A Study on Near Real-Time Carbon Emission of Roads in Urban Agglomeration of China to Improve Sustainable Development under the Impact of COVID-19 Pandemic
Abstract
:1. Introduction
2. Literature Review
2.1. Critical Review on Road Traffic-Related Carbon Emissions
2.2. Critical Review on Rapid Carbon Emissions Estimation
3. Methods
3.1. Rapid Estimation Method of Urban-Scale Road Carbon Emissions
3.1.1. Estimating Traffic Flow Based on the Traffic Congestion Index
3.1.2. Conversion of Two Traffic Activity Level Indicators
3.1.3. Estimation of Road Carbon Emissions Based on Changes in Urban Traffic Levels
3.1.4. Evaluation Method of Road Carbon Emission Control Effect
3.2. Spatiotemporal Difference Analysis Method of Road Carbon Emission Changes between Cities Based on Singular Value Decomposition
3.3. Research Area and Data Sources
3.3.1. Study Area
3.3.2. Data Sources
4. Results
4.1. Estimation of Daily Carbon Emissions from Road Traffic
4.2. Policy Effect Analysis for CO2 Reducing Using Short-Term Administrative Controls
4.3. Analysis of Spatial and Temporal Differences between Cities in Terms of Road Traffic Carbon Emissions
4.3.1. Variation Characteristic I: Overall Trends in the Road Traffic Carbon Emissions
4.3.2. Variation Characteristic II: Differences in Changes of Road Traffic Carbon Emissions in the Cyclical (Weekend and Holiday)
4.3.3. Variation Characteristic III: Differences in Terms of Fluctuations in Road Traffic Carbon Emissions during Major Events Due to the Pandemic
5. Discussion
6. Conclusions and Policy Implication
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Urban Daily Road Carbon Emissions Data
Data | Baoding | Beijing | Cangzhou | Handan | Hengshui | Langfang | Tagnshan | Tianjin | Xingtai | Zhangjiakou | Qinhuangdao | Shijiazhuang |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Jan 2020 | 1.45 | 3.92 | 1.38 | 0.72 | 0.37 | 0.44 | 1.58 | 4.41 | 0.42 | 1.32 | 0.69 | 1.15 |
2 Jan 2020 | 1.42 | 4.55 | 1.38 | 0.71 | 0.37 | 0.43 | 1.63 | 4.45 | 0.42 | 1.34 | 0.69 | 1.17 |
3 Jan 2020 | 1.43 | 4.67 | 1.38 | 0.71 | 0.37 | 0.44 | 1.63 | 4.55 | 0.42 | 1.34 | 0.69 | 1.18 |
4 Jan 2020 | 1.43 | 4.24 | 1.39 | 0.71 | 0.36 | 0.43 | 1.60 | 4.52 | 0.42 | 1.32 | 0.69 | 1.17 |
5 Jan 2020 | 1.51 | 4.13 | 1.40 | 0.73 | 0.37 | 0.44 | 1.60 | 4.49 | 0.43 | 1.36 | 0.68 | 1.24 |
6 Jan 2020 | 1.58 | 4.50 | 1.40 | 0.72 | 0.37 | 0.45 | 1.66 | 4.61 | 0.43 | 1.38 | 0.70 | 1.22 |
7 Jan 2020 | 1.52 | 4.67 | 1.39 | 0.73 | 0.37 | 0.44 | 1.64 | 4.52 | 0.43 | 1.36 | 0.69 | 1.20 |
8 Jan 2020 | 1.51 | 4.80 | 1.40 | 0.74 | 0.37 | 0.44 | 1.65 | 4.65 | 0.44 | 1.35 | 0.70 | 1.22 |
9 Jan 2020 | 1.53 | 4.73 | 1.39 | 0.73 | 0.37 | 0.43 | 1.64 | 4.61 | 0.42 | 1.35 | 0.70 | 1.21 |
10 Jan 2020 | 1.54 | 4.80 | 1.39 | 0.73 | 0.37 | 0.44 | 1.65 | 4.58 | 0.42 | 1.36 | 0.70 | 1.21 |
11 Jan 2020 | 1.55 | 4.69 | 1.40 | 0.73 | 0.37 | 0.44 | 1.63 | 4.63 | 0.43 | 1.34 | 0.70 | 1.22 |
12 Jan 2020 | 1.49 | 4.57 | 1.39 | 0.72 | 0.37 | 0.44 | 1.63 | 4.55 | 0.43 | 1.34 | 0.70 | 1.21 |
13 Jan 2020 | 1.47 | 4.77 | 1.39 | 0.73 | 0.37 | 0.44 | 1.65 | 4.61 | 0.42 | 1.35 | 0.70 | 1.20 |
14 Jan 2020 | 1.47 | 4.76 | 1.41 | 0.73 | 0.38 | 0.44 | 1.65 | 4.58 | 0.43 | 1.35 | 0.69 | 1.21 |
15 Jan 2020 | 1.54 | 4.81 | 1.41 | 0.74 | 0.37 | 0.44 | 1.65 | 4.63 | 0.43 | 1.36 | 0.70 | 1.23 |
16 Jan 2020 | 1.47 | 4.75 | 1.41 | 0.74 | 0.38 | 0.44 | 1.65 | 4.58 | 0.43 | 1.36 | 0.70 | 1.21 |
17 Jan 2020 | 1.48 | 4.78 | 1.41 | 0.74 | 0.38 | 0.44 | 1.65 | 4.55 | 0.43 | 1.37 | 0.70 | 1.22 |
18 Jan 2020 | 1.56 | 4.72 | 1.44 | 0.75 | 0.38 | 0.45 | 1.65 | 4.69 | 0.43 | 1.36 | 0.71 | 1.24 |
19 Jan 2020 | 1.55 | 4.74 | 1.43 | 0.74 | 0.38 | 0.45 | 1.65 | 4.67 | 0.43 | 1.35 | 0.71 | 1.23 |
20 Jan 2020 | 1.46 | 4.50 | 1.41 | 0.73 | 0.38 | 0.44 | 1.65 | 4.58 | 0.43 | 1.36 | 0.70 | 1.19 |
21 Jan 2020 | 1.45 | 4.19 | 1.40 | 0.73 | 0.38 | 0.44 | 1.64 | 4.45 | 0.43 | 1.36 | 0.70 | 1.17 |
22 Jan 2020 | 1.48 | 3.83 | 1.40 | 0.73 | 0.37 | 0.43 | 1.63 | 4.32 | 0.42 | 1.35 | 0.70 | 1.15 |
23 Jan 2020 | 1.33 | 2.11 | 1.38 | 0.71 | 0.36 | 0.41 | 1.59 | 3.99 | 0.41 | 1.33 | 0.69 | 1.01 |
24 Jan 2020 | 1.01 | 0.65 | 1.20 | 0.62 | 0.33 | 0.38 | 1.44 | 3.25 | 0.39 | 1.23 | 0.63 | 0.82 |
25 Jan 2020 | 0.79 | 0.65 | 1.17 | 0.58 | 0.33 | 0.37 | 1.46 | 3.07 | 0.38 | 1.18 | 0.62 | 0.73 |
26 Jan 2020 | 0.53 | 0.65 | 1.17 | 0.47 | 0.33 | 0.37 | 1.44 | 2.65 | 0.38 | 1.18 | 0.62 | 0.67 |
27 Jan 2020 | 0.53 | 0.65 | 1.20 | 0.47 | 0.34 | 0.37 | 1.42 | 2.41 | 0.39 | 1.18 | 0.61 | 0.67 |
28 Jan 2020 | 0.53 | 0.65 | 1.20 | 0.49 | 0.34 | 0.36 | 1.42 | 2.41 | 0.38 | 1.18 | 0.63 | 0.67 |
29 Jan 2020 | 0.53 | 0.65 | 1.27 | 0.52 | 0.33 | 0.37 | 1.42 | 2.41 | 0.38 | 1.20 | 0.65 | 0.73 |
30 Jan 2020 | 0.62 | 0.65 | 1.24 | 0.52 | 0.34 | 0.37 | 1.42 | 2.41 | 0.39 | 1.18 | 0.62 | 0.73 |
31 Jan 2020 | 0.44 | 0.65 | 1.20 | 0.52 | 0.34 | 0.37 | 1.44 | 2.41 | 0.38 | 1.20 | 0.62 | 0.78 |
1 Feb 2020 | 0.44 | 0.65 | 1.20 | 0.49 | 0.34 | 0.38 | 1.44 | 2.65 | 0.39 | 1.20 | 0.61 | 0.82 |
2 Feb 2020 | 0.71 | 0.65 | 1.29 | 0.49 | 0.34 | 0.40 | 1.59 | 3.07 | 0.39 | 1.29 | 0.69 | 0.78 |
3 Feb 2020 | 0.44 | 0.72 | 1.26 | 0.56 | 0.34 | 0.38 | 1.49 | 2.87 | 0.39 | 1.26 | 0.67 | 0.82 |
4 Feb 2020 | 0.44 | 0.65 | 1.24 | 0.54 | 0.34 | 0.38 | 1.46 | 2.87 | 0.39 | 1.24 | 0.62 | 0.82 |
5 Feb 2020 | 0.36 | 1.85 | 1.20 | 0.52 | 0.34 | 0.43 | 1.46 | 3.68 | 0.39 | 1.26 | 0.61 | 0.82 |
6 Feb 2020 | 0.24 | 3.35 | 1.26 | 0.54 | 0.35 | 0.43 | 1.58 | 3.25 | 0.40 | 1.26 | 0.62 | 0.86 |
7 Feb 2020 | 0.22 | 0.87 | 1.20 | 0.44 | 0.34 | 0.39 | 1.54 | 2.87 | 0.39 | 1.27 | 0.61 | 0.82 |
8 Feb 2020 | 0.24 | 0.65 | 1.27 | 0.47 | 0.34 | 0.38 | 1.48 | 2.41 | 0.39 | 1.21 | 0.58 | 0.78 |
9 Feb 2020 | 0.62 | 0.65 | 1.27 | 0.65 | 0.35 | 0.38 | 1.44 | 2.41 | 0.39 | 1.20 | 0.58 | 0.96 |
10 Feb 2020 | 0.22 | 1.07 | 1.17 | 0.49 | 0.34 | 0.38 | 1.46 | 2.87 | 0.40 | 1.23 | 0.62 | 0.86 |
11 Feb 2020 | 0.22 | 0.72 | 1.17 | 0.52 | 0.34 | 0.40 | 1.52 | 2.87 | 0.39 | 1.26 | 0.65 | 0.86 |
12 Feb 2020 | 0.22 | 0.72 | 1.20 | 0.49 | 0.34 | 0.38 | 1.46 | 2.87 | 0.39 | 1.26 | 0.62 | 0.86 |
13 Feb 2020 | 0.24 | 0.87 | 1.17 | 0.62 | 0.34 | 0.42 | 1.46 | 2.87 | 0.40 | 1.24 | 0.62 | 0.90 |
14 Feb 2020 | 0.29 | 1.58 | 1.31 | 0.54 | 0.35 | 0.41 | 1.66 | 4.27 | 0.39 | 1.28 | 0.69 | 0.96 |
15 Feb 2020 | 0.24 | 0.65 | 1.30 | 0.52 | 0.35 | 0.42 | 1.67 | 3.80 | 0.40 | 1.24 | 0.70 | 0.90 |
16 Feb 2020 | 0.22 | 0.65 | 1.26 | 0.47 | 0.34 | 0.38 | 1.57 | 3.07 | 0.39 | 1.26 | 0.64 | 0.82 |
17 Feb 2020 | 0.22 | 1.58 | 1.08 | 0.47 | 0.34 | 0.40 | 1.55 | 3.25 | 0.40 | 1.26 | 0.65 | 0.82 |
18 Feb 2020 | 0.22 | 1.07 | 1.12 | 0.49 | 0.34 | 0.39 | 1.52 | 3.25 | 0.40 | 1.26 | 0.63 | 0.86 |
19 Feb 2020 | 0.22 | 0.87 | 1.05 | 0.49 | 0.34 | 0.38 | 1.51 | 3.07 | 0.40 | 1.26 | 0.62 | 0.82 |
20 Feb 2020 | 0.24 | 0.72 | 1.22 | 0.47 | 0.34 | 0.39 | 1.48 | 2.87 | 0.40 | 1.23 | 0.62 | 0.82 |
21 Feb 2020 | 0.22 | 0.72 | 1.08 | 0.47 | 0.34 | 0.38 | 1.48 | 2.65 | 0.39 | 1.24 | 0.62 | 0.73 |
22 Feb 2020 | 0.22 | 0.65 | 1.00 | 0.47 | 0.34 | 0.36 | 1.46 | 2.41 | 0.39 | 1.16 | 0.61 | 0.67 |
23 Feb 2020 | 0.22 | 0.65 | 1.00 | 0.44 | 0.33 | 0.38 | 1.44 | 2.41 | 0.39 | 1.23 | 0.60 | 0.54 |
24 Feb 2020 | 0.24 | 1.85 | 1.08 | 0.49 | 0.35 | 0.38 | 1.49 | 3.07 | 0.41 | 1.21 | 0.62 | 0.82 |
25 Feb 2020 | 0.24 | 1.31 | 1.12 | 0.49 | 0.35 | 0.39 | 1.49 | 3.07 | 0.40 | 1.27 | 0.62 | 0.78 |
26 Feb 2020 | 0.29 | 1.31 | 1.12 | 0.49 | 0.35 | 0.40 | 1.49 | 3.07 | 0.39 | 1.24 | 0.63 | 0.78 |
27 Feb 2020 | 0.36 | 1.31 | 1.12 | 0.59 | 0.36 | 0.39 | 1.51 | 3.07 | 0.41 | 1.24 | 0.64 | 0.78 |
28 Feb 2020 | 0.36 | 1.31 | 1.08 | 0.54 | 0.35 | 0.39 | 1.49 | 3.07 | 0.40 | 1.26 | 0.63 | 0.78 |
29 Feb 2020 | 0.53 | 0.65 | 1.05 | 0.54 | 0.34 | 0.40 | 1.51 | 3.07 | 0.41 | 1.20 | 0.62 | 0.73 |
1 Mar 2020 | 0.53 | 0.65 | 1.08 | 0.52 | 0.35 | 0.40 | 1.49 | 2.87 | 0.40 | 1.18 | 0.62 | 0.73 |
2 Mar 2020 | 0.71 | 3.49 | 1.17 | 0.59 | 0.35 | 0.41 | 1.55 | 3.55 | 0.41 | 1.26 | 0.67 | 0.90 |
3 Mar 2020 | 0.71 | 2.60 | 1.20 | 0.58 | 0.36 | 0.41 | 1.56 | 3.55 | 0.41 | 1.27 | 0.68 | 0.90 |
4 Mar 2020 | 0.71 | 2.60 | 1.15 | 0.59 | 0.36 | 0.46 | 1.54 | 3.55 | 0.41 | 1.27 | 0.66 | 0.93 |
5 Mar 2020 | 0.71 | 2.11 | 1.17 | 0.62 | 0.36 | 0.45 | 1.54 | 3.55 | 0.41 | 1.28 | 0.65 | 0.93 |
6 Mar 2020 | 0.71 | 2.60 | 1.17 | 0.60 | 0.36 | 0.41 | 1.54 | 3.55 | 0.41 | 1.30 | 0.65 | 0.93 |
7 Mar 2020 | 0.79 | 0.65 | 1.17 | 0.58 | 0.36 | 0.40 | 1.52 | 3.07 | 0.41 | 1.29 | 0.65 | 0.86 |
8 Mar 2020 | 0.94 | 0.65 | 1.31 | 0.58 | 0.36 | 0.41 | 1.51 | 3.07 | 0.41 | 1.27 | 0.64 | 0.86 |
9 Mar 2020 | 0.94 | 3.73 | 1.26 | 0.64 | 0.36 | 0.42 | 1.59 | 4.14 | 0.42 | 1.30 | 0.67 | 1.03 |
10 Mar 2020 | 1.01 | 3.35 | 1.27 | 0.65 | 0.36 | 0.42 | 1.58 | 3.80 | 0.42 | 1.30 | 0.67 | 1.03 |
11 Mar 2020 | 1.01 | 3.19 | 1.29 | 0.66 | 0.36 | 0.42 | 1.58 | 3.80 | 0.42 | 1.29 | 0.67 | 1.03 |
12 Mar 2020 | 1.06 | 3.01 | 1.27 | 0.66 | 0.36 | 0.42 | 1.57 | 3.90 | 0.42 | 1.29 | 0.66 | 1.03 |
13 Mar 2020 | 1.01 | 3.35 | 1.27 | 0.66 | 0.36 | 0.42 | 1.58 | 3.90 | 0.42 | 1.31 | 0.67 | 1.05 |
14 Mar 2020 | 1.01 | 0.72 | 1.27 | 0.66 | 0.36 | 0.41 | 1.56 | 3.55 | 0.42 | 1.28 | 0.66 | 0.96 |
15 Mar 2020 | 1.01 | 0.72 | 1.27 | 0.66 | 0.36 | 0.41 | 1.56 | 3.55 | 0.42 | 1.29 | 0.66 | 0.96 |
16 Mar 2020 | 1.16 | 4.19 | 1.33 | 0.68 | 0.37 | 0.43 | 1.60 | 4.14 | 0.42 | 1.32 | 0.68 | 1.11 |
17 Mar 2020 | 1.16 | 3.83 | 1.33 | 0.68 | 0.37 | 0.43 | 1.60 | 4.14 | 0.42 | 1.32 | 0.68 | 1.09 |
18 Mar 2020 | 1.16 | 3.92 | 1.33 | 0.68 | 0.37 | 0.43 | 1.59 | 4.14 | 0.42 | 1.30 | 0.68 | 1.09 |
19 Mar 2020 | 1.21 | 3.73 | 1.35 | 0.68 | 0.37 | 0.43 | 1.60 | 4.21 | 0.42 | 1.32 | 0.68 | 1.09 |
20 Mar 2020 | 1.21 | 3.83 | 1.35 | 0.69 | 0.37 | 0.43 | 1.60 | 4.21 | 0.42 | 1.31 | 0.68 | 1.11 |
21 Mar 2020 | 1.16 | 1.07 | 1.32 | 0.68 | 0.37 | 0.42 | 1.58 | 3.90 | 0.42 | 1.30 | 0.67 | 1.01 |
22 Mar 2020 | 1.21 | 0.87 | 1.34 | 0.68 | 0.37 | 0.42 | 1.59 | 3.80 | 0.43 | 1.30 | 0.67 | 1.05 |
23 Mar 2020 | 1.28 | 4.44 | 1.37 | 0.70 | 0.37 | 0.43 | 1.63 | 4.41 | 0.42 | 1.33 | 0.69 | 1.14 |
24 Mar 2020 | 1.28 | 4.13 | 1.37 | 0.69 | 0.37 | 0.43 | 1.62 | 4.32 | 0.43 | 1.32 | 0.69 | 1.14 |
25 Mar 2020 | 1.31 | 4.19 | 1.38 | 0.69 | 0.37 | 0.43 | 1.62 | 4.37 | 0.43 | 1.33 | 0.68 | 1.13 |
26 Mar 2020 | 1.33 | 4.24 | 1.36 | 0.70 | 0.37 | 0.44 | 1.62 | 4.32 | 0.43 | 1.33 | 0.68 | 1.18 |
27 Mar 2020 | 1.33 | 4.29 | 1.38 | 0.70 | 0.37 | 0.44 | 1.63 | 4.45 | 0.43 | 1.33 | 0.69 | 1.15 |
28 Mar 2020 | 1.33 | 1.31 | 1.36 | 0.69 | 0.37 | 0.43 | 1.61 | 4.07 | 0.43 | 1.32 | 0.68 | 1.09 |
29 Mar 2020 | 1.31 | 1.07 | 1.36 | 0.69 | 0.37 | 0.43 | 1.60 | 3.99 | 0.43 | 1.32 | 0.68 | 1.08 |
30 Mar 2020 | 1.40 | 4.47 | 1.38 | 0.71 | 0.37 | 0.44 | 1.63 | 4.45 | 0.43 | 1.34 | 0.69 | 1.15 |
31 Mar 2020 | 1.38 | 4.41 | 1.38 | 0.70 | 0.37 | 0.44 | 1.63 | 4.41 | 0.43 | 1.33 | 0.69 | 1.15 |
1 Apr 2020 | 1.42 | 4.41 | 1.39 | 0.71 | 0.37 | 0.44 | 1.64 | 4.49 | 0.43 | 1.33 | 0.69 | 1.19 |
2 Apr 2020 | 1.40 | 4.41 | 1.38 | 0.71 | 0.37 | 0.44 | 1.63 | 4.52 | 0.43 | 1.33 | 0.69 | 1.18 |
3 Apr 2020 | 1.42 | 4.50 | 1.40 | 0.71 | 0.37 | 0.44 | 1.64 | 4.55 | 0.43 | 1.33 | 0.70 | 1.18 |
4 Apr 2020 | 1.36 | 1.85 | 1.36 | 0.69 | 0.37 | 0.43 | 1.62 | 4.14 | 0.42 | 1.30 | 0.69 | 1.08 |
5 Apr 2020 | 1.38 | 1.85 | 1.38 | 0.70 | 0.37 | 0.43 | 1.61 | 4.14 | 0.43 | 1.33 | 0.69 | 1.09 |
6 Apr 2020 | 1.38 | 1.58 | 1.39 | 0.69 | 0.37 | 0.43 | 1.62 | 4.21 | 0.43 | 1.32 | 0.69 | 1.11 |
7 Apr 2020 | 1.45 | 4.65 | 1.41 | 0.71 | 0.38 | 0.44 | 1.64 | 4.58 | 0.43 | 1.35 | 0.70 | 1.18 |
8 Apr 2020 | 1.43 | 4.57 | 1.40 | 0.71 | 0.38 | 0.44 | 1.64 | 4.55 | 0.43 | 1.34 | 0.70 | 1.16 |
9 Apr 2020 | 1.43 | 4.52 | 1.41 | 0.71 | 0.38 | 0.44 | 1.64 | 4.55 | 0.43 | 1.34 | 0.70 | 1.19 |
10 Apr 2020 | 1.43 | 4.57 | 1.39 | 0.72 | 0.38 | 0.44 | 1.64 | 4.55 | 0.43 | 1.34 | 0.70 | 1.16 |
11 Apr 2020 | 1.42 | 2.11 | 1.39 | 0.70 | 0.37 | 0.44 | 1.63 | 4.32 | 0.43 | 1.33 | 0.69 | 1.11 |
12 Apr 2020 | 1.42 | 1.85 | 1.39 | 0.70 | 0.37 | 0.44 | 1.62 | 4.27 | 0.43 | 1.32 | 0.69 | 1.12 |
13 Apr 2020 | 1.47 | 4.68 | 1.41 | 0.71 | 0.38 | 0.44 | 1.65 | 4.63 | 0.43 | 1.35 | 0.70 | 1.18 |
14 Apr 2020 | 1.45 | 4.59 | 1.40 | 0.71 | 0.37 | 0.44 | 1.64 | 4.61 | 0.43 | 1.34 | 0.70 | 1.16 |
15 Apr 2020 | 1.46 | 4.62 | 1.40 | 0.71 | 0.37 | 0.44 | 1.64 | 4.61 | 0.43 | 1.34 | 0.70 | 1.15 |
16 Apr 2020 | 1.47 | 4.62 | 1.41 | 0.71 | 0.37 | 0.44 | 1.66 | 4.65 | 0.43 | 1.34 | 0.70 | 1.15 |
17 Apr 2020 | 1.45 | 4.62 | 1.40 | 0.71 | 0.37 | 0.44 | 1.65 | 4.63 | 0.43 | 1.35 | 0.70 | 1.17 |
18 Apr 2020 | 1.43 | 2.60 | 1.40 | 0.70 | 0.37 | 0.44 | 1.63 | 4.37 | 0.43 | 1.33 | 0.70 | 1.12 |
19 Apr 2020 | 1.43 | 2.37 | 1.40 | 0.70 | 0.38 | 0.44 | 1.63 | 4.32 | 0.43 | 1.32 | 0.69 | 1.12 |
20 Apr 2020 | 1.48 | 4.73 | 1.40 | 0.71 | 0.37 | 0.45 | 1.65 | 4.65 | 0.43 | 1.34 | 0.70 | 1.18 |
21 Apr 2020 | 1.46 | 4.68 | 1.40 | 0.71 | 0.37 | 0.44 | 1.65 | 4.63 | 0.43 | 1.33 | 0.70 | 1.17 |
22 Apr 2020 | 1.46 | 4.68 | 1.40 | 0.71 | 0.37 | 0.45 | 1.64 | 4.63 | 0.43 | 1.33 | 0.70 | 1.17 |
23 Apr 2020 | 1.46 | 4.65 | 1.40 | 0.71 | 0.37 | 0.44 | 1.64 | 4.63 | 0.43 | 1.34 | 0.70 | 1.17 |
24 Apr 2020 | 1.46 | 4.68 | 1.40 | 0.71 | 0.37 | 0.44 | 1.64 | 4.63 | 0.43 | 1.33 | 0.70 | 1.17 |
25 Apr 2020 | 1.43 | 2.60 | 1.39 | 0.70 | 0.37 | 0.44 | 1.63 | 4.37 | 0.43 | 1.33 | 0.70 | 1.12 |
26 Apr 2020 | 1.43 | 4.44 | 1.39 | 0.70 | 0.37 | 0.44 | 1.63 | 4.58 | 0.43 | 1.33 | 0.70 | 1.15 |
27 Apr 2020 | 1.48 | 4.73 | 1.40 | 0.71 | 0.37 | 0.44 | 1.64 | 4.67 | 0.43 | 1.34 | 0.70 | 1.17 |
28 Apr 2020 | 1.48 | 4.72 | 1.40 | 0.71 | 0.37 | 0.44 | 1.64 | 4.65 | 0.43 | 1.34 | 0.70 | 1.16 |
29 Apr 2020 | 1.48 | 4.76 | 1.40 | 0.71 | 0.38 | 0.44 | 1.64 | 4.67 | 0.43 | 1.34 | 0.71 | 1.19 |
30 Apr 2020 | 1.52 | 4.83 | 1.40 | 0.71 | 0.38 | 0.45 | 1.65 | 4.74 | 0.43 | 1.34 | 0.70 | 1.20 |
1 May 2020 | 1.47 | 4.00 | 1.41 | 0.71 | 0.38 | 0.44 | 1.63 | 4.45 | 0.43 | 1.34 | 0.70 | 1.16 |
2 May 2020 | 1.43 | 3.61 | 1.40 | 0.70 | 0.38 | 0.44 | 1.63 | 4.41 | 0.43 | 1.33 | 0.70 | 1.12 |
3 May 2020 | 1.45 | 3.35 | 1.40 | 0.70 | 0.38 | 0.44 | 1.62 | 4.41 | 0.43 | 1.34 | 0.70 | 1.12 |
4 May 2020 | 1.46 | 3.49 | 1.46 | 0.70 | 0.38 | 0.44 | 1.62 | 4.41 | 0.43 | 1.33 | 0.70 | 1.15 |
5 May 2020 | 1.48 | 3.19 | 1.40 | 0.70 | 0.38 | 0.45 | 1.63 | 4.37 | 0.43 | 1.33 | 0.70 | 1.13 |
6 May 2020 | 1.49 | 4.80 | 1.40 | 0.71 | 0.38 | 0.46 | 1.63 | 4.67 | 0.43 | 1.34 | 0.70 | 1.15 |
7 May 2020 | 1.52 | 4.79 | 1.42 | 0.72 | 0.38 | 0.45 | 1.65 | 4.71 | 0.43 | 1.34 | 0.70 | 1.21 |
8 May 2020 | 1.50 | 4.83 | 1.42 | 0.72 | 0.38 | 0.45 | 1.66 | 4.79 | 0.43 | 1.34 | 0.71 | 1.16 |
9 May 2020 | 1.47 | 4.62 | 1.41 | 0.71 | 0.38 | 0.44 | 1.64 | 4.65 | 0.43 | 1.34 | 0.71 | 1.17 |
10 May 2020 | 1.47 | 3.49 | 1.41 | 0.71 | 0.38 | 0.44 | 1.63 | 4.49 | 0.43 | 1.33 | 0.70 | 1.15 |
11 May 2020 | 1.49 | 4.80 | 1.41 | 0.71 | 0.38 | 0.44 | 1.65 | 4.69 | 0.43 | 1.34 | 0.71 | 1.15 |
12 May 2020 | 1.47 | 4.77 | 1.40 | 0.71 | 0.37 | 0.44 | 1.65 | 4.65 | 0.43 | 1.33 | 0.70 | 1.14 |
13 May 2020 | 1.46 | 4.75 | 1.40 | 0.71 | 0.37 | 0.44 | 1.64 | 4.65 | 0.43 | 1.34 | 0.70 | 1.13 |
14 May 2020 | 1.46 | 4.73 | 1.40 | 0.71 | 0.38 | 0.44 | 1.65 | 4.67 | 0.43 | 1.33 | 0.70 | 1.15 |
15 May 2020 | 1.47 | 4.80 | 1.41 | 0.71 | 0.38 | 0.44 | 1.65 | 4.71 | 0.43 | 1.34 | 0.70 | 1.15 |
16 May 2020 | 1.43 | 3.83 | 1.41 | 0.70 | 0.38 | 0.44 | 1.63 | 4.49 | 0.43 | 1.33 | 0.70 | 1.15 |
17 May 2020 | 1.45 | 3.35 | 1.40 | 0.70 | 0.38 | 0.44 | 1.63 | 4.41 | 0.43 | 1.32 | 0.70 | 1.16 |
18 May 2020 | 1.49 | 4.78 | 1.41 | 0.71 | 0.38 | 0.44 | 1.65 | 4.77 | 0.43 | 1.34 | 0.71 | 1.16 |
19 May 2020 | 1.47 | 4.76 | 1.40 | 0.71 | 0.38 | 0.44 | 1.64 | 4.71 | 0.43 | 1.34 | 0.70 | 1.15 |
20 May 2020 | 1.47 | 4.78 | 1.41 | 0.72 | 0.38 | 0.44 | 1.65 | 4.75 | 0.43 | 1.35 | 0.71 | 1.15 |
21 May 2020 | 1.45 | 4.75 | 1.40 | 0.73 | 0.38 | 0.45 | 1.66 | 4.77 | 0.43 | 1.34 | 0.71 | 1.15 |
22 May 2020 | 1.50 | 4.76 | 1.40 | 0.72 | 0.38 | 0.45 | 1.65 | 4.74 | 0.43 | 1.35 | 0.70 | 1.15 |
23 May 2020 | 1.46 | 4.13 | 1.40 | 0.72 | 0.38 | 0.44 | 1.63 | 4.49 | 0.43 | 1.34 | 0.70 | 1.15 |
24 May 2020 | 1.45 | 3.61 | 1.40 | 0.71 | 0.38 | 0.45 | 1.63 | 4.45 | 0.43 | 1.33 | 0.70 | 1.14 |
25 May 2020 | 1.50 | 4.75 | 1.41 | 0.71 | 0.38 | 0.45 | 1.64 | 4.80 | 0.43 | 1.34 | 0.70 | 1.15 |
26 May 2020 | 1.47 | 4.71 | 1.41 | 0.71 | 0.38 | 0.44 | 1.65 | 4.71 | 0.43 | 1.33 | 0.70 | 1.15 |
27 May 2020 | 1.46 | 4.73 | 1.40 | 0.71 | 0.38 | 0.44 | 1.64 | 4.72 | 0.43 | 1.33 | 0.71 | 1.14 |
28 May 2020 | 1.46 | 4.77 | 1.40 | 0.71 | 0.38 | 0.44 | 1.64 | 4.71 | 0.43 | 1.33 | 0.70 | 1.15 |
29 May 2020 | 1.51 | 4.80 | 1.42 | 0.72 | 0.38 | 0.45 | 1.66 | 4.82 | 0.43 | 1.35 | 0.71 | 1.17 |
30 May 2020 | 1.54 | 4.33 | 1.43 | 0.73 | 0.38 | 0.46 | 1.67 | 4.84 | 0.44 | 1.37 | 0.71 | 1.21 |
31 May 2020 | 1.54 | 4.07 | 1.43 | 0.72 | 0.38 | 0.46 | 1.67 | 4.81 | 0.43 | 1.37 | 0.71 | 1.20 |
1 Jun 2020 | 1.60 | 4.74 | 1.45 | 0.74 | 0.39 | 0.46 | 1.69 | 4.93 | 0.44 | 1.38 | 0.72 | 1.22 |
2 Jun 2020 | 1.56 | 4.68 | 1.43 | 0.73 | 0.38 | 0.46 | 1.68 | 4.92 | 0.43 | 1.37 | 0.71 | 1.20 |
3 Jun 2020 | 1.54 | 4.65 | 1.43 | 0.72 | 0.38 | 0.45 | 1.67 | 4.93 | 0.43 | 1.37 | 0.71 | 1.20 |
4 Jun 2020 | 1.54 | 4.72 | 1.43 | 0.72 | 0.38 | 0.45 | 1.67 | 4.93 | 0.43 | 1.37 | 0.72 | 1.21 |
5 Jun 2020 | 1.56 | 4.74 | 1.43 | 0.73 | 0.38 | 0.46 | 1.68 | 4.95 | 0.43 | 1.37 | 0.72 | 1.21 |
6 Jun 2020 | 1.53 | 4.37 | 1.43 | 0.72 | 0.38 | 0.45 | 1.67 | 4.84 | 0.43 | 1.37 | 0.71 | 1.21 |
7 Jun 2020 | 1.52 | 3.83 | 1.43 | 0.72 | 0.38 | 0.46 | 1.66 | 4.80 | 0.43 | 1.37 | 0.71 | 1.20 |
8 Jun 2020 | 1.58 | 4.70 | 1.43 | 0.73 | 0.38 | 0.46 | 1.68 | 4.88 | 0.43 | 1.37 | 0.71 | 1.21 |
9 Jun 2020 | 1.55 | 4.73 | 1.43 | 0.72 | 0.38 | 0.45 | 1.68 | 4.89 | 0.43 | 1.37 | 0.71 | 1.20 |
10 Jun 2020 | 1.54 | 4.74 | 1.43 | 0.72 | 0.38 | 0.46 | 1.68 | 4.87 | 0.43 | 1.37 | 0.71 | 1.20 |
11 Jun 2020 | 1.54 | 4.77 | 1.43 | 0.73 | 0.38 | 0.46 | 1.68 | 4.89 | 0.43 | 1.37 | 0.72 | 1.21 |
12 Jun 2020 | 1.56 | 4.79 | 1.43 | 0.73 | 0.38 | 0.46 | 1.68 | 4.88 | 0.44 | 1.37 | 0.71 | 1.21 |
13 Jun 2020 | 1.52 | 3.83 | 1.43 | 0.72 | 0.38 | 0.45 | 1.66 | 4.83 | 0.43 | 1.37 | 0.72 | 1.21 |
14 Jun 2020 | 1.50 | 2.82 | 1.43 | 0.72 | 0.38 | 0.45 | 1.66 | 4.77 | 0.43 | 1.36 | 0.71 | 1.20 |
15 Jun 2020 | 1.52 | 4.59 | 1.43 | 0.72 | 0.38 | 0.45 | 1.67 | 4.86 | 0.43 | 1.36 | 0.71 | 1.20 |
16 Jun 2020 | 1.50 | 4.37 | 1.42 | 0.74 | 0.38 | 0.45 | 1.67 | 4.85 | 0.44 | 1.36 | 0.71 | 1.20 |
17 Jun 2020 | 1.48 | 4.00 | 1.42 | 0.73 | 0.38 | 0.45 | 1.67 | 4.84 | 0.43 | 1.36 | 0.71 | 1.19 |
18 Jun 2020 | 1.48 | 4.19 | 1.41 | 0.72 | 0.38 | 0.46 | 1.67 | 4.86 | 0.43 | 1.36 | 0.71 | 1.20 |
19 Jun 2020 | 1.50 | 3.73 | 1.42 | 0.72 | 0.38 | 0.45 | 1.67 | 4.86 | 0.43 | 1.37 | 0.71 | 1.20 |
20 Jun 2020 | 1.46 | 2.11 | 1.42 | 0.72 | 0.38 | 0.45 | 1.66 | 4.78 | 0.43 | 1.36 | 0.71 | 1.19 |
21 Jun 2020 | 1.45 | 1.85 | 1.41 | 0.72 | 0.38 | 0.45 | 1.65 | 4.75 | 0.43 | 1.35 | 0.71 | 1.18 |
22 Jun 2020 | 1.47 | 3.83 | 1.41 | 0.73 | 0.39 | 0.45 | 1.66 | 4.83 | 0.43 | 1.36 | 0.71 | 1.19 |
23 Jun 2020 | 1.46 | 4.00 | 1.40 | 0.72 | 0.38 | 0.45 | 1.66 | 4.84 | 0.43 | 1.35 | 0.71 | 1.19 |
24 Jun 2020 | 1.48 | 4.37 | 1.41 | 0.73 | 0.38 | 0.45 | 1.66 | 4.86 | 0.43 | 1.36 | 0.71 | 1.21 |
25 Jun 2020 | 1.43 | 2.37 | 1.41 | 0.71 | 0.38 | 0.45 | 1.65 | 4.75 | 0.43 | 1.35 | 0.71 | 1.19 |
26 Jun 2020 | 1.42 | 2.11 | 1.40 | 0.71 | 0.38 | 0.44 | 1.65 | 4.74 | 0.43 | 1.35 | 0.70 | 1.17 |
27 Jun 2020 | 1.42 | 1.85 | 1.40 | 0.71 | 0.38 | 0.44 | 1.65 | 4.71 | 0.43 | 1.35 | 0.71 | 1.17 |
28 Jun 2020 | 1.48 | 4.13 | 1.41 | 0.73 | 0.38 | 0.45 | 1.65 | 4.86 | 0.43 | 1.36 | 0.71 | 1.26 |
29 Jun 2020 | 1.46 | 4.00 | 1.42 | 0.72 | 0.38 | 0.45 | 1.65 | 4.77 | 0.43 | 1.35 | 0.70 | 1.20 |
30 Jun 2020 | 1.45 | 4.19 | 1.40 | 0.71 | 0.38 | 0.45 | 1.65 | 4.80 | 0.43 | 1.34 | 0.70 | 1.18 |
Appendix B. UrbanR and Severity Evaluation Model
- (1)
- Construct evaluation index: Xnj is the j-th index value of city n.
- (2)
- Calculate the proportion of the j-th index of the n-th city in the city:
- (3)
- Calculate the information entropy of the j-th index:
- (4)
- Calculate the information utility of the j-th index:
- (5)
- Calculate the weight of index:
- (6)
- Calculate the comprehensive score of each city’s resilience:
References
- Zhang, L.L.; Long, R.Y.; Chen, H.; Geng, J.C. A review of China’s road traffic carbon emissions. J. Clean. Prod. 2019, 207, 569–581. [Google Scholar] [CrossRef]
- Bueno, G. Analysis of scenarios for the reduction of energy consumption and GHG emissions in transport in the Basque Country. Renew. Sustain. Energy Rev. 2012, 16, 1988–1998. [Google Scholar] [CrossRef]
- Xu, B.; Lin, B.Q. Investigating the differences in CO2 emissions in the transport sector across Chinese provinces: Evidence from a quantile regression model. J. Clean. Prod. 2018, 175, 109–122. [Google Scholar] [CrossRef]
- Cai, B.F.; Feng, X.Z.; Chen, X.M. Carbon Dioxide Emissions from Transport and Low-Carbon Development; Chemical Industry Press: Beijing, China, 2012. [Google Scholar]
- Li, F.; Cai, B.; Ye, Z.; Wang, Z.; Zhang, W.; Zhou, P.; Chen, J. Changing patterns and determinants of transportation carbon emissions in Chinese cities. Energy 2019, 174, 562–575. [Google Scholar] [CrossRef]
- IEA. CO2 Emissions from Fuel Combustion: Overview; IEA: Paris, France, 2020. [Google Scholar]
- de Oliveira Neto, G.C.; Correia JM, F.; Silva, P.C.; Sanches AG, O.; Lucato, W.C. Cleaner Production in the textile industry and its relationship to sustainable development goals. J. Clean. Prod. 2019, 228, 1514–1525. [Google Scholar] [CrossRef]
- Baltazar, J.; Reis, J.; Amorim, M. Sustainable economies: Using a macro-economic model to predict how the default rate is affected under economic stress scenarios. Sustain. Futures 2020, 2, 100011. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Mustapha, K.B.; Godsell, J.; Adamu, Z.; Babatunde, K.A.; Akintade, D.D.; Acquaye, A.; Fujii, H.; Ndiaye, M.M.; Yamoah, F.A.; et al. A critical analysis of the impacts of COVID-19 on the global economy and ecosystems and opportunities for circular economy strategies. Resour. Conserve. Recycl. 2021, 164, 105169. [Google Scholar] [CrossRef]
- IEA. Global Energy Review; IEA: Paris, France, 2021. [Google Scholar]
- Forster, P.M.; Forster, H.I.; Evans, M.J.; Gidden, M.J.; Jones, C.D.; Keller, C.A.; Lamboll, R.D.; Quéré, C.L.; Rogelj, J.; Rosen, D.; et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Chang. 2020, 10, 913–919. [Google Scholar] [CrossRef]
- Alemdar, K.D.; Kaya, Ö.; Canale, A.; Çodur, M.Y.; Campisi, T. Evaluation of Air Quality Index by Spatial Analysis Depending on Vehicle Traffic during the COVID-19 Outbreak in Turkey. Energies 2021, 14, 5729. [Google Scholar] [CrossRef]
- Aletta, F.; Brinchi, S.; Carrese, S.; Gemma, A.; Guattari, C.; Mannini, L.; Patella, S.M. Analysing urban traffic volumes and mapping noise emissions in Rome (Italy) in the context of containment measures for the COVID-19 disease. Noise Mapp. 2020, 7, 114–122. [Google Scholar] [CrossRef]
- Hu, S.G.; Wang, R.H.; Wang, X.X.; Liu, Y.Y. Modeling of Travel Mode Choice Behavior of Residents in Different Stages of the COVID-19 Epidemic. J. Guangdong Univ. Technol. 2021, 38, 32–38. [Google Scholar]
- Wu, L.W. GPS Based Travel Characteristics of Private Passenger Cars in Beijing. Ph.D. Thesis, Tsinghua University, Beijing, China, 2013. [Google Scholar]
- Zhang, X.Y.; Yang, X.M.; Yan, Y. Statistical Estimation Method for Energy Consumption and Carbon Emissions by Urban Transport. China Soft Sci. 2014, 142–150. [Google Scholar]
- Schipper, L.; Marie-Lilliu, C.; Gorham, R. Flexing the Link between Transport and Greenhouse Gas Emissions: A Path for the World Bank; IEA: Paris, France, 2000. [Google Scholar]
- Puliafito, S.E.; Allende, D.; Pinto, S.; Castesana, P. High resolution inventory of GHG emissions of the road transport sector in Argentina. Atmos. Environ. 2015, 101, 303–311. [Google Scholar] [CrossRef]
- The United States Environmental Protection Agency (USEPA). User’s Guide to MOBILE6.1 and MOBILE6.2: Mobile Source Emission Factor Model. Office of Transportation and Air Quality; US Environmental Protection Agency: Washington, DC, USA, 2002.
- European Environment Agency (EEA). COPERT III Computer Programme to Calculate Emissions from Road Transport–Methodology and Emissions Factors (Version 2.1); Ntziachristos, L., Samaras, Z., Eggleston, S., Gorissen, N., Hassel, D., Hickman, A.-J., Joumard, R., Rijkeboer, R., White, L., Zierock, K.-H., Eds.; Technical Report No. 49; European Environment Agency: Copenhagen, Denmark, 2000. [Google Scholar]
- CARB. EMFAC2014 User’s Guide; California Air Quality Research Board CARB: Sacramento, CA, USA, 2014.
- Chang, X.M.; Chen, B.Y.; Li, Q.Q.; Cui, X.H.; Tang, L.I.; Liu, C. Estimating real-time traffic carbon dioxide emissions based on intelligent transportation system technologies. IEEE Trans. Intell. Transport. Syst. 2013, 14, 469–479. [Google Scholar] [CrossRef]
- Zheng, B.; Geng, G.; Ciais, P.; Davis, S.J.; Martin, R.V.; Meng, J.; Wu, N.; Chevallier, F.; Broquet, G.; Boersma, F.; et al. Satellite-based estimates of decline and rebound in China’s CO2 emissions during COVID-19 pandemic. Sci. Adv. 2020, 6, eabd4998. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xiong, Y.; Xing, X.; Yang, R.; Li, J.; Wang, Y.; Cao, J.; Balkanski, Y.; Penuelas, J.; Ciais, P.; et al. Daily CO2 Emission Reduction Indicates the Control of Activities to Contain COVID-19 in China. Innovation 2020, 1, 100062. [Google Scholar] [CrossRef]
- Han, P.; Cai, Q.; Oda, T.; Zeng, N.; Shan, Y.; Lin, X.; Liu, D. Assessing the recent impact of COVID-19 on carbon emissions from China using domestic economic data. Sci. Total Environ. 2021, 750, 141688. [Google Scholar] [CrossRef]
- Shan, Y.L.; Guan, D.B.; Hubacek, K.; Zheng, B.; Davis, S.J.; Jia, L.C.; Liu, J.H.; Liu, Z.; Fromer, N.; Mi, Z.F.; et al. City-level climate change mitigation in China. Sci. Adv. 2018, 4, eaaq0390. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.W.; Xu, J. Understanding Urban Resilience: A Conceptual Analysis Based on Integrated International Literature Review. Urban Plann. Int. 2015, 30, 48–54. [Google Scholar]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.; Zhu, B.; et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, Y.; Hong, C.; Qu, Y.Y.; Li, R.; Zhang, J.S.; Li, C.H. Esthetic preference mining of Chinese typefaces using multiview cluster analysis. Sci. Sin. Inform. 2021, 51, 383–398. [Google Scholar] [CrossRef]
- Wei, Y.N.; Li, X.G.; Li, F. Spatial distribution characteristics and influencing factors of wet and dry of runoff in upper reaches of the Yellow River. Water Resour. Prot. 2021, 37, 103–113. [Google Scholar]
- Bing, Q.L. Build resilient cities to cope with major public health emergencies. Urban Rural Dev. 2020, 14, 6–10. [Google Scholar]
- Shamsuddin, S. Resilience resistance: The challenges and implications of urban resilience implementation. Cities 2020, 103, 8. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Lam, N.S.N.; Cai, H.; Qiang, Y. Mining Twitter Data for Improved Understanding of Disaster Resilience. Annals 2018, 108, 1–20. [Google Scholar] [CrossRef]
- Godschalk, D.R. Urban Hazard Mitigation: Creating Resilient Cities. Urban Plann. Int. 2015, 30, 22–29. [Google Scholar] [CrossRef]
- Chen, J.; Guo, X.; Pan, H.; Zhong, S. What determines city’s resilience against epidemic outbreak: Evidence from China’s COVID-19 experience. Sustain. Cities Soc. 2021, 70, 102892. [Google Scholar] [CrossRef] [PubMed]
- Connolly, C.; Keil, R.; Ali, S.H. Extended urbanisation and the spatialities of infectious disease: Demographic change, infrastructure and governance. Urban Stud. 2021, 58, 245–263. [Google Scholar] [CrossRef]
- Lai, K.Y.; Webster, C.; Kumari, S.; Sarkar, C. The nature of cities and the COVID-19 pandemic. Curr. Opin. Environ. Sustain. 2020, 46, 27–31. [Google Scholar] [CrossRef]
- Tong, J.; Ma, Y.; Liu, H.M. The short-term impact of COVID-19 epidemic on the migration of Chinese urban population and the evaluation of Chinese urban resilience. Acta Geogr. Sin. 2020, 75, 2505–2520. [Google Scholar]
- Dalziel, B.D.; Pourbohloul, B.; Ellner, S.P. Human mobility patterns predict divergent epidemic dynamics among cities. Proc. R. Soc. B-Biol. Sci. 2013, 280, 20130763. [Google Scholar] [CrossRef] [PubMed]
- Prashar, S.; Shaw, R.; Takeuchi, Y. Assessing the resilience of Delhi to climate-related disasters: A comprehensive approach. Nat. Hazards 2012, 64, 1609–1624. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Huang, Z.; Gao, Y.; Wu, M.; Liu, C.; Chen, C.; Lombardi, G.V. A Study on Near Real-Time Carbon Emission of Roads in Urban Agglomeration of China to Improve Sustainable Development under the Impact of COVID-19 Pandemic. Sustainability 2022, 14, 385. https://doi.org/10.3390/su14010385
Liu G, Huang Z, Gao Y, Wu M, Liu C, Chen C, Lombardi GV. A Study on Near Real-Time Carbon Emission of Roads in Urban Agglomeration of China to Improve Sustainable Development under the Impact of COVID-19 Pandemic. Sustainability. 2022; 14(1):385. https://doi.org/10.3390/su14010385
Chicago/Turabian StyleLiu, Gengyuan, Zining Huang, Yuan Gao, Mingwan Wu, Chang Liu, Caocao Chen, and Ginevra Virginia Lombardi. 2022. "A Study on Near Real-Time Carbon Emission of Roads in Urban Agglomeration of China to Improve Sustainable Development under the Impact of COVID-19 Pandemic" Sustainability 14, no. 1: 385. https://doi.org/10.3390/su14010385
APA StyleLiu, G., Huang, Z., Gao, Y., Wu, M., Liu, C., Chen, C., & Lombardi, G. V. (2022). A Study on Near Real-Time Carbon Emission of Roads in Urban Agglomeration of China to Improve Sustainable Development under the Impact of COVID-19 Pandemic. Sustainability, 14(1), 385. https://doi.org/10.3390/su14010385