Metal Rod Surfaces after Exposure to Used Cooking Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Procedure
2.1.1. Immersion Test
2.1.2. Metal Rods
2.1.3. Dissolved Metal Ions in Oils
2.1.4. Metal Surface Morphology after Oil Exposure
3. Results and Discussion
3.1. Physicochemical Properties
3.1.1. Diglycerides, Free Fatty Acids, and Monoglycerides
3.1.2. Water Content
3.1.3. Theoretical Acid Number
3.1.4. Measured Acid Number
3.1.5. Density and Kinematic Viscosities of the Bio-Oils
3.2. Corrosion of the Metal Surfaces
3.2.1. Iron-Based Rods
- Iron Concentrations Dissolved from the Rods
- Exposure to Different UCO Mixtures
3.2.2. Copper Rod Corrosion
3.2.3. Corrosion Inhibitor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moretti, C.; Junginger, M.; Shen, L. Environmental life cycle assessment of polypropylene made from used cooking oil. Resour. Conserv. Recycl. 2020, 157, 104750. [Google Scholar] [CrossRef]
- Van Grinsven, A.; van den Toorn, E.; van der Veen, R.; Kampman, B.; Oil, C. Used Cooking Oil (UCO) as Biofuel Feedstock in the EU; CE Delft: Delft, The Netherlands, 2020; p. 200247. [Google Scholar]
- Panadare, D.C.; Rathod, V.K. Applications of waste cooking oil other than biodiesel: A review. Iran. J. Chem. Eng. 2015, 12, 55–76. [Google Scholar]
- Chung, T.Y.; Eiserich, J.P.; Shibamoto, T. Volatile compounds identified in headspace samples of peanut oil heated under temperatures ranging from 50 to 200 °C. J. Agric. Food Chem. 1993, 41, 1467–1470. [Google Scholar] [CrossRef]
- Wu, C.M.; Chen, S.Y. Volatile compounds in oils after deep frying or stir frying and subsequent storage. J. Am. Oil Chem. Soc. 1992, 69, 858–865. [Google Scholar] [CrossRef]
- Singhabhandhu, A.; Tezuka, T. The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics. Energy 2010, 35, 2544–2551. [Google Scholar] [CrossRef]
- Mannu, A.; Ferro, M.; DiPietro, M.E.; Mele, A. Innovative applications of waste cooking oil as raw material. Sci. Prog. 2019, 102, 153–160. [Google Scholar] [CrossRef]
- Lhuissier, M.; Couvert, A.; Amrane, A.; Kane, A.; Audic, J.L. Characterization and selection of waste oils for the absorption and biodegradation of VOC of different hydrophobicities. Chem. Eng. Res. Des. 2018, 138, 482–489. [Google Scholar] [CrossRef]
- Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Corrosion mechanism of copper in palm biodiesel. Corros. Sci. 2013, 67, 50–59. [Google Scholar] [CrossRef]
- Ollus, R.; Juoperi, K. Alternative fuels experiences for medium-speed diesel engines. In Proceedings of the 25th CIMAC Congress on Combustion Engine Technology, Vienna, Austria, 21–27 May 2007; International Council on Combustion Engines: Frankfurt, Germany, 2007; pp. 538–552. [Google Scholar]
- Kovács, A.; Tóth, J.; Isaák, G.; Keresztényi, I. Aspects of storage and corrosion characteristics of biodiesel. Fuel Process. Technol. 2015, 134, 59–64. [Google Scholar] [CrossRef]
- Rehioui, M.; Abbout, S.; Benzidia, B.; Hammouch, H.; Erramli, H.; Daoud, N.A.; Badrane, N.; Hajjaji, N. Corrosion inhibiting effect of a green formulation based on Opuntia Dillenii seed oil for iron in acid rain solution. Heliyon 2021, 7, e06674. [Google Scholar] [CrossRef] [PubMed]
- Bruun, N.; Demesa, A.G.; Tesfaye, F.; Hemming, J.; Hupa, L. Factors affecting the corrosive behavior of used cooking oils and a non-edible fish oil that are in contact with ferrous metals. Energies 2019, 12, 4812. [Google Scholar] [CrossRef] [Green Version]
- Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel. Energy 2011, 36, 3328–3334. [Google Scholar] [CrossRef]
- Hu, E.; Xu, Y.; Hu, X.; Pan, L.; Jiang, S. Corrosion behaviors of metals in biodiesel from rapeseed oil and methanol. Renew. Energy 2012, 37, 371–378. [Google Scholar] [CrossRef]
- Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H. Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials. Fuel Process. Technol. 2010, 91, 1308–1315. [Google Scholar] [CrossRef]
- Alves, S.M.; Dutra-Pereira, F.K.; Bicudo, T.C. Influence of stainless steel corrosion on biodiesel oxidative stability during storage. Fuel 2019, 249, 73–79. [Google Scholar] [CrossRef]
- Souza, C.A.C.; De Meira, M.; Assis, L.O.; De Barbosa, R.S.; Luna, S. Effect of natural substances as antioxidants and as corrosion inhibitors of carbon steel on soybean biodiesel. Mater. Res. 2021, 24, e20200234. [Google Scholar] [CrossRef]
- Komatsu, D.; Souza, E.C.; De Canale, L.C.F.; Totten, G.E. Effect of antioxidants and corrosion inhibitor additives on the quenching performance of soybean oil. Stroj. Vestn. J. Mech. Eng. 2010, 56, 121–130. [Google Scholar]
- Li, P.; Lin, J.; Tan, K.; Lee, J. Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine. Electrochim. Acta 1997, 42, 605–615. [Google Scholar] [CrossRef]
- Deyab, M.A. The inhibition activity of butylated hydroxytoluene towards corrosion of carbon steel in biodiesel blend B20. J. Taiwan Inst. Chem. Eng. 2016, 60, 369–375. [Google Scholar]
- Deyab, M.A. Application of nonionic surfactant as a corrosion inhibitor for zinc in alkaline battery solution. J. Power Source 2015, 292, 66–71. [Google Scholar] [CrossRef]
- Singh, B.; Korstad, J.; Sharma, Y.C. A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition. Renew. Sustain. Energy Rev. 2012, 16, 3401–3408. [Google Scholar] [CrossRef]
- Yeᶊilyurt, M.K.; Öner, I.V.; Yilmaz, E.Ҫ. Biodiesel induced corrosion and degradation: Review. Pamukkale Univ. Muh. Bilim. Derg. 2019, 25, 60–70. [Google Scholar]
- Fazal, M.A.; Sazzad, B.S.; Haseeb, A.S.M.A.; Masjuki, H.H. Inhibition study of additives towards the corrosion of ferrous metal in palm biodiesel. Energy Convers. Manag. 2016, 122, 290–297. [Google Scholar] [CrossRef]
- Bruun, N.; Khazraie Shoulaifar, T.; Hemming, J.; Willför, S.; Hupa, L. Characterization of waste bio-oil as an alternate source of renewable fuel for marine engines. Biofuels 2022, 13, 21–30. [Google Scholar] [CrossRef]
- Bruun, N.; Tesfaye, F.; Hemming, J.; Dirbeba, M.J.; Hupa, L. Effect of storage time on the physicochemical properties of waste fish oils and used cooking vegetable oils. Energies 2021, 14, 101. [Google Scholar] [CrossRef]
- Zuleta, E.C.; Baena, L.; Rios, L.A.; Calderόn, J.A. The oxidative stability and its impact on the deterioration of metallic and polymeric materials: A review. J. Braz. Chem. Soc. 2012, 23, 2159–2175. [Google Scholar] [CrossRef] [Green Version]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef]
- Gregg, F. SVO: Powering Your Vehicle with Straight Vegetable Oil; New Society Publishers: Gabriola Island, BC, Canada, 2008; pp. 29–79. [Google Scholar]
- Adeoti, I.A.; Hawboldt, K. Comparison of biofuel quality of waste derived oils as a function of oil extraction methods. Fuel 2015, 158, 183–190. [Google Scholar] [CrossRef]
- Swathi, P.N.; Rasheeda, K.; Samshuddin, S.; Alva, V.D.P. Fatty acids and its derivatives as corrosion inhibitors for mild steel—An overview. J. Asian Sci. Res. 2017, 7, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Guardia, P.; Batlle-Brugal, B.; Roca, A.G.; Iglesias, O.; Morales, M.P.; Serna, C.J.; Labarta, A.; Batlle, X. Surfactant effects in magnetite nanoparticles of controlled size. J. Magn. Magn. Mater. 2007, 316, e756–e759. [Google Scholar] [CrossRef] [Green Version]
- Enweremadu, C.C.; Mbarawa, M.M. Technical aspects of production and analysis of biodiesel from used cooking oil—A review. Renew. Sustain. Energy Rev. 2009, 13, 2205–2224. [Google Scholar] [CrossRef]
GC Analysis | Mean Value (mg/g) |
---|---|
Total saturated FFA | 3.5 ± 0.7 |
Total unsaturated FFA | 26.6 ± 3.6 |
Total monoglycerides | 1.6 ± 0.6 |
Total FFA | 30.1 ± 3.6 |
Analyzed Compositions | UCO1 | UCO2 | UCO3 | UCO4 | UCO5 | UCO6 | UCO7 | UCO8 |
---|---|---|---|---|---|---|---|---|
Saturated FFA | ||||||||
C14:0 | 0.06 | 0.06 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | 0.06 |
C16:0 | 1.88 | 1.82 | 1.71 | 1.79 | 1.80 | 1.73 | 1.65 | 2.14 |
C17:0 | 0.07 | 0.04 | 0.06 | 0.07 | 0.05 | 0.04 | 0.07 | 0.04 |
C18:0 | 2.10 | 2.21 | 0.72 | 0.77 | 0.82 | 0.72 | 0.72 | 0.92 |
C20:0 | 0.24 | 0.25 | 0.22 | 0.24 | 0.26 | 0.20 | 0.23 | 0.28 |
C22:0 | 0.19 | 0.19 | 0.15 | 0.16 | 0.20 | 0.16 | 0.15 | 0.18 |
Unsaturated FFA | ||||||||
C16:1 | 0.07 | 0.09 | 0.09 | 0.08 | 0.09 | 0.08 | 0.08 | 0.09 |
C18:3 | 1.34 | 1.27 | 1.57 | 1.66 | 1.81 | 1.48 | 1.50 | 2.06 |
C18:2 | 5.33 | 5.41 | 6.09 | 6.48 | 7.20 | 5.91 | 6.24 | 8.36 |
9-18:1 | 14.9 | 14.8 | 16.0 | 16.9 | 18.7 | 15.24 | 15.93 | 21.71 |
11-18:1 | 1.84 | 1.82 | 1.10 | 1.20 | 1.24 | 0.94 | 0.97 | 1.32 |
cis-13-21:1 | 0.22 | 0.24 | 0.29 | 0.31 | 0.35 | 0.29 | 0.27 | 0.40 |
C20:5 | n.d. | n.d. | 0.10 | 0.08 | 0.10 | 0.02 | 0.04 | 0.03 |
cis-22:1 | 0.20 | 0.22 | 0.17 | 0.19 | 0.18 | 0.10 | 0.14 | 0.20 |
Monoglycerids | ||||||||
MG(1) | 0.10 | 0.11 | 0.11 | 0.17 | 0.16 | 0.08 | 0.17 | 0.27 |
MG(2) | 0.29 | 0.28 | 0.36 | 0.41 | 0.54 | 0.19 | 0.40 | 0.65 |
MG(3) | 0.89 | 0.88 | 1.02 | 1.11 | 1.49 | 0.50 | 1.11 | 1.67 |
Sterols | ||||||||
cholesterol | 0.13 | 0.10 | 0.20 | 0.10 | 0.11 | 0.15 | 0.08 | 0.11 |
farnesol | 0.18 | 0.20 | 0.19 | 0.19 | 0.17 | n.d. | n.d. | n.d. |
campesterol | 0.41 | 0.42 | 0.44 | 0.42 | 0.41 | 0.43 | 0.41 | 0.38 |
sitosterol | 0.70 | 0.72 | 0.71 | 0.64 | 0.66 | 0.71 | 0.72 | 0.67 |
sitostanol | 0.06 | 0.06 | 0.06 | 0.03 | 0.05 | 0.05 | 0.05 | 0.06 |
Total saturated FFA | 4.55 | 4.58 | 2.90 | 3.07 | 3.18 | 2.91 | 2.85 | 3.61 |
Saturated FFA/Total FFA | 16.0% | 16.1% | 10.3% | 10.2% | 9.7% | 10.8% | 10.2% | 9.6% |
Total unsaturated FFA | 23.9 | 23.8 | 25.4 | 26.9 | 29.7 | 24.0 | 25.2 | 34.2 |
Total monoglycerides | 1.28 | 1.28 | 1.49 | 1.69 | 2.19 | 0.77 | 1.68 | 2.58 |
Total FFA | 28.4 | 28.4 | 28.3 | 30.0 | 32.9 | 27.0 | 28.0 | 37.8 |
Sample | Water Content | Theoretical AN | Measured AN | Immersion Test (3 d) |
---|---|---|---|---|
(ppm) | (mg KOH/g Oil) | (mg KOH/g Oil) | Fe (ppm) | |
UCO1 | 1850 | 5.7 | 6.9 | 12 |
UCO2 | 1776 | 5.7 | 6.5 | 389 |
UCO3 | 2180 | 5.6 | 6.9 | 102 |
UCO4 | 2067 | 6.0 | 7.0 | 14 |
UCO5 | 2493 | 6.5 | 8.0 | 74 |
UCO6 | 3748 | 5.4 | 6.7 | 449 |
UCO7 | 3089 | 5.6 | 6.9 | 571 |
UCO8 | 2664 | 7.5 | 8.8 | 59 |
Mean value | ||||
UCO1–UCO8 | 2483 | 6 | 7.2 | 209 |
No. of Days | UCO1 | UCO2 | UCO3 | UCO4 | UCO5 | UCO6 | UCO7 | UCO8 |
---|---|---|---|---|---|---|---|---|
1d | L | H | M | n.a. | M | n.a. | n.a. | n.a. |
3d | L | H | M | L | M | H | H | M |
5d | L | H | L | n.a. | M | n.a. | n.a. | n.a. |
10d | L | H | L | n.a. | M | n.a. | n.a. | n.a. |
No. of Days | 0 | 1 | 3 | 5 | 10 |
---|---|---|---|---|---|
Cu (ppm) | <6 | 14.4 ± 0.4 | 25.3 ± 0.3 | 26.7 ± 0.5 | 25.8 ± 0.5 |
TBA (wt%) | 0 | 0.025 | 0.25 | 2.42 |
---|---|---|---|---|
Fe (ppm) | 310 | 9 | 9 | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruun, N.; Lehmusto, J.; Hemming, J.; Tesfaye, F.; Hupa, L. Metal Rod Surfaces after Exposure to Used Cooking Oils. Sustainability 2022, 14, 355. https://doi.org/10.3390/su14010355
Bruun N, Lehmusto J, Hemming J, Tesfaye F, Hupa L. Metal Rod Surfaces after Exposure to Used Cooking Oils. Sustainability. 2022; 14(1):355. https://doi.org/10.3390/su14010355
Chicago/Turabian StyleBruun, Nina, Juho Lehmusto, Jarl Hemming, Fiseha Tesfaye, and Leena Hupa. 2022. "Metal Rod Surfaces after Exposure to Used Cooking Oils" Sustainability 14, no. 1: 355. https://doi.org/10.3390/su14010355
APA StyleBruun, N., Lehmusto, J., Hemming, J., Tesfaye, F., & Hupa, L. (2022). Metal Rod Surfaces after Exposure to Used Cooking Oils. Sustainability, 14(1), 355. https://doi.org/10.3390/su14010355