The Impact of Social Media Influencers Raffi Ahmad and Nagita Slavina on Tourism Visit Intentions across Millennials and Zoomers Using a Hierarchical Likelihood Structural Equation Model
Abstract
:1. Introduction
2. Literature Review
2.1. Intention to Visit
2.2. The Power of Social Media Influencers
3. Material and Methods
3.1. Dataset
3.2. Feature Selection Using Logistics Variational Approximation
3.3. Structural Equation Modelling Using Hierarchical Likelihood
- 1.
- Given , the linear predictor for takes the HGLM form
- 2.
- Given , the linear predictor for takes the HGLM form
4. Results and Discussion
4.1. Finding Best Feature towards Visiting Intention
4.2. Addressing the Structural Equation Models Using Hierarchical Likelihood
5. Conclusions
6. Recommendation and Practical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edwards, D.; Griffin, T.; Hayllar, B. Urban Tourism Research Developing an Agenda. Ann. Tour. Res. 2008, 35, 1032–1052. [Google Scholar] [CrossRef]
- Robinson, T.; Gammon, S. A question of primary and secondary motives: Revisiting and applying the sport tourism framework. J. Sport Tour. 2004, 9, 221–233. [Google Scholar] [CrossRef]
- Qin, X.; Shen, H.; Ye, S.; Zhou, L. Revisiting residents’ support for tourism development: The role of tolerance. J. Hosp. Tour. Manag. 2021, 47, 114–123. [Google Scholar] [CrossRef]
- Bento, J.P.C.; Martínez-Roget, F.; Pereira, E.T.; Rodríguez, X.A. Revisiting an Academic Tourism Destination: An Empirical Analysis of the Role of Motivations, Attitudes, Satisfaction, and Electronic Word of Mouth. In Academic Tourism; Springer: Madrid, Spain, 2019; pp. 233–247. ISBN 9783030572877. [Google Scholar]
- Buhalis, D.; Costa, C.; Ford, F. Tourism Business Frontiers; Routledge: Boca Raton, FL, USA, 2006; ISBN 978-0-7506-6377-9. [Google Scholar]
- Thirumaran, K.; Jang, H.; Pourabedin, Z.; Wood, J. The role of social media in the luxury tourism business: A research review and trajectory assessment. Sustainability 2021, 13, 1216. [Google Scholar] [CrossRef]
- Syahputra, D.I.; Nurmandi, A.; Salahudin, S.; Mutiarin, D.; Suswanta, S. The Impact of Using Social Media Twitter to Promote Tourism in Indonesia. In International Conference on Advances in Digital Science; Springer: Cham, Switzerland, 2021; pp. 287–297. [Google Scholar]
- Thosuwonchinda, V.; Ketut, N.; Sungkamart, K. The Comparison of Factors For Choosing A Tourism Destination: A Case Study of Bangkok-Bali. Res. J. Phranakhon Rajabhat Soc. Sci. Humanit. 2021, 16, 115–128. [Google Scholar]
- Schumacher, J.; Schernewski, G.; Karnauskaitė, D.; Kataržytė, M.; Pakleppa, S.; Pape, K.; Schönwald, S.; Völzke, M. Measuring and comparing the sustainability of coastal tourism destinations in Germany, Lithuania, and Indonesia. Environ. Dev. Sustain. 2020, 22, 2451–2475. [Google Scholar] [CrossRef]
- Nuraini, S. Comparison halal food regulation and practices to support halal tourism in Asia: A review. IOP Conf. Ser. Earth Environ. Sci. 2021, 733. [Google Scholar] [CrossRef]
- Rozak, R.W.A.; Kosasih, A.; Kembara, M.D.; Budiyanti, N.; Hadian, V.A. Edutourism: Learning to be the Indonesian society. In Promoting Creative Tourism: Current Issues in Tourism Research; Routledge: Boca Raton, FL, USA, 2021. [Google Scholar]
- Westoby, R.; Gardiner, S.; Carter, R.W.; Scott, N. Sustainable livelihoods from tourism in the “10 New Balis” in Indonesia. Asia Pacific J. Tour. Res. 2021, 26, 702–716. [Google Scholar] [CrossRef]
- Ford, L.R. A model of Indonesian city structure. Geogr. Rev. 1993, 83, 374–396. [Google Scholar] [CrossRef]
- Riany, Y.E.; Meredith, P.; Cuskelly, M. Understanding the Influence of Traditional Cultural Values on Indonesian Parenting. Marriage Fam. Rev. 2017, 53, 207–226. [Google Scholar] [CrossRef]
- Asfina, R.; Ovilia, R. Be proud of Indonesian cultural heritage richness and be alert of its preservation efforts in the global world. Hum. J. Ilm. Ilmu-ilmu Hum. 2016, 2, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Hegarini, E.; Dharmayanti; Syakur, A. Indonesian traditional dance motion capture documentation. In Proceedings of the 2016 2nd International Conference on Science and Technology-Computer (ICST), Yogyakarta, Indonesia, 27–28 October 2016; pp. 108–111. [Google Scholar] [CrossRef]
- Hassler, M. The Indonesian consumer market for clothing: Institutions, firms and organizational behaviours. Singap. J. Trop. Geogr. 2006, 27, 150–162. [Google Scholar] [CrossRef]
- Farida; Caraka, R.E.; Cenggoro, T.W.; Pardamean, B. Batik Parang Rusak Detection Using Geometric Invariant Moment. In Proceedings of the 1st 2018 Indonesian Association for Pattern Recognition International Conference, INAPR 2018, Jakarta, Indonesia, 7–8 September 2018. [Google Scholar]
- Amrullah, E.F. Indonesian Muslim Fashion. Isim Rev. 2008, 22–23. [Google Scholar]
- Towards Complexity Studies of Indonesian Songs. Available online: https://1library.net/document/qor820mq-towards-complexity-studies-of-indonesian-songs.html?utm_source=seo_title_list (accessed on 15 July 2021).
- Juandi, V.S.; Andari, R.; Setiyorini, H.P.D. The Influence of Sustainable Tourism Development towards Tourists’ Satisfaction in Saung Angklung Udjo. IOP Conf. Ser. Earth Environ. Sci. 2018, 145, 012020. [Google Scholar] [CrossRef]
- Martana, S.P. The impact of tourism on the development of Ubud painting art. ASEAN J. Hosp. Tour. 2002, 1, 117–132. [Google Scholar]
- Jenkins, L.D.; Romanos, M. The art of tourism-driven development: Economic and artistic well-being of artists in three Balinese communities. J. Tour. Cult. Chang. 2014, 12, 293–306. [Google Scholar] [CrossRef]
- Marin, D. Study on the Economic Impact of Tourism and of Agrotourism on Local Communities. Res. J. Agric. Sci. 2015, 47, 160–164. [Google Scholar]
- Telfer, D.J.; Wall, G. Strengthening backward economic linkages: Local food purchasing by three Indonesian hotels. Tour. Geogr. 2000, 2, 421–447. [Google Scholar] [CrossRef]
- Babolian Hendijani, R. Effect of food experience on tourist satisfaction: The case of Indonesia. Int. J. Cult. Tour. Hosp. Res. 2016, 10, 272–282. [Google Scholar] [CrossRef]
- Wilodati, S.K.; Utami, N.F. Nation brand culture tourism to improve the nation image. In Promoting Creative Tourism: Current Issues in Tourism Research; Routledge: Cambridge, UK, 2021. [Google Scholar]
- Adinugraha, H.H.; Nasution, I.F.A.; Faisal, F.; Daulay, M.; Harahap, I.; Wildan, T.; Takhim, M.; Riyadi, A.; Purwanto, A. Halal Tourism in Indonesia: An Indonesian Council of Ulama National Sharia Board Fatwa Perspective. J. Asian Financ. Econ. Bus. 2021, 8, 665–673. [Google Scholar] [CrossRef]
- Wulung, S.R.P.; Yuliawati, A.K.; Hadian, M.S.D. Border tourism in Indonesia’s outer islands: The case of Sebatik Island. In Proceedings of the Promoting Creative Tourism: Current Issues in Tourism Research: Proceedings of the 4th International Seminar on Tourism, Bandung, Indonesia, 4–5 November 2020; p. 102. [Google Scholar]
- Nurjaya; Paramarta, V.; Dewi, R.R.V.K.; Kusworo; Surasni; Rahmanita, F.; Hidayati, S.; Sunarsi, D. Halal tourism in Indonesia: Regional regulation and Indonesian ulama council perspective. Int. J. Criminol. Sociol. 2021, 10, 497–505. [Google Scholar] [CrossRef]
- Effendi, D.; Rosadi, A.; Prasetyo, Y.; Susilawati, C.; Athoillah, M.A. Preparing Halal tourism regulations in Indonesia. Int. J. Relig. Tour. Pilgr. 2021, 9, 58–69. [Google Scholar] [CrossRef]
- Juliana, J.; Pramezwary, A.; Yuliantoro, N.; Purba, J.T.; Pramono, R.; Purwanto, A. Perceptions, Attitudes, and Interests of Halal Tourism: An Empirical Study in Indonesia. J. Asian Financ. Econ. Bus. 2021, 8, 265–273. [Google Scholar] [CrossRef]
- Caraka, R.E.; Kurniawan, R.; Nasution, B.I.; Jamilatuzzahro, J.; Gio, P.U.; Basyuni, M.; Pardamean, B. Micro, Small, and Medium Enterprises’ Business Vulnerability Cluster in Indonesia: An Analysis Using Optimized Fuzzy Geodemographic Clustering. Sustainability 2021, 13, 7807. [Google Scholar] [CrossRef]
- Hudaefi, F.A. How does Islamic fintech promote the SDGs? Qualitative evidence from Indonesia. Qual. Res. Financ. Mark. 2020, 12, 353–366. [Google Scholar] [CrossRef]
- Antonio, M.S. Islamic microfinance initiatives to enhance small and medium enterprises in Indonesia: From historical overview to contemporary situation. J. Indones. Islam 2011, 5, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Yuningsih, E.; Gunawan, R.; Silaningsih, E. Increasing Competitiveness of Micro, Small and Medium Enterprises Through the Application of Green Marketing Mix to Support for Tourism Sector. In Proceedings of the ICEBE 2020: First International Conference of Economics, Business & Entrepreneurship; European Alliance for Innovation, Tangerang, Indonesia, 19 April 2021; p. 271. [Google Scholar]
- Tambunan, T. Micro, small and medium enterprises in times of crisis: Evidence from Indonesia Micro, small and medium enterprises in times of crisis. J. Int. Counc. Small Bus. 2021, 1–25. [Google Scholar] [CrossRef]
- Caraka, R.E.; Lee, Y.; Chen, R.C.; Toharudin, T.; Gio, P.U.; Kurniawan, R.; Pardamean, B. Cluster Around Latent Variable for Vulnerability Towards Natural Hazards, Non-Natural Hazards, Social Hazards in West Papua. IEEE Access 2021, 9, 1972–1986. [Google Scholar] [CrossRef]
- Ilan, J. We Now Go Live: Digital Live-News Technologies and the “Reinvention of Live” in Professional TV News Broadcasting. Digit. J. 2021, 9, 481–499. [Google Scholar] [CrossRef]
- Siste, K.; Hanafi, E.; Sen, L.T.; Murtani, B.J.; Christian, H.; Limawan, A.P.; Siswidiani, L.P.; Adrian. Implications of COVID-19 and Lockdown on Internet Addiction Among Adolescents: Data from a Developing Country. Front. Psychiatry 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Hudaefi, F.A.; Beik, I.S. Digital zakah campaign in time of Covid-19 pandemic in Indonesia: A netnographic study. J. Islam. Mark. 2021, 12, 498–517. [Google Scholar] [CrossRef]
- Siste, K.; Wiguna, T.; Bardasono, S.; Sekartini, R.; Pandelaki, J.; Sarasvita, R.; Suwartono, C.; Murtani, B.J.; Damayanti, R.; Christian, H.; et al. Internet addiction in adolescents: Development and validation of Internet Addiction Diagnostic Questionnaire (KDAI). Psychiatry Res. 2021, 298, 113829. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.L.; Ting, H.; Cheah, J.H.; Sharipudin, M.N.S. Examining the role of social media-based destination brand community in evoking tourists’ emotions and intention to co-create and visit. J. Prod. Brand Manag. 2021, 30, 28–43. [Google Scholar] [CrossRef]
- Sng, K.; Au, T.Y.; Pang, A. Social Media Influencers as a Crisis Risk in Strategic Communication: Impact of Indiscretions on Professional Endorsements. Int. J. Strateg. Commun. 2019, 13, 301–320. [Google Scholar] [CrossRef]
- Elshami, W.; Saravanan, C.; Taha, M.H.; Abdalla, M.E.; Abuzaid, M.; Kawas, S. Al Bridging the Gap in Online Learning Anxiety: Generation X teaching Millennial and Z generations. Sultan Qaboos Univ. Med. J. 2021, 21, 539–548. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, J.; Huang, S.; Luo, C.; Li, W. Key Generation for Internet of Things: A Contemporary Survey. ACM Comput. Surv. 2020, 54, 1–37. [Google Scholar] [CrossRef]
- Strauss, W.; Howe, N. Generations: The History of America’s Future 1584 to 2069; Quill: New York, NY, USA, 1992; ISBN 0688119123. [Google Scholar]
- Tan, E.; Leby Lau, J. Behavioural intention to adopt mobile banking among the millennial generation. Young Consum. 2016, 17, 18–31. [Google Scholar] [CrossRef]
- Carlin, B.; Olafsson, A.; Pagel, M. FinTech Adoption Across Generations: Financial Fitness in the Information Age; National Bureau of Economic Research: Cambridge, MA, USA, 2017; Volume 53. [Google Scholar]
- Bogdanowicz, M.S.; Bailey, E.K. The value of knowledge and the values of the new knowledge worker: Generation X in the new economy. J. Eur. Ind. Train. 2002, 26, 125–129. [Google Scholar] [CrossRef]
- Chang, W.L.; Wang, J.Y. Mine is yours? Using sentiment analysis to explore the degree of risk in the sharing economy. Electron. Commer. Res. Appl. 2018, 28, 141–158. [Google Scholar] [CrossRef]
- Vincent, J.A. Understanding generations: Political economy and culture in an ageing society. Br. J. Sociol. 2005, 56, 579–599. [Google Scholar] [CrossRef]
- Gazzola, P.; Pavione, E.; Pezzetti, R.; Grechi, D. Trends in the fashion industry. The perception of sustainability and circular economy: A gender/generation quantitative approach. Sustainability 2020, 12, 2809. [Google Scholar] [CrossRef] [Green Version]
- Chapple, S.; Hogan, S.; Milne, B.; Poulton, R.; Ramrakha, S. Wealth inequality among New Zealand’s Generation X. Policy Q. 2015, 11, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Lim, G.C.; Zeng, Q. Consumption, Income, and Wealth: Evidence from Age, Cohort, and Period Elasticities. Rev. Income Wealth 2016, 62, 489–508. [Google Scholar] [CrossRef]
- Social Media Influencer a Lifestyle or a Profession of the Xxist Century? Available online: https://depot.ceon.pl/bitstream/handle/123456789/15166/Social%20media%20influencer.pdf?sequence=1&isAllowed=y (accessed on 15 August 2021).
- Ye, G.; Hudders, L.; De Jans, S.; De Veirman, M. The Value of Influencer Marketing for Business: A Bibliometric Analysis and Managerial Implications. J. Advert. 2021, 50, 160–178. [Google Scholar] [CrossRef]
- Jain, M. A Survey in Analysing Increased Business Profitability by Instagram. J. Contemp. Issues Bus. Gov. 2021, 27, 819–825. [Google Scholar] [CrossRef]
- Duh, H.I.; Dabula, N. Millennials’ socio-psychology and blood donation intention developed from social media communications: A survey of university students. Telemat. Inform. 2021, 58, 101534. [Google Scholar] [CrossRef]
- Ashbrook, C.C.; Zalba, A.R. Social Media Influence on Diplomatic Negotiation: Shifting the Shape of the Table. Negot. J. 2021, 37, 83–96. [Google Scholar] [CrossRef]
- Kim, E.; Duffy, M.; Thorson, E. Under the Influence: Social Media Influencers’ Impact on Response to Corporate Reputation Advertising. J. Advert. 2021, 50, 119–138. [Google Scholar] [CrossRef]
- Yuan, H.; Tang, Y.; Xu, W.; Lau, R.Y.K. Exploring the influence of multimodal social media data on stock performance: An empirical perspective and analysis. Internet Res. 2021, 31, 871–891. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, S.; Kujur, F.; Das, G. Social media activities and its influence on customer-brand relationship: An empirical study of apparel retailers’ activity in India. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 602–617. [Google Scholar] [CrossRef]
- Trivedi, J.; Sama, R. The Effect of Influencer Marketing on Consumers’ Brand Admiration and Online Purchase Intentions: An Emerging Market Perspective. J. Internet Commer. 2020, 19, 103–124. [Google Scholar] [CrossRef]
- Kamel, N.A. Examining the mediating role of celebrity endorsement in green advertisements to improve the intention of Egyptian Millennials towards environmental behaviours in tourist destinations. Tour. Manag. Stud. 2020, 16, 7–21. [Google Scholar] [CrossRef]
- De Veirman, M.; Cauberghe, V.; Hudders, L. Marketing through instagram influencers: The impact of number of followers and product divergence on brand attitude. Int. J. Advert. 2017, 36, 798–828. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, J. How does a celebrity make fans happy? Interaction between celebrities and fans in the social media context. Comput. Human Behav. 2020, 111, 106419. [Google Scholar] [CrossRef]
- Vrontis, D.; Makrides, A.; Christofi, M.; Thrassou, A. Social media influencer marketing: A systematic review, integrative framework and future research agenda. Int. J. Consum. Stud. 2021, 1–28. [Google Scholar] [CrossRef]
- Pop, R.A.; Săplăcan, Z.; Dabija, D.C.; Alt, M.A. The impact of social media influencers on travel decisions: The role of trust in consumer decision journey. Curr. Issues Tour. 2021, 1–21. [Google Scholar] [CrossRef]
- Lee, J.A.; Bright, L.F.; Eastin, M.S. Fear of Missing Out and Consumer Happiness on Instagram: Influencer-Related Activities. Cyberpsychology Behav. Soc. Netw. 2021, 24, 1–5. [Google Scholar] [CrossRef]
- Chen, C.C.; Lai, Y.H.; Petrick, J.F.; Lin, Y.H. Tourism between divided nations: An examination of stereotyping on destination image. Tour. Manag. 2016, 55, 25–36. [Google Scholar] [CrossRef]
- Rather, R.A. Demystifying the effects of perceived risk and fear on customer engagement, co-creation and revisit intention during COVID-19: A protection motivation theory approach. J. Destin. Mark. Manag. 2021, 20, 100564. [Google Scholar] [CrossRef]
- Tsai, F.M.; Bui, T.D. Impact of word of mouth via social media on consumer intention to purchase cruise travel products. Marit. Policy Manag. 2021, 48, 167–183. [Google Scholar] [CrossRef]
- McNeish, D.; Hamaker, E.L. A Primer on Two-Level Dynamic Structural Equation Models for Intensive Longitudinal Data in Mplus. Psychol. Methods 2020, 25, 610–635. [Google Scholar] [CrossRef]
- Gunzler, D.D.; Morris, N. A tutorial on structural equation modeling for analysis of overlapping symptoms in co-occurring conditions using MPlus. Stat. Med. 2015, 34, 3246–3280. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, D.; Knott, M.; Moustaki, I. Latent Variable Models and Factor Analysis: A Unified Approach: 3rd Edition; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Rosseel, Y. The Lavaan Tutorial; Ghent University: Ghent, Belgium, 2014. [Google Scholar]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Mena, J.A. An assessment of the use of partial least squares structural equation modeling in marketing research. J. Acad. Mark. Sci. 2012, 40, 414–433. [Google Scholar] [CrossRef]
- Hoyle, R.H. Confirmatory Factor Analysis. In Handbook of Applied Multivariate Statistics and Mathematical Modeling; Academic Press: Cambridge, MA, USA, 2000; pp. 465–497. [Google Scholar]
- Hurley, A.E.; Scandura, T.A.; Schriesheim, C.A.; Michael, T.; Seers, A.; Vandenberg, R.J.; Williams, L.J.; Journal, S.; Nov, N. Exploratory and Confirmatory Factor Analysis: Guidelines, Issues, and Alternatives. J. Organ. Behav. 1997, 18, 667–683. [Google Scholar] [CrossRef]
- Schreiber, J.B.; Stage, F.K.; King, J.; Nora, A.; Barlow, E.A. Reporting structural equation modeling and confirmatory factor analysis results: A review. J. Educ. Res. 2006, 99, 323–338. [Google Scholar] [CrossRef]
- Jin, S.; Ankargren, S. Frequentist Model Averaging in Structural Equation Modelling. Psychometrika 2019, 84, 84–104. [Google Scholar] [CrossRef]
- Assaf, A.G.; Tsionas, M.; Oh, H. The time has come: Toward Bayesian SEM estimation in tourism research. Tour. Manag. 2018, 64, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Shi, D.; Song, H.; Liao, X.; Terry, R.; Snyder, L.A. Bayesian SEM for Specification Search Problems in Testing Factorial Invariance. Multivariate Behav. Res. 2017, 52, 430–444. [Google Scholar] [CrossRef] [PubMed]
- Smid, S.C.; Winter, S.D. Dangers of the Defaults: A Tutorial on the Impact of Default Priors When Using Bayesian SEM With Small Samples. Front. Psychol. 2020, 11, 287–290. [Google Scholar] [CrossRef]
- Ketchen, D.J. A Primer on Partial Least Squares Structural Equation Modeling. Long Range Plann. 2013, 46, 184–185. [Google Scholar] [CrossRef]
- Monecke, A.; Leisch, F. semPLS: Structural Equation Modeling Using Partial Least Squares. J. Stat. Softw. 2015, 48, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Ringle, C.M.; Sarstedt, M.; Straub, D. A Critical Look at the Use of PLS-SEM in MIS Quarterly. 2012. Available online: https://deliverypdf.ssrn.com/delivery.php?ID=376121095093088107002092025099002123096024026051006017127103014071122088006124029028042012019003037044061069065002090112123068013080022030086113076023097108004118072065065011102125021025120089082003100089003119120019029068091087030091095112101098120114&EXT=pdf&INDEX=TRUE (accessed on 15 August 2021).
- Hair, J.F., Jr.; Gabriel, M.L.D.d.S.; Patel, V.K. AMOS Covariance-Based Structural Equation Modeling (CB-SEM): Guidelines on Its Application as a Marketing Research Tool. Rev. Bras. Mark. 2014, 13, 44–55. [Google Scholar] [CrossRef]
- Meng, A.X.; Rubin, D.B. Using EM to Obtain Asymptotic Variance-Covariance Matrices: The SEM Algorithm. J. Am. Stat. Assoc. 1991, 86, 899–909. [Google Scholar] [CrossRef]
- Jin, S.; Noh, M.; Yang-Wallentin, F.; Lee, Y. Robust nonlinear structural equation modeling with interaction between exogenous and endogenous latent variables. Struct. Equ. Model. 2021, 1–10. [Google Scholar] [CrossRef]
- Chong, A.Y.L. A two-staged SEM-neural network approach for understanding and predicting the determinants of m-commerce adoption. Expert Syst. Appl. 2013, 40, 1240–1247. [Google Scholar] [CrossRef]
- Leong, L.Y.; Hew, T.S.; Ooi, K.B.; Lee, V.H.; Hew, J.J. A hybrid SEM-neural network analysis of social media addiction. Expert Syst. Appl. 2019, 133, 296–316. [Google Scholar] [CrossRef]
- Ahani, A.; Rahim, N.Z.A.; Nilashi, M. Forecasting social CRM adoption in SMEs: A combined SEM-neural network method. Comput. Human Behav. 2017, 75, 560–578. [Google Scholar] [CrossRef]
- Lee, Y.; Nelder, J.A. Hierarchical Generalized Linear Models. J. R. Stat. Soc. Ser. B 1996, 58, 619–656. [Google Scholar] [CrossRef]
- Lee, Y.; Rönnegård, L.; Noh, M. Data Analysis Using Hierarchical Generalized Linear Models with R, 1st ed.; Routledge: Boca Raton, FL, USA, 2017; ISBN 9781351811569. [Google Scholar]
- Jin, S.; Lee, Y. A review of h-likelihood and hierarchical generalized linear model. WIREs Comput. Stat. 2020, 1–23. [Google Scholar] [CrossRef]
- Do Ha, I.; Lee, Y. A review of h-likelihood for survival analysis. Jpn. J. Stat. Data Sci. 2021, 4, 1157–1178. [Google Scholar] [CrossRef]
- Lee, W.; Do Ha, I.; Noh, M.; Lee, D.; Lee, Y. A review on recent advances and applications of h-likelihood method. J. Korean Stat. Soc. 2021, 50, 681–702. [Google Scholar] [CrossRef]
- Caraka, R.E.; Lee, Y.; Chen, R.C.; Toharudin, T. Using Hierarchical Likelihood towards Support Vector Machine: Theory and Its Application. IEEE Access 2020, 8, 194795–194807. [Google Scholar] [CrossRef]
- Jin, S.; Noh, M.; Lee, Y. H-Likelihood Approach to Factor Analysis for Ordinal Data. Struct. Equ. Model. 2018, 25, 530–540. [Google Scholar] [CrossRef]
- Caraka, R.E.; Noh, M.; Chen, R.C.; Lee, Y.; Gio, P.U.; Pardamean, B. Connecting Climate and Communicable Disease to Penta Helix Using Hierarchical Likelihood Structural Equation Modelling. Symmetry 2021, 13, 657. [Google Scholar] [CrossRef]
- Noh, M.; Lee, Y.; Oud, J.H.L.; Toharudin, T. Hierarchical likelihood approach to non-Gaussian factor analysis. J. Stat. Comput. Simul. 2019, 89, 1555–1573. [Google Scholar] [CrossRef]
- Chang, T.Z.; Wildt, A.R. Price, product information, and purchase intention: An empirical study. J. Acad. Mark. Sci. Off. Publ. Acad. Mark. Sci. 1994, 22, 16–27. [Google Scholar] [CrossRef]
- Jang, S.C.; Namkung, Y. Perceived quality, emotions, and behavioral intentions: Application of an extended Mehrabian-Russell model to restaurants. J. Bus. Res. 2009, 62, 451–460. [Google Scholar] [CrossRef]
- Magno, F.; Cassia, F. The impact of social media influencers in tourism. Anatolia 2018, 29, 288–290. [Google Scholar] [CrossRef]
- Sudha, M.; Sheena, K. Impact of Influencers in Consumer Descion Process: Fashion Industry. J. Indian Manag. 2017, 14, 14–30. [Google Scholar]
- Wang, Z.; Kim, H.G. Can Social Media Marketing Improve Customer Relationship Capabilities and Firm Performance? Dynamic Capability Perspective. J. Interact. Mark. 2017, 39, 15–26. [Google Scholar] [CrossRef]
- Dash, G.; Kiefer, K.; Paul, J. Marketing-to-Millennials: Marketing 4.0, customer satisfaction and purchase intention. J. Bus. Res. 2021, 122, 608–620. [Google Scholar] [CrossRef]
- Tiamiyu, T.; Quoquab, F.; Mohammad, J. Muslim tourists’ intention to book on Airbnb: The moderating role of gender. J. Islam. Mark. 2020. [Google Scholar] [CrossRef]
- Kim, D.Y.; Hwang, Y.H.; Fesenmaier, D.R. Modeling tourism advertising effectiveness. J. Travel Res. 2005, 44, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, J. Destination Authenticity as a Trigger of Tourists’ Online Engagement on Social Media. J. Travel Res. 2020, 59, 1238–1252. [Google Scholar] [CrossRef]
- Alekseeva, J. Segmentation of Digital Products Consumers: The Role of Digital Competences and Generational Features, St. Petersburg University. 2021. Available online: https://dspace.spbu.ru/bitstream/11701/31094/1/MT_Julia_Alekseeva.pdf (accessed on 15 August 2021).
- Kim, M.J.; Lee, C.K.; Preis, M.W. Seniors’ loyalty to social network sites: Effects of social capital and attachment. Int. J. Inf. Manag. 2016, 36, 1020–1032. [Google Scholar] [CrossRef]
- Ki, C.W.C.; Cuevas, L.M.; Chong, S.M.; Lim, H. Influencer marketing: Social media influencers as human brands attaching to followers and yielding positive marketing results by fulfilling needs. J. Retail. Consum. Serv. 2020, 55, 102133. [Google Scholar] [CrossRef]
- Yu-Ju, W.; WU, C.; Yuan, J. Exploring visitors’ experiences and intention to revisit a heritage destination: The case for Lukang, Taiwan. J. Qual. Assur. Hosp. Tour. 2010, 11, 162–178. [Google Scholar] [CrossRef]
- Schofield, P.; Thompson, K. Visitor motivation, satisfaction and behavioural intention: The 2005 Naadam Festival, Ulaanbaatar. Int. J. Tour. Res. 2007, 9, 329–344. [Google Scholar] [CrossRef]
- Sievänen, T.; Neuvonen, M.; Pouta, E. National Park Visitor Segments and their Interest in Rural Tourism Services and Intention to Revisit. Scand. J. Hosp. Tour. 2011, 11, 54–73. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, E.; Qu, K. Exploring Theme Park Visitors’ Experience on Satisfaction and Revisit Intention: A Utilization of Experience Economy Model. J. Qual. Assur. Hosp. Tour. 2020, 21, 474–497. [Google Scholar] [CrossRef]
- Damanik, J.; Yusuf, M. Effects of perceived value, expectation, visitor management, and visitor satisfaction on revisit intention to Borobudur Temple, Indonesia. J. Herit. Tour. 2021, 1–16. [Google Scholar] [CrossRef]
- Škori, S. The Mediating Role of Major Sport Events in Visitors’ Satisfaction, Dissatisfaction, and Intention to Revisit. 2021. Available online: https://www.researchgate.net/publication/353212361_The_Mediating_Role_of_Major_Sport_Events_in_Visitors%27_Satisfaction_Dissatisfaction_and_Intention_to_Revisit_a_Destination (accessed on 15 August 2021).
- Maghrifani, D.; Liu, F.; Sneddon, J. Understanding Potential and Repeat Visitors’ Travel Intentions: The Roles of Travel Motivations, Destination Image, and Visitor Image Congruity. J. Travel Res. 2021, 00472875211018508. [Google Scholar] [CrossRef]
- Demir, M.; Rjoub, H.; Yesiltas, M. Environmental awareness and guests’ intention to visit green hotels: The mediation role of consumption values. PLoS ONE 2021, 16, 1–22. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, C.K.; Lee, W.; Ahmad, M.S. Do hedonic and utilitarian values increase pro-environmental behavior and support for festivals? Asia Pacific J. Tour. Res. 2021, 26, 921–934. [Google Scholar] [CrossRef]
- Suhartanto, D.; Dean, D.; Chen, B.T.; Kusdibyo, L. Visitor loyalty towards cultural creative attractions: The role of collectivism and indulgence. Leis. Loisir 2021, 1–19. [Google Scholar] [CrossRef]
- Baker, S.; Cantillon, Z.; Istvandity, L.; Long, P. The values and value of community heritage: Visitor evaluation of do-it-yourself museums and archives of popular music in Europe, Australasia and the United States of America. J. Herit. Tour. 2021, 1–14. [Google Scholar] [CrossRef]
- Budiarto, A.; Pardamean, B.; Caraka, R.E. Computer vision-based visitor study as a decision support system for museum. In Proceedings of the 2017 International Conference on Innovative and Creative Information Technology: Computational Intelligence and IoT, ICITech 2017, Salatiga, Indonesia, 2–4 November 2017; Volume 2018. [Google Scholar] [CrossRef]
- Nowacki, M.; Kruczek, Z. Experience marketing at Polish museums and visitor attractions: The co-creation of visitor experiences, emotions and satisfaction. Museum Manag. Curatorsh. 2021, 36, 62–81. [Google Scholar] [CrossRef]
- Cozzio, C.; Volgger, M.; Taplin, R. Point-of-consumption interventions to promote virtuous food choices of tourists with self-benefit or other-benefit appeals: A randomised field experiment. J. Sustain. Tour. 2021, 1–19. [Google Scholar] [CrossRef]
- Kompas Number of Indonesian Internet Users 2021 Reach 202 Million. Available online: https://tekno.kompas.com/read/2021/02/23/16100057/sum-user-internet-indonesia-2021-translucent-202-million (accessed on 29 July 2021).
- BPS-Statistics Indonesia Telecommunication Statistics in Indonesia 2019. DKI Jakarta. 2019. Available online: https://seadelt.net/Asset/Source/Document_ID-329_No-01.pdf (accessed on 15 August 2021).
- Szymkowiak, A.; Gaczek, P.; Padma, P. Impulse buying in hospitality: The role of content posted by social media influencers. J. Vacat. Mark. 2021, 13567667211003216. [Google Scholar] [CrossRef]
- Baltar, F.; Brunet, I. Social research 2.0: Virtual snowball sampling method using Facebook. Internet Res. 2012, 22, 57–74. [Google Scholar] [CrossRef]
- Dosek, T. Snowball Sampling and Facebook: How Social Media Can Help Access Hard-to-Reach Populations. PS Polit. Sci. Polit. 2021, 1–5. [Google Scholar] [CrossRef]
- Ohanian, R. Construction and validation of a scale to measure celebrity endorsers’ perceived expertise, trustworthiness, and attractiveness. J. Advert. 1990, 19, 39–52. [Google Scholar] [CrossRef]
- Sani, N.S.; Rahman, M.A.; Bakar, A.A.; Sahran, S.; Sarim, H.M. Machine learning approach for Bottom 40 Percent Households (B40) poverty classification. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 1698. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
- Kou, G.; Xu, Y.; Peng, Y.; Shen, F.; Chen, Y.; Chang, K.; Kou, S. Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. Decis. Support Syst. 2021, 140, 113429. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, H.; Heidari, A.A.; Gui, W.; Ye, X.; Chen, H.; Pan, Z. MFeature: Towards High Performance Evolutionary Tools for. Expert Syst. Appl. 2021, 115655. [Google Scholar] [CrossRef]
- Moore, A.W. K-Means and Hierarchical Clustering; Statistical Data Mining Tutorials; USA, 2001; Available online: http://www.cs.cmu.edu/~./awm/tutorials/kmeans11.pdf (accessed on 15 August 2021).
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. 2017, 50, 1–45. [Google Scholar] [CrossRef]
- Han, J.; Kamber, M. Data Mining Concepts and Techniques, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 1-55860-901-6. [Google Scholar]
- Agresti, A. An Introduction to Categorical Data Analysis; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; ISBN 9780471226185. [Google Scholar]
- Šmídl, V.; Quinn, A. Variational Bayesian filtering. IEEE Trans. Signal Process. 2008, 56, 5020–5030. [Google Scholar] [CrossRef]
- Hui, F.K.C.; Warton, D.I.; Ormerod, J.T.; Haapaniemi, V.; Taskinen, S. Variational Approximations for Generalized Linear Latent Variable Models. J. Comput. Graph. Stat. 2017, 26, 35–43. [Google Scholar] [CrossRef]
- Bates, D.M.; Watts, D.G. Review of Linear Regression. Nonlinear Regres. Anal. Its Appl. 1988, 1–31. [Google Scholar] [CrossRef]
- Lee, Y.; Noh, M. Modelling random effect variance with double hierarchical generalized linear models. Stat. Model. 2012, 12, 487–502. [Google Scholar] [CrossRef]
- Lee, D.; Lee, Y.; Pawitan, Y.; Lee, W. Sparse partial least-squares regression for high-throughput survival data analysis. Stat. Med. 2013, 32, 5340–5352. [Google Scholar] [CrossRef]
- Lee, D.; Lee, Y. Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model. J. Multivar. Anal. 2016, 151, 1–13. [Google Scholar] [CrossRef]
- Hierarchical Generalized Linear Models. Available online: https://pdf.zlibcdn.com/dtoken/ccadee4c831b30eb5ae0ec11621a0144/j.2517-6161.1996.tb02105.x.pdf (accessed on 15 July 2021).
- Maghsoodi, A.I.; Azizi-ari, I.; Barzegar-Kasani, Z.; Azad, M.; Zavadskas, E.K.; Antucheviciene, J. Evaluation of the influencing factors on job satisfaction based on combination of PLS-SEM and F-MULTIMOORA approach. Symmetry 2019, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Proitsi, P.; Hamilton, G.; Tsolaki, M.; Lupton, M.; Daniilidou, M.; Hollingworth, P.; Archer, N.; Foy, C.; Stylios, F.; McGuinness, B.; et al. A Multiple Indicators Multiple Causes (MIMIC) model of Behavioural and Psychological Symptoms in Dementia (BPSD). Neurobiol. Aging 2011, 32, 434–442. [Google Scholar] [CrossRef]
- Skrondal, A.; Rabe-Hesketh, S. Some Applications of Generalized Linear Latent and Mixed Models in Epidemiology. Nor. Epidemiol. 2003, 13. [Google Scholar]
- Lleras, C. Path Analysis. Encycl. Soc. Meas. 2005, 3, 25–30. [Google Scholar]
- Cheung, G.W.; Rensvold, R.B. Evaluating goodness-of-fit indexes for testing measurement invariance. Struct. Equ. Model. 2002, 9, 223–255. [Google Scholar] [CrossRef]
- Jin, S.; Vegelius, J.; Yang-Wallentin, F. A Marginal Maximum Likelihood Approach for Extended Quadratic Structural Equation Modeling with Ordinal Data. Struct. Equ. Model. 2020, 27, 864–873. [Google Scholar] [CrossRef] [Green Version]
- Jin, S. Essays on Estimation Methods for Factor Models and Structural Equation Models, Uppsala: Acta Universitatis Upsaliensis. Ph.D. Thesis, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2015. [Google Scholar]
- Lee, Y.; Nelder, J.A. Likelihood inference for models with unobservables: Another view. Stat. Sci. 2009, 24, 255–269. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Nelder, J.A. Double hierarchical generalized linear models. J. R. Stat. Soc. Ser. C Appl. Stat. 2006, 55, 139–185. [Google Scholar] [CrossRef]
- Lee, Y.; Nelder, J.A.; Noh, M. H-likelihood: Problems and solutions. Stat. Comput. 2007, 17, 49–55. [Google Scholar] [CrossRef]
- Pramana, S.; Yuniarto, B.; Kurniawan, R.; Yordani, R.; Lee, J.; Amin, I.; Satyaning, P.N.L.P.; Riyadi, Y.; Hasyyati, A.N.; Indriani, R. Big data for government policy: Potential implementations of bigdata for official statistics in Indonesia. In Proceedings of the 2017 International Workshop on Big Data and Information Security (IWBIS), Jakarta, Indonesia, 23–24 September 2017; pp. 17–21. [Google Scholar]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the construction industry: A review of present status, opportunities, and future trends. Adv. Eng. Inform. 2016, 30, 500–521. [Google Scholar] [CrossRef]
- Felt, M. Social media and the social sciences: How researchers employ Big Data analytics. Big Data Soc. 2016, 3, 205395171664582. [Google Scholar] [CrossRef] [Green Version]
- Tsou, M.H. Research challenges and opportunities in mapping social media and Big Data. Cartogr. Geogr. Inf. Sci. 2015, 42, 70–74. [Google Scholar] [CrossRef]
- Sudiana, K.; Sule, E.T.; Soemaryani, I.; Yunizar, Y. The development and validation of the Penta Helix construct. Bus. Theory Pract. 2020, 21, 136–145. [Google Scholar] [CrossRef] [Green Version]
Generation | | | TikTok | | YouTube | Others | Total |
---|---|---|---|---|---|---|---|
Millennials | 15 (3.75%) | 143 (35.75%) | 8 (2%) | 13(3.25%) | 16 (4%) | 5 (1.25%) | 200 |
Zoomers | 10(2.5%) | 123(30.75%) | 20(5%) | 6 (1.5%) | 24 (6%) | 17(4.25%) | 200 |
Total | 25 | 266 | 28 | 19 | 40 | 22 | 400 |
Generation | <1 h | 1–2 h | 2–4 h | 4–6 h | >6 h | Total |
---|---|---|---|---|---|---|
Millennials | 18 (9%) | 49 (24.5%) | 57 (28.5%) | 35(17.5%) | 41(20.5%) | 200 |
Zoomers | 17 (8.5%) | 31 (15.5%) | 70(35%) | 36 (18%) | 46(23%) | 200 |
Total | 35 | 80 | 127 | 71 | 87 | 400 |
Construct | Indicator | Measure |
---|---|---|
Basic Information | Q1 | Do you intend to take this survey?; Yes (1); No (0) |
Q2 | How many social media accounts do you have? | |
Q3 | What social media do you use frequently every day? 1 = Facebook, 2 = Instagram, 3 = TikTok, 4 = Twitter, 5 = YouTube, 6 = Others | |
Q4 | How much time do you spend on social media every day? 1 = <1 h, 2 = 1–2 h, 3 = 2–4 h, 4 = 4–6 h, 5 => 6 h | |
Q5 | Do you know/ have you heard about Social Media Influencers (SMIs) before? | |
Q6 | Do you follow SMIs on social media? Such us: Raffi Ahmad and Nagita Slavina | |
Q7 | How many SMIs do you follow on social media? | |
Income | 1 = <Rp.1.000.0000; 2 = Rp.1.000.001-Rp.2.500.000; 3 = Rp.2.500.001-Rp.4.000.000; 4 = Rp.4.000.001-Rp.5.500.000; 5 => Rp.5.500.001 | |
Status Tourism Student | Yes (1); No (2) | |
Education | 1 = Junior school; 2 = High school; 3 = Diploma/Bachelor; 4 = Master; 5 = PhD | |
Occupation | 1 = Civil servants; 2 = State-owned company; 3 = Private-owned company; 4 = Bussinessman/Entrepreneurs; 5 = Student; 6 = Others | |
Attractiveness | ATR1 | In my opinion, (SELECTED SMI) … (attractive–unattractive) |
ATR2 | In my opinion, (SELECTED SMI) … (classy–not classy) | |
ATR3 | In my opinion, (SELECTED SMI) … (beautiful/handsome–ugly) | |
ATR4 | In my opinion, (SELECTED SMI) … (elegant–plain) | |
ATR5 | In my opinion, (SELECTED SMI) … (sexy–not sexy) | |
Trustworthiness | TRS1 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … dependable–undependable. |
TRS2 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … honest–dishonest | |
TRS3 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … reliable–unreliable | |
TRS4 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … sincere–insincere | |
TRS5 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … untrustworthy–trustworthy | |
Expertise | EXP1 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … expert–not an expert |
EXP2 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … experienced–inexperienced | |
EXP3 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … knowledgeable–unknowledgeable | |
EXP4 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … qualified–unqualified | |
EXP5 | I think, when delivering tourism destination information through his/her social media account, (SELECTED SMI) … skilled–unskilled | |
Visit Intention | VIT1 | When (SELECTED SMI) delivers tourist destination information through his social media, I will find out the information about the tourist destination (strongly disagree–strongly agree) |
VIT2 | When (SELECTED SMI) delivers tourist destination information through his social media, I will consider visiting the tourist destination (strongly disagree–strongly agree) | |
VIT3 | When (SELECTED SMI) delivers tourist destination information through his social media, I will visit the tourist destination (strongly disagree–strongly agree) |
Variables | t-Value | df | p-Value | Mean Difference | se | Lower CI | Upper CI | Results |
---|---|---|---|---|---|---|---|---|
Generation and Q3 | −16.8178 | 399.0000 | 0.0000 | −1.1225 | 0.0667 | −1.2537 | −0.9913 | Significant difference |
Generation and Q4 | −26.5129 | 399.0000 | 0.0000 | −1.7375 | 0.0655 | −1.8663 | −1.6087 | Significant difference |
Generation and Q5 | 12.6298 | 399.0000 | 0.0000 | 0.3575 | 0.0283 | 0.3019 | 0.4131 | Significant difference |
Generation and number of following | −36.7967 | 399.0000 | 0.0000 | −3.2775 | 0.0891 | −3.4526 | −3.1024 | Significant difference |
Generation and Q4 | −26.5129 | 399.0000 | 0.0000 | −1.7375 | 0.0655 | −1.8663 | −1.6087 | Significant difference |
Generation | Variable | Mean Importance | Median Importance | Minimum Importance | Max Importance | Norm Hits | Decision |
---|---|---|---|---|---|---|---|
Generation Y | Q2 | −0.665 | −0.830 | −3.266 | 2.159 | 0.010 | Rejected |
Q3 | 5.295 | 5.209 | 2.738 | 7.614 | 0.929 | Confirmed | |
Q4 | 1.397 | 1.387 | 0.242 | 2.955 | 0.000 | Rejected | |
Q5 | 0.742 | 0.809 | −0.204 | 2.181 | 0.000 | Rejected | |
Q6 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | Rejected | |
Q7 | 0.593 | 0.452 | −0.273 | 2.257 | 0.000 | Rejected | |
ATR_RA1 | 11.630 | 11.653 | 9.854 | 1.353 | 1.000 | Confirmed | |
ATR_RA2 | 4.624 | 4.662 | 2.280 | 6.689 | 0.889 | Confirmed | |
ATR_RA3 | 5.080 | 5.018 | 3.012 | 7.706 | 0.960 | Confirmed | |
ATR_RA4 | 6.422 | 6.400 | 4.328 | 8.360 | 0.990 | Confirmed | |
ATR_RA5 | 5.588 | 5.657 | 3.462 | 7.906 | 0.980 | Confirmed | |
TRS_RA1 | 9.128 | 9.088 | 7.595 | 10.585 | 1.000 | Confirmed | |
TRS_RA2 | 11.865 | 11.861 | 10.324 | 13.260 | 1.000 | Confirmed | |
TRS_RA3 | 9.700 | 9.727 | 8.141 | 11.606 | 1.000 | Confirmed | |
TRS_RA4 | 10.499 | 10.565 | 9.036 | 12.244 | 1.000 | Confirmed | |
TRS_RA5 | 11.999 | 12.028 | 9.662 | 14.513 | 1.000 | Confirmed | |
EXP_RA1 | 7.817 | 7.763 | 6.004 | 9.980 | 1.000 | Confirmed | |
EXP_RA2 | 9.991 | 10.001 | 8.211 | 11.705 | 1.000 | Confirmed | |
EXP_RA3 | 8.298 | 8.265 | 6.183 | 10.275 | 1.000 | Confirmed | |
EXP_RA4 | 10.046 | 10.030 | 8.564 | 11.446 | 1.000 | Confirmed | |
EXP_RA5 | 6.924 | 6.997 | 4.913 | 8.839 | 1.000 | Confirmed | |
GENDER | 2.833 | 2.786 | 0.147 | 4.857 | 0.495 | Tentative | |
EDUCATION | 3.426 | 3.588 | 0.729 | 6.190 | 0.646 | Tentative | |
OCCUPATION | 3.369 | 3.458 | 1.241 | 5.643 | 0.667 | Tentative | |
INCOME | 2.844 | 2.931 | 0.169 | 5.230 | 0.505 | Tentative | |
Status Tourism Student | −1.931 | −2.295 | −2.859 | −0.027 | 0.000 | Rejected | |
Generation Z | Q2 | 0.220 | 0.239 | −1.108 | 1.986 | 0.000 | Rejected |
Q3 | 1.248 | 1.181 | 0.110 | 2.695 | 0.000 | Rejected | |
Q4 | 1.121 | 0.881 | −0.156 | 3.483 | 0.000 | Rejected | |
Q5 | −1.174 | −1.542 | −2.500 | 1.046 | 0.000 | Rejected | |
Q6 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | Rejected | |
Q7 | 0.689 | 0.322 | −1.371 | 3.225 | 0.020 | Rejected | |
ATR_RA1 | 9.160 | 9.089 | 7.546 | 10.771 | 1.000 | Confirmed | |
ATR_RA2 | 7.365 | 7.382 | 5.048 | 9.142 | 1.000 | Confirmed | |
ATR_RA3 | 9.817 | 9.692 | 7.365 | 11.684 | 1.000 | Confirmed | |
ATR_RA4 | 12.566 | 12.533 | 10.556 | 14.975 | 1.000 | Confirmed | |
ATR_RA5 | 5.585 | 5.510 | 3.426 | 7.480 | 0.970 | Confirmed | |
TRS_RA1 | 6.763 | 6.812 | 4.021 | 8.714 | 1.000 | Confirmed | |
TRS_RA2 | 4.338 | 4.279 | 1.963 | 6.615 | 0.869 | Confirmed | |
TRS_RA3 | 11.119 | 11.049 | 9.673 | 13.061 | 1.000 | Confirmed | |
TRS_RA4 | 8.349 | 8.403 | 6.806 | 10.674 | 1.000 | Confirmed | |
TRS_RA5 | 12.338 | 12.327 | 10.538 | 13.942 | 1.000 | Confirmed | |
EXP_RA1 | 6.940 | 7.102 | 4.870 | 8.811 | 1.000 | Confirmed | |
EXP_RA2 | 6.036 | 6.207 | 3.990 | 7.717 | 1.000 | Confirmed | |
EXP_RA3 | 11.598 | 11.594 | 9.765 | 13.261 | 1.000 | Confirmed | |
EXP_RA4 | 10.585 | 10.614 | 9.279 | 12.706 | 1.000 | Confirmed | |
EXP_RA5 | 11.985 | 12.045 | 9.478 | 14.414 | 1.000 | Confirmed | |
GENDER | −0.129 | −0.074 | −2.154 | 1.118 | 0.000 | Rejected | |
EDUCATION | −0.164 | −0.594 | −1.651 | 1.948 | 0.000 | Rejected | |
OCCUPATION | 1.829 | 1.982 | −0.591 | 4.057 | 0.061 | Rejected | |
INCOME | −1.022 | −0.815 | −2.047 | −0.085 | 0.000 | Rejected | |
Status Tourism Student | 2.282 | 2.289 | 0.065 | 4.793 | 0.364 | Tentative |
Information | Attractiveness | Trustworthiness | Expertise | Visit Intention |
---|---|---|---|---|
Cronbach’s alpha | 0.82024 | 0.94165 | 0.94325 | 0.90909 |
Composite Reliablity | 0.76101 | 0.92596 | 0.92458 | 0.87342 |
Average Variance Extracted | 0.81294 | 0.94200 | 0.94443 | 0.90977 |
No | Variable | Attribute | Estimate | Std. Err | t-Value | p-Value |
---|---|---|---|---|---|---|
1 | Attractiveness | ATR_RA1 | 1.00000 | 0.00000 | NA | NA |
2 | Attractiveness | ATR_RA2 | 0.84986 | 0.04825 | 17.61520 | 0.00000 |
3 | Attractiveness | ATR_RA3 | 0.76237 | 0.04476 | 17.03368 | 0.00000 |
4 | Attractiveness | ATR_RA4 | 0.91252 | 0.05616 | 16.24887 | 0.00000 |
5 | Attractiveness | ATR_RA5 | 0.53298 | 0.07047 | 7.56301 | 0.00000 |
6 | Trustworthiness | TRS_RA1 | 1.00000 | 0.00000 | NA | NA |
7 | Trustworthiness | TRS_RA2 | 0.95955 | 0.04334 | 22.14259 | 0.00000 |
8 | Trustworthiness | TRS_RA3 | 0.97795 | 0.03987 | 24.53103 | 0.00000 |
9 | Trustworthiness | TRS_RA4 | 0.94667 | 0.04213 | 22.46859 | 0.00000 |
10 | Trustworthiness | TRS_RA5 | 0.98924 | 0.04017 | 24.62774 | 0.00000 |
11 | Expertise | EXP_RA1 | 1.00000 | 0.00000 | NA | NA |
12 | Expertise | EXP_RA2 | 0.98271 | 0.03864 | 25.43153 | 0.00000 |
13 | Expertise | EXP_RA3 | 0.97099 | 0.03940 | 24.64362 | 0.00000 |
14 | Expertise | EXP_RA4 | 0.94420 | 0.03957 | 23.86005 | 0.00000 |
15 | Expertise | EXP_RA5 | 0.91606 | 0.03726 | 24.58705 | 0.00000 |
16 | Visit Intention | VIT_RA1 | 1.00000 | 0.00000 | NA | NA |
17 | Visit Intention | VIT_RA2 | 1.05483 | 0.04481 | 23.53866 | 0.00000 |
18 | Visit Intention | VIT_RA3 | 1.08315 | 0.04799 | 22.56885 | 0.00000 |
Basic Information | Score | Basic Information | Score | Basic Information | Score |
---|---|---|---|---|---|
Q2 | 0.51 | ATR_RA1 | 0.95 | TRS_RA1 | 0.96 |
Q3 | 0.62 | ATR_RA2 | 0.95 | TRS_RA2 | 0.96 |
Q4 | 0.65 | ATR_RA3 | 0.95 | TRS_RA3 | 0.97 |
Q5 | 0.61 | ATR_RA4 | 0.93 | TRS_RA4 | 0.95 |
Q7 | 0.87 | ATR_RA5 | 0.84 | TRS_RA5 | 0.95 |
EXP_RA1 | 0.95 | VIT_RA1 | 0.95 | EDUCATION | 0.7 |
EXP_RA2 | 0.94 | VIT_RA2 | 0.93 | OCCUPATION | 0.66 |
EXP_RA3 | 0.96 | VIT_RA3 | 0.92 | INCOME | 0.66 |
EXP_RA4 | 0.97 | VIT_RA4 | 0.97 | Status Tourism Student | 0.76 |
EXP_RA5 | 0.97 | VIT_RA5 | 0.97 | Average | 0.94 |
Intercepts for Responses | Variance for Responses | ||||||||
---|---|---|---|---|---|---|---|---|---|
Variables | Estimate | Std. Err | t-Value | p-Value | Variables | Estimate | Std. Err | t-Value | p-Value |
ATR_RA1 | 4.27 | 0.52 | 74.6599 | 0.0000 | ATR_RA1 | 5.37 | 0.49 | 0.75 | 0.0000 |
ATR_RA2 | 6.84 | 0.44 | 93.0847 | 0.0000 | ATR_RA2 | 4.02 | 0.36 | 1.52 | 0.0000 |
ATR_RA3 | 4.77 | 0.41 | 96.0187 | 0.0000 | ATR_RA3 | 3.73 | 0.32 | 4.32 | 0.0000 |
ATR_RA4 | 3.33 | 0.51 | 74.4612 | 0.0000 | ATR_RA4 | 6.40 | 0.53 | 7.35 | 0.0000 |
ATR_RA5 | 5.75 | 0.58 | 45.6947 | 0.0000 | ATR_RA5 | 2.58 | 1.18 | 6.52 | 0.0000 |
TRS_RA1 | 4.90 | 0.47 | 84.1567 | 0.0000 | TRS_RA1 | 3.61 | 0.29 | 3.72 | 0.0000 |
TRS_RA2 | 3.33 | 0.44 | 85.3341 | 0.0000 | TRS_RA2 | 3.03 | 0.25 | 2.55 | 0.0000 |
TRS_RA3 | 3.72 | 0.43 | 89.4868 | 0.0000 | TRS_RA3 | 1.89 | 0.17 | 0.79 | 0.0000 |
TRS_RA4 | 4.44 | 0.43 | 89.7800 | 0.0000 | TRS_RA4 | 2.77 | 0.23 | 1.70 | 0.0000 |
TRS_RA5 | 5.33 | 0.43 | 92.3947 | 0.0000 | TRS_RA5 | 1.89 | 0.17 | 7.18 | 0.0000 |
EXP_RA1 | 4.13 | 0.47 | 82.7218 | 0.0000 | EXP_RA1 | 3.04 | 0.26 | 6.31 | 0.0000 |
EXP_RA2 | 5.47 | 0.45 | 89.4320 | 0.0000 | EXP_RA2 | 2.31 | 0.21 | 1.92 | 0.0000 |
EXP_RA3 | 3.82 | 0.45 | 85.4615 | 0.0000 | EXP_RA3 | 2.61 | 0.22 | 4.67 | 0.0000 |
EXP_RA4 | 4.51 | 0.44 | 88.0473 | 0.0000 | EXP_RA4 | 2.82 | 0.24 | 6.93 | 0.0000 |
EXP_RA5 | 6.23 | 0.42 | 96.1799 | 0.0000 | EXP_RA5 | 2.34 | 0.20 | 4.85 | 0.0000 |
VIT_RA1 | 3.16 | 0.49 | 76.7331 | 0.0000 | VIT_RA1 | 3.72 | 0.35 | 5.01 | 0.0000 |
VIT_RA2 | 2.53 | 0.49 | 75.3959 | 0.0000 | VIT_RA2 | 2.60 | 0.30 | 4.34 | 0.0000 |
VIT_RA3 | 0.82 | 0.52 | 68.0540 | 0.0000 | VIT_RA3 | 3.60 | 0.36 | 6.41 | 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caraka, R.E.; Noh, M.; Lee, Y.; Toharudin, T.; Yusra; Tyasti, A.E.; Royanow, A.F.; Dewata, D.P.; Gio, P.U.; Basyuni, M.; et al. The Impact of Social Media Influencers Raffi Ahmad and Nagita Slavina on Tourism Visit Intentions across Millennials and Zoomers Using a Hierarchical Likelihood Structural Equation Model. Sustainability 2022, 14, 524. https://doi.org/10.3390/su14010524
Caraka RE, Noh M, Lee Y, Toharudin T, Yusra, Tyasti AE, Royanow AF, Dewata DP, Gio PU, Basyuni M, et al. The Impact of Social Media Influencers Raffi Ahmad and Nagita Slavina on Tourism Visit Intentions across Millennials and Zoomers Using a Hierarchical Likelihood Structural Equation Model. Sustainability. 2022; 14(1):524. https://doi.org/10.3390/su14010524
Chicago/Turabian StyleCaraka, Rezzy Eko, Maengseok Noh, Youngjo Lee, Toni Toharudin, Yusra, Avia Enggar Tyasti, Achlan Fahlevi Royanow, Dimas Purnama Dewata, Prana Ugiana Gio, Mohammad Basyuni, and et al. 2022. "The Impact of Social Media Influencers Raffi Ahmad and Nagita Slavina on Tourism Visit Intentions across Millennials and Zoomers Using a Hierarchical Likelihood Structural Equation Model" Sustainability 14, no. 1: 524. https://doi.org/10.3390/su14010524
APA StyleCaraka, R. E., Noh, M., Lee, Y., Toharudin, T., Yusra, Tyasti, A. E., Royanow, A. F., Dewata, D. P., Gio, P. U., Basyuni, M., & Pardamean, B. (2022). The Impact of Social Media Influencers Raffi Ahmad and Nagita Slavina on Tourism Visit Intentions across Millennials and Zoomers Using a Hierarchical Likelihood Structural Equation Model. Sustainability, 14(1), 524. https://doi.org/10.3390/su14010524