Simulating Potential Impacts of Future Climate Change on Post-Rainy Season Sorghum Yields in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climate, Soil and Crop Management Data
2.2. Climate Scenarios and Bias Correction Technique
2.3. Crop Model Description and Yield Simulations
2.4. Crop Model Evaluation Protocols
3. Results
3.1. Evaluation of the CMIP5 Multi-Climate Model Mean (MMM)
3.2. Climate Change Scenarios
3.3. Evaluation of the Simulated Yields under the Historical Period
3.4. Impacts on Sorghum Yields
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harlan, J.R.; de Wet, J.M.J. Simplified Classification of Cultivated Sorghum A. Crop. Sci. 1972, 12, 172–176. [Google Scholar] [CrossRef]
- Mundia, C.W.; Secchi, S.; Akamani, K.; Wang, G. A Regional Comparison of Factors Affecting Global Sorghum Production: The Case of North America, Asia and Africa’s Sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef] [Green Version]
- Charyulu, K.D.; Cynthia, B.; Bvs, R.; Ashok, K.A.; Moses, S.D. Development and Diffusion of Sorghum Improved Cultivars in India: Impact on Growth and Stability in Yield; Working paper series no. 50; International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 2014. [Google Scholar]
- GOI. Available online: www.agricoop.nic.in (accessed on 7 June 2021).
- Kumar, A.A.; Reddy, B.V.S.; Ramaiah, B.; Sahrawat, K.L.; Pfeiffer, W.H. Genetic Variability and Character Association for Grain Iron and Zinc Contents in Sorghum Germplasm Accessions and Commercial Cultivars; Hyderabad. Eur. J. Plant Sci. Biotechnol. 2012, 6, 1–5. [Google Scholar]
- Ashok Kumar, A.; Reddy, B.V.S.; Ramaiah, B.; Sahrawat, K.L.; Pfeiffer, W.H. Gene Effects and Heterosis for Grain Iron and Zinc Concentration in Sorghum [Sorghum Bicolor (L.) Moench]. Field Crops Res. 2013, 146, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Pray, C.E.; Nagarajan, L. “Improving Crops for arid Lands”: Pearl Millet and Sorghum in India. In Millions Fed: Proven Successes in Agricultural Development; Spielman, D.J., Pandya-Lorch, R., Eds.; International Food Policy Research Institute: Washington, DC, USA, 2009; Volume 12, pp. 83–88. [Google Scholar]
- Gali, B.; Rao, P.P. Regional Analysis of Household Consumption of Sorghum in Major Sorghum-Producing and Sorghum-Consuming States in India. Food Secur. 2012, 4, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.P.; Basavaraj, G.; Ahmad, W.; Bhagavatula, S. An Analysis of Availability and Utilization of Sorghum Grain in India. J. SAT Agri. Res. 2010, 8, 1–8. [Google Scholar]
- Talwar, H.S.; Elangovan, M.; Patil, J.V. (Eds.) Sorghum-A Potential Crop to Adapt to Future Climate Change Scenario. In Managing Intellectual Property under PVP and PGR; Directorate of Sorghum Research (DSR): Hyderabad, India, 2013; pp. 254–256. [Google Scholar]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.B.; Tignor, M.; Miller, H.L. (Eds.) Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; ISBN 9780521880091. [Google Scholar]
- Cline, W.R. (Ed.) Global Warming and Agriculture: Impact Estimates by Country; Peterson Institute for International Economics: Washington, DC, USA, 2007. [Google Scholar]
- Srivastava, A.; Naresh Kumar, S.; Aggarwal, P.K. Assessment on Vulnerability of Sorghum to Climate Change in India. Agric. Ecosyst. Environ. 2010, 138, 160–169. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; MacMillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Ribeiro, E.; Samuel-Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE 2014, 9, e105992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagire, G.S.; Gadakh, S.R.; Shinde, M.S.; Dalvi, U.S.; Awari, V.R.; Gadakh, S.S. Seasonal Variation in Sowing and Its Effect on Ethanol and Biomass Yield of Sweet Sorghum. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 43, 716–726. [Google Scholar] [CrossRef]
- Trivedi, T.P. (Ed.) Handbook of Agriculture; Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research: New Delhi, India, 2008. [Google Scholar]
- Rana, B.S.; Rao, M.H.; Indira, S.; Singh, B.U. Technology for Increasing Sorghum Production and Value Addition; Director and Project Coordinator (AICSIP) National Research Centre for Sorghum: Solapur, India, 1999. [Google Scholar]
- Hosmani, M.M.; Chittapur, B.M. Sorghum Production Technology; University of Agricultural Sciences: Dharwad, India, 1997. [Google Scholar]
- Singh, P.; Nedumaran, S.; Traore, P.C.S.; Boote, K.J.; Rattunde, H.F.W.; Prasad, P.V.V.; Singh, N.P.; Srinivas, K.; Bantilan, M.C.S. Quantifying Potential Benefits of Drought and Heat Tolerance in Rainy Season Sorghum for Adapting to Climate Change. Agric. For. Meteorol. 2014, 185, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Sandeep, V.M.; Rao, U.M.v.; Bapuji Rao, B.; Bharathi, G.; Pramod, V.P.; Santhibhushan Chowdary, P.; Patel, N.R.; Mukesh, P.; Vijaya Kumar, P. Sandeep 2018. J. Agrometeorol. 2018, 20, 89–96. [Google Scholar]
- Rajeevan, M.; Unnikrishnan, C.K.; Preethi, B. Evaluation of the ENSEMBLES Multi-Model Seasonal Forecasts of Indian Summer Monsoon Variability. Clim. Dyn. 2012, 38, 2257–2274. [Google Scholar] [CrossRef]
- Lorenz, C.; Portele, T.C.; Laux, P.; Kunstmann, H. Bias-corrected and spatially disaggregated seasonal forecasts: A long-term reference forecast product for the water sector in semi-arid regions. Earth Syst. Sci. Data 2021, 13, 2701–2722. [Google Scholar] [CrossRef]
- Giorgi, F. Simulation of Regional Climate Using a Limited Area Model Nested in a General Circulation Model. Am. Meteorol. Soc. 1990, 3, 941–963. [Google Scholar] [CrossRef] [Green Version]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D.P. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Chang. 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Technical Note: Bias Correcting Climate Model Simulated Daily Temperature Extremes with Quantile Mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Wen, X. Projection of China’s near- and Long-Term Climate in a New High-Resolution Daily Downscaled Dataset NEX-GDDP. J. Meteorol. Res. 2017, 31, 236–249. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; Wall, G.W. Methodologies for Simulating Impacts of Climate Change on Crop Production. Field Crop. Res. 2011, 124, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Ritchie, I.T. Soil Water Balance and Plant Water Stress. In Understanding Options for Agricultural Production; Tsuji, G.Y., Hoogenboom, G., Thornton, P.K., Eds.; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the Evaluation and Comparison of Models. J. Geophys. Res. 1985, 90, 8995. [Google Scholar] [CrossRef] [Green Version]
- Garnier, P.; Nell, C.; Mary, B.; Lafolie, F. Evaluation of a Nitrogen Transport and Transformation Model in a Bare Soil. Eur. J. Soil Sci. 2001, 52, 253–268. [Google Scholar] [CrossRef]
- Rao, K.K.; Kulkarni, A.; Patwardhan, S.; Kumar, B.V.; Kumar, T.V.L. Future Changes in Precipitation Extremes during Northeast Monsoon over South Peninsular India. Theor. Appl. Climatol. 2020, 142, 205–217. [Google Scholar] [CrossRef]
- Raghavan, S.v.; Hur, J.; Liong, S.Y. Evaluations of NASA NEX-GDDP Data over Southeast Asia: Present and Future Climates. Clim. Chang. 2018, 148, 503–518. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Kitoh, A.; Endo, H.; Krishna Kumar, K.; Cavalcanti, I.F.A.; Goswami, P.; Zhou, T. Monsoons in a Changing World: A Regional Perspective in a Global Context. J. Geophys. Res. Atmos. 2013, 118, 3053–3065. [Google Scholar] [CrossRef] [Green Version]
- Seth, A.; Rauscher, S.A.; Biasutti, M.; Giannini, A.; Camargo, S.J.; Rojas, M. CMIP5 Projected Changes in the Annual Cycle of Precipitation in Monsoon Regions. J. Clim. 2013, 26, 7328–7351. [Google Scholar] [CrossRef]
- Good, S.P.; Caylor, K.K. Climatological Determinants of Woody Cover in Africa. Proc. Natl. Acad. Sci. USA 2011, 108, 4902–4907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, K.; Sultan, B.; Biasutti, M.; Baron, C.; Lobell, D.B. What Aspects of Future Rainfall Changes Matter for Crop Yields in West Africa? Geophys. Res. Lett. 2015, 42, 8001–8010. [Google Scholar] [CrossRef]
- Porporato, A.; Daly, E.; Rodriguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Nat. 2004, 164, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Boote, K.J.; Prasad, V.; Allen, L.H.; Singh, P.; Jones, J.W. Modeling Sensitivity of Grain Yield to Elevated Temperature in the DSSAT Crop Models for Peanut, Soybean, Dry Bean, Chickpea, Sorghum, and Millet. Eur. J. Agron. 2018, 100, 99–109. [Google Scholar] [CrossRef]
- Ziskaac, L.H.; Weerakoona, W.; Pamplonab, R. The Influence of Nitrogen on the Elevated CO2 Response in Field-Grown Rice. Aust. J. Plant Physiol. 1996, 23, 45–52. [Google Scholar]
- Poorter, H.; Navas, M.-L. Tansley Review Plant Growth and Competition at Elevated CO2: On Winners, Losers and Functional Groups. New Phytol. 2002, 157, 175–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Runion, G.B. Elevated Atmospheric CO2 Effects on N Fertilization in Grain Sorghum and Soybean. Field Crop. Res. 2004, 88, 57–67. [Google Scholar] [CrossRef]
- Grant, B.; Smith, W.N.; Desjardins, R.; Lemke, R.; Li, C. Estimated N2O and CO2 emissions as influenced by agricultural practices in Canada. Clim. Chang. 2004, 65, 315–332. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H. Adverse High Temperature Effects on Pollen Viability, Seed-Set, Seed Yield and Harvest Index of Grain-Sorghum [Sorghum Bicolor (L.) Moench] Are More Severe at Elevated Carbon Dioxide Due to Higher Tissue Temperatures. Agric. For. Meteorol. 2006, 139, 237–251. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Pisipati, S.R.; Mutava, R.N.; Tuinstra, M.R. Sensitivity of Grain Sorghum to High Temperature Stress during Reproductive Development. Crop. Sci. 2008, 48, 1911–1917. [Google Scholar] [CrossRef] [Green Version]
- Djanaguiraman, M.; Perumal, R.; Jagadish, S.V.K.; Ciampitti, I.A.; Welti, R.; Prasad, P.V.V. Sensitivity of Sorghum Pollen and Pistil to High-Temperature Stress. Plant Cell Environ. 2018, 41, 1065–1082. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Nguyen, C.T.; Yang, Z.; Chapman, S.C.; van Oosterom, E.J.; Hammer, G.L. Genotypic Differences in Effects of Short Episodes of High-Temperature Stress during Reproductive Development in Sorghum. Crop. Sci. 2016, 56, 1561–1572. [Google Scholar] [CrossRef]
- Prasad, P.V.V.; Djanaguiraman, M.; Perumal, R.; Ciampitti, I.A. Impact of High Temperature Stress on Floret Fertility and Individual Grain Weight of Grain Sorghum: Sensitive Stages and Thresholds for Temperature and Duration. Front. Plant Sci. 2015, 6, 820. [Google Scholar] [CrossRef] [PubMed]
- Sunoj, V.S.J.; Somayanda, I.M.; Chiluwal, A.; Perumal, R.; Prasad, P.V.V.; Jagadish, S.V.K. Resilience of Pollen and Post-Flowering Response in Diverse Sorghum Genotypes Exposed to Heat Stress under Field Conditions. Crop. Sci. 2017, 57, 1658–1669. [Google Scholar] [CrossRef]
- Tack, J.; Lingenfelser, J.; Jagadish, S.V.K. Disaggregating Sorghum Yield Reductions under Warming Scenarios Exposes Narrow Genetic Diversity in US Breeding Programs. Proc. Natl. Acad. Sci. USA 2017, 114, 9296–9301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobell, D.B.; Hammer, G.L.; Chenu, K.; Zheng, B.; Mclean, G.; Chapman, S.C. The Shifting Influence of Drought and Heat Stress for Crops in Northeast Australia. Glob. Chang. Biol. 2015, 21, 4115–4127. [Google Scholar] [CrossRef] [PubMed]
No. | Organisation | Model Name | Country | Grid Resolution |
---|---|---|---|---|
1 | Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM) in Australia | ACCESS1.0 | Australia | 144 × 192 |
2 | Beijing Climate Center, China Meteorological Administration | BCC-CSM1.1 | China | 64 ×128 |
3 | Beijing Normal University | BNU-ESM | China | 64 ×128 |
4 | Canadian Centre for Climate Modelling and Analysis | CanESM2 | Canada | 64 ×128 |
5 | National Center for Atmospheric Research | CCSM4 | USA | 192 × 288 |
6 | National Science Foundation, Department of Energy, NCAR | CESM1-BGC | USA | 192 × 288 |
7 | Centre National de Recherches Meteorologiques, Centre Europeen de Recherche et Formation Avancees en Calcul Scientifique | CNRM-CM5 | France | 128 × 256 |
8 | Commonwealth Scientific and Industrial Research Organization in collaboration with the Queensland Climate Change Centre of Excellence | CSIRO-Mk3.6.0 | Australia | 96 × 192 |
9 | NOAA Geophysical Fluid Dynamics Laboratory | GFDL-ESM2G GFDL-ESM2M | USA USA | 90 × 144 90 × 144 |
10 | Institute for Numerical Mathematics | INM-CM4 | Russia | 120 × 180 |
11 | Institut Pierre-Simon Laplace | IPSL-CM5A-LR IPSL-CM5A-MR | France France | 96 × 96 143 × 144 |
12 | Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National Institute for Environmental Studies | MIROC-ESM MIROC-ESM-CHEM | Japan Japan | 64 × 128 64 × 128 |
13 | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies and Japan Agency for Marine-Earth Science and Technology | MIROC5 | Japan | 128 × 256 |
14 | Max Planck Institute for Meteorology | MPI-ESM-LR MPI-ESM-MR | Germany Germany | 96 × 192 96 × 192 |
15 | Meteorological Research Institute | MRI-CGCM3 | Japan | 160 × 320 |
16 | Norwegian Climate Centre | NorESM1-M | Norway | 96 × 144 |
Yields (Kg/ha) | Coefficient of Determination (R2) | RMSE | NRMSE | d Index | ||
---|---|---|---|---|---|---|
OBS | SIM | |||||
Andhra Pradesh | 1305 | 1447 | 0.73 | 217.09 | 0.17 | 0.86 |
Chhattisgarh | 892 | 988 | 0.72 | 271.00 | 0.20 | 0.88 |
Gujarat | 1034 | 1144 | 0.73 | 270.00 | 0.14 | 0.88 |
Karnataka | 898 | 967 | 0.48 | 261.00 | 0.14 | 0.86 |
Maharashtra | 858 | 909 | 0.36 | 255.12 | 0.13 | 0.82 |
Madya Pradesh | 1467 | 1597 | 0.75 | 300.17 | 0.13 | 0.85 |
Telangana State | 881 | 1017 | 0.40 | 301.44 | 0.23 | 0.67 |
Tamil Nadu | 1786 | 1993 | 0.53 | 280.48 | 0.11 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chadalavada, K.; Gummadi, S.; Kundeti, K.R.; Kadiyala, D.M.; Deevi, K.C.; Dakhore, K.K.; Bollipo Diana, R.K.; Thiruppathi, S.K. Simulating Potential Impacts of Future Climate Change on Post-Rainy Season Sorghum Yields in India. Sustainability 2022, 14, 334. https://doi.org/10.3390/su14010334
Chadalavada K, Gummadi S, Kundeti KR, Kadiyala DM, Deevi KC, Dakhore KK, Bollipo Diana RK, Thiruppathi SK. Simulating Potential Impacts of Future Climate Change on Post-Rainy Season Sorghum Yields in India. Sustainability. 2022; 14(1):334. https://doi.org/10.3390/su14010334
Chicago/Turabian StyleChadalavada, Keerthi, Sridhar Gummadi, Koteswara Rao Kundeti, Dakshina Murthy Kadiyala, Kumara Charyulu Deevi, Kailas Kamaji Dakhore, Ranjitha Kumari Bollipo Diana, and Senthil Kumar Thiruppathi. 2022. "Simulating Potential Impacts of Future Climate Change on Post-Rainy Season Sorghum Yields in India" Sustainability 14, no. 1: 334. https://doi.org/10.3390/su14010334
APA StyleChadalavada, K., Gummadi, S., Kundeti, K. R., Kadiyala, D. M., Deevi, K. C., Dakhore, K. K., Bollipo Diana, R. K., & Thiruppathi, S. K. (2022). Simulating Potential Impacts of Future Climate Change on Post-Rainy Season Sorghum Yields in India. Sustainability, 14(1), 334. https://doi.org/10.3390/su14010334