensors in various locations for preventive conservation. Sensors 2011, 11, 8685–8710. [Google Scholar] [CrossRef]
- Erhard, D.; Mecklenburg, M. Relative Humidity re-examined, Preventive Conservation. Prepr. IIC-Ott. Congr. 1994, 32–43. [Google Scholar]
- Thompson, G. The Museum Environment, 2nd ed.; Routledge: London, UK, 2018. [Google Scholar]
- Camuffo, D.; Pagan, E.; Rissanen, S.; Bratasz, Ł.; Kozłowski, R.; Camuffo, M.; Della Valle, A. An advanced church heating system favourable to artworks: A contribution to European standardisation. J. Cult. Herit. 2010, 11, 205–219. [Google Scholar] [CrossRef]
- Bernardi, A.; Todorov, V.; Hiristova, J. Microclimatic analysis in St. Stephan’s church, Nessebar, Bulgaria after interventions for the conservation of frescoes. J. Cult. Herit. 2000, 1, 281–286. [Google Scholar] [CrossRef]
- Mundt-Petersen, S.O.; Harderup, L.-E. Predicting hygrothermal performance in cold roofs using a 1D transient heat and moisture calculation tool. Build. Environ. 2015, 90, 215–231. [Google Scholar] [CrossRef]
Position of the Sensor | Sensor ID | Measuring Device (Sensor) |
---|---|---|
Exterior temperature | T1 | Testo 174 T |
Archive stair hall attic | T2 | Testo 174 T |
Archive stair hall ground floor | T3 | Testo 174 T |
Stair hall intermediate landing | T4 | Testo 174 T |
Stair hall after staircase | T5 | Testo 174 T |
30 cm below ceiling cornice | T6 | Almemo 5690 |
Stair hall attic | T7 | Almemo 2590 |
Attic surface mortar | T8 | Almemo 2590 |
Attic surface iron clasps | T9 | Almemo 2590 |
Surface painting | T10 | Almemo 5690 |
Ceiling cornice east corner | T11 | Almemo 5690 |
Air humidity attic | H1 | Testo 174 H |
Air humidity stair hall | H2 | Almemo 5690 |
IR spot ceiling cornice | Sp1 | FLIR T640 |
IR spot iron ribs | Sp2 | FLIR T640 |
IR spot field | Sp3 | FLIR T640 |
Position of the Sensor | Thickness (cm) | Density (kg/m3) | Spec. Heat Capacity (J/kgK) | Thermal Conductivity (W/mK) | |
---|---|---|---|---|---|
Cellulose insulation | 20 | 55 | 2544 | 0.048 | 2 |
Lime plaster | 1 | 2100 | 1000 | 2.1 | 9 |
Iron rib | 11.5 | 7800 | 470 | 47 | 200,000 |
Solid brick | 11.5 | 1600 | 950 | 0.78 | 9 |
Air layer | 1.5 | 1.3 | 1050 | 0.9 | 1 |
Lathing/air (mix layer) | 2.5 | 200 | 1245 | 0.14 | 5 |
Lime plaster | 1.5 | 1500 | 800 | 0.4 | 9 |
Position of the Sensor | Average | SD | Minimum | Maximum | |
---|---|---|---|---|---|
Exterior temperature (T1) | °C | 17.2 | 5.9 | 2.7 | 37.8 |
Archive staircase attic (T2) | °C | 24.9 | 6.1 | 12.0 | 43.5 |
Archive staircase ground floor (T3) | °C | 17.9 | 4.1 | 9.0 | 33.2 |
Stair hall intermediate landing (T4) | °C | 20.7 | 3.2 | 13.9 | 32.4 |
Stair hall after staircase (T5) | °C | 21.2 | 3.5 | 14.2 | 32.7 |
30 cm below ceiling cornice (T6) | °C | 21.8 | 3.8 | 13.9 | 30.3 |
Stair hall attic (T7) | °C | 21.5 | 6.4 | 7.9 | 37.7 |
Attic surface mortar (T8) | °C | 20.9 | 5.7 | 8.7 | 34.1 |
Attic surface iron clasps (T9) | °C | 21.0 | 5.5 | 9.4 | 33.3 |
Surface painting (T10) | °C | 20.8 | 4.2 | 11.9 | 29.6 |
Ceiling cornice east corner (T11) | °C | 20.8 | 4.2 | 12.6 | 30.10 |
Air humidity attic (H1) | % | 48.1 | 6.7 | 30.8 | 74.4 |
Air humidity stair hall (H2) | % | 41.0 | 8.7 | 22.0 | 61.0 |
Vapour pressure stair hall (H1) | Pa | 1130 | 440 | 415 | 2179 |
Vapour pressure attic (H2) | Pa | 1306 | 525 | 423 | 3577 |
Air moisture content attic (H1) | g/m3 | 9 | 4 | 3 | 26 |
Air moisture content stair hall (H2) | g/m3 | 8 | 3 | 3 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kain, G.; Idam, F.; Huber, A.; Mudri, M.; Petutschnigg, A.; Goldsteiner, M. Mitigating Harmful Effects of Climate Warming on Ceiling Paintings by Ceiling Insulation: An Evaluation Using Timed IR Imaging and Numeric Modelling. Sustainability 2022, 14, 308. https://doi.org/10.3390/su14010308
Kain G, Idam F, Huber A, Mudri M, Petutschnigg A, Goldsteiner M. Mitigating Harmful Effects of Climate Warming on Ceiling Paintings by Ceiling Insulation: An Evaluation Using Timed IR Imaging and Numeric Modelling. Sustainability. 2022; 14(1):308. https://doi.org/10.3390/su14010308
Chicago/Turabian StyleKain, Günther, Friedrich Idam, Alfons Huber, Martin Mudri, Alexander Petutschnigg, and Markus Goldsteiner. 2022. "Mitigating Harmful Effects of Climate Warming on Ceiling Paintings by Ceiling Insulation: An Evaluation Using Timed IR Imaging and Numeric Modelling" Sustainability 14, no. 1: 308. https://doi.org/10.3390/su14010308
APA StyleKain, G., Idam, F., Huber, A., Mudri, M., Petutschnigg, A., & Goldsteiner, M. (2022). Mitigating Harmful Effects of Climate Warming on Ceiling Paintings by Ceiling Insulation: An Evaluation Using Timed IR Imaging and Numeric Modelling. Sustainability, 14(1), 308. https://doi.org/10.3390/su14010308