The Impact of the Dynamics of Agglomeration Externalities on Air Pollution: Evidence from Urban Panel Data in China
Abstract
:1. Introduction
2. Theory and Hypothesis
2.1. The Type of Agglomeration Externalities
2.2. The Life Cycle of Agglomeration
2.3. Theoretical Hypothesis
3. Methodology
3.1. Empirical Model
3.2. Variables
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.2.3. Control Variables
3.3. Data
3.4. Spatial Difference of Haze Pollution and Industrial Agglomeration
4. Empirical Results
4.1. Spatial Correlation Analysis
4.2. Baseline Estimation Results
4.3. Heterogeneity Test of Different Groups of Cities
4.4. Robustness Test
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, C.C.; Scott, A.J. Industrial Agglomeration and Development: A Survey of Spatial Economic Issues in East Asia and a Statistical Analysis of Chinese Regions. Econ. Geogr. 2003, 79, 295–319. [Google Scholar] [CrossRef]
- Ying, G. Globalization and Industry Agglomeration in China. World Dev. 2009, 37, 550–559. [Google Scholar]
- Hu, C.; Xu, Z.; Yashiro, N. Agglomeration and productivity in China: Firm level evidence. China Econ. Rev. 2015, 33, 50–66. [Google Scholar] [CrossRef]
- Tang, K.; Gong, C.; Wang, D. Reduction potential, shadow prices, and pollution costs of agricultural pollutants in China. Sci. Total Environ. 2016, 541, 42–50. [Google Scholar] [CrossRef]
- Wolde-Rufael, Y.; Idowu, S. Income distribution and CO2 emission: A comparative analysis for china and india. Renew. Sustain. Energy Rev. 2017, 74, 1336–1345. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment (MEE). Bulletin on China’s Ecological Environment. 2020. Available online: http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/202005/t20200507_777895.html (accessed on 31 July 2021). (In Chinese)
- Greenstone, M.; Hanna, R. Environmental regulations, air and water pollution, and infant mortality in India. Am. Econ. Rev. 2014, 104, 3038–3072. [Google Scholar] [CrossRef] [Green Version]
- Ebenstein, A.; Fan, M.; Greenstone, M.; He, G.; Zhou, M. New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc. Natl. Acad. Sci. USA 2017, 114, 10384–10389. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; He, G.; Zhou, M. The winter choke: Coal-fired heating, air pollution, and mortality in china. J. Health Econ. 2020, 71, 102316. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Larpruenrudee, P.; Saha, S.C.; Pourmehran, O.; Paul, A.R.; Gemci, T.; Collins, R.; Paul, G.; Gu, Y. How severe acute respiratory syndrome coronavirus-2 aerosol propagates through the age-specific upper airways. Phys. Fluids 2021, 33, 081911. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental impacts of a north American free trade agreement. CEPR Discuss. Pap. 1992, 8, 223–250. [Google Scholar]
- Chichilnisky, G. North-south trade and the global environment. Am. Econ. Rev. 1994, 84, 851–874. [Google Scholar]
- Copeland, B.R.; Taylor, M.S. North-South trade and the environment. Q. J. Econ. 1994, 109, 755–787. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.; Okubo, T. Trade, environmental regulations and industrial mobility: An industry-level study of Japan. Ecol. Econ. 2010, 69, 1995–2002. [Google Scholar] [CrossRef] [Green Version]
- Sung, B.; Song, W.-Y.; Park, S.-D. How foreign direct investment affects CO2 emission levels in the Chinese manufacturing industry: Evidence from panel data. Econ. Syst. 2018, 42, 320–331. [Google Scholar] [CrossRef]
- Chen, B. Industrial agglomeration and the pollution haven hypothesis: Evidence from Chinese prefectures. J. Asia Pac. Econ. 2021. [Google Scholar] [CrossRef]
- Han, F.; Xie, R.; Lu, Y.; Fang, J.Y.; Liu, Y. The Effects of Urban Agglomeration Economies on Carbon Emissions: Evidence from Chinese Cities. J. Clean. Prod. 2018, 172, 1096–1110. [Google Scholar] [CrossRef]
- Kang, Y.-Q.; Zhao, T.; Yang, Y.-Y. Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecol. Indic. 2016, 63, 231–239. [Google Scholar] [CrossRef]
- Lin, F. Trade openness and air pollution: City-level empirical evidence from China. China Econ. Rev. 2017, 45, 78–88. [Google Scholar] [CrossRef]
- Dou, J.; Han, X. How does the industry mobility affect pollution industry transfer in China: Empirical test on Pollution Haven Hypothesis and Porter Hypothesis. J. Clean. Prod. 2019, 217, 105–115. [Google Scholar] [CrossRef]
- Zeng, D.-Z.; Zhao, L. Pollution havens and industrial agglomeration. J. Environ. Econ. Manag. 2009, 58, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Virkanen, J. Effect of urbanization on metal deposition in the bay of Töölönlahti, Southern Finland. Mar. Pollut. Bull. 1998, 36, 729–738. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Y.; Cheng, Z.; Zhang, H. The Effect of Manufacturing Agglomeration on Haze Pollution in China. Int. J. Environ. Res. Public Health 2018, 15, 2490. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chen, S.; Jin, H. Industrial agglomeration and CO2 emissions: Evidence from 187 Chinese prefecture-level cities over 2005–2013. J. Clean. Prod. 2018, 172, 993–1003. [Google Scholar] [CrossRef]
- Dai, P.; Lin, Y. Should There Be Industrial Agglomeration in Sustainable Cities? A Perspective Based on Haze Pollution. Sustainability 2021, 13, 6609. [Google Scholar] [CrossRef]
- Fang, J.; Tang, X.; Xie, R.; Han, F. The effect of manufacturing agglomerations on smog pollution. Struct. Chang. Econ. Dyn. 2020, 54, 92–101. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, Y. Industrial agglomeration and environmental pollution: Evidence from China under New Urbanization. Energy Environ. 2018, 30, 1010–1026. [Google Scholar] [CrossRef]
- Gao, L.; Li, F.; Zhang, J.; Wang, X.; Hao, Y.; Li, C.; Tian, Y.; Yang, C.; Song, W.; Wang, T. Study on the Impact of Industrial Agglomeration on Ecological Sustainable Development in Southwest China. Sustainability 2021, 13, 1301. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2011, 67, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Air Quality and Urban Form in U.S. Urban Areas: Evidence from Regulatory Monitors. Environ. Sci. Technol. 2011, 45, 7028–7035. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Zhu, Y.; Liu, S.; Xie, M. Industrial agglomeration and environmental pollution: Based on the specialized and diversified agglomeration in the Yangtze River Delta. Environ. Dev. Sustain. 2021, 23, 4061–4085. [Google Scholar] [CrossRef]
- Ciccone, A. Agglomeration effects in Europe. Eur. Econ. Rev. 2002, 46, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Aiginger, K.; Davies, S.W. Industrial Specialisation and Geographic Concentration: Two Sides of the Same Coin? Not for the European Union. J. Appl. Econ. 2004, 7, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Ceapraz, I.L. The Concepts of Specialisation and Spatial Concentration and the Process of Economic Integration: Theoretical Relevance and Statistical Measures. The Case of Romania’s Regions. Rom. J. Reg. Sci. 2008, 2, 68–93. [Google Scholar]
- Rossi-Hansberg, E.A. Spatial Theory of Trade. Am. Econ. Rev. 2005, 95, 1464–1491. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Kuroda, T. The impact of economic policy on industrial specialization and regional concentration of China’s high-tech industries. Ann. Reg. Sci. 2013, 50, 771–790. [Google Scholar] [CrossRef]
- Yu, W. Creative industries agglomeration and entrepreneurship in China: Necessity or opportunity? Ind. Innov. 2020, 27, 420–443. [Google Scholar] [CrossRef]
- Martin, R.; Sunley, P. Conceptualizing Cluster Evolution: Beyond the Life Cycle Model? Reg. Stud. 2011, 45, 1299–1318. [Google Scholar] [CrossRef]
- Hayter, R.; Edenhoffer, K. Evolutionary geography of a mature resource sector: Shakeouts and shakeins in British Columbia’s forest industries 1980 to 2008. Growth Chang. 2016, 47, 497–519. [Google Scholar] [CrossRef]
- Kim, G.H.; Park, I.K. Agglomeration economies in knowledge production over the industry life cycle: Evidence from the ICT industry in the Seoul Capital Area, South Korea. Int. J. Urban Sci. 2015, 19, 400–417. [Google Scholar] [CrossRef]
- Potter, A.; Watts, H.D. Evolutionary agglomeration theory: Increasing returns, diminishing returns, and the industry life cycle. J. Econ. Geogr. 2011, 11, 417–455. [Google Scholar] [CrossRef] [Green Version]
- Neffke, F.; Henning, M.; Boschma, R.; Lundquist, K.J.; Olander, L.O. The dynamics of agglomeration externalities along the life cycle of industries. Reg. Stud. 2011, 45, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Parikh, J.; Shukla, V. Urbanization, energy use and greenhouse effects in economic development: Results from a cross-national study of developing countries. Glob. Environ. Chang. 1995, 5, 87–103. [Google Scholar] [CrossRef]
- Verhoef, E.T.; Nijkamp, P. Externalities in urban sustainability: Environmental versus localization-type agglomeration externalities in a general spatial equilibrium model of a single-sector monocentric industrial city. Ecol. Econ. 2002, 40, 157–179. [Google Scholar] [CrossRef] [Green Version]
- Bathelt, H.; Malmberg, A.; Maskell, P. Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Prog. Hum. Geogr. 2004, 28, 31–56. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Y. Convergence on the haze pollution: City-level evidence from China. Atmos. Pollut. Res. 2020, 11, 141–152. [Google Scholar] [CrossRef]
- Cai, X.; Zhu, B.; Zhang, H.; Li, L.; Xie, M. Can direct environmental regulation promote green technology innovation in heavily polluting industries? Evidence from Chinese listed companies. Sci. Total Environ. 2020, 746, 140810. [Google Scholar] [CrossRef] [PubMed]
- Combes, P.P.; Gilles, D.; Gobillon, L.; Puga, D.; Roux, S. The productivity advantages of large cities: Distinguishing agglomeration from firm selection. Econometrica 2012, 80, 2543–2594. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Rethinking the Environmental Impacts of Population, Affluence and Technology. Hum. Ecol. Rev. 1994, 1, 277–300. [Google Scholar]
- Markusen, A. Urban Development and the Politics of a Creative Class: Evidence from a Study of Artists. Environ. Plan. A Econ. Space 2006, 38, 1921–1940. [Google Scholar] [CrossRef] [Green Version]
- Delgado, M.; Porter, M.E.; Stern, S. Clusters and entrepreneurship. J. Econ. Geogr. 2010, 10, 495–518. [Google Scholar] [CrossRef]
- Andersson, R.; Quigley, J.M.; Wilhelmsson, M. Agglomeration and the spatial distribution of creativity. Pap. Reg. Sci. 2005, 84, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Deng, X.; Gibson, J.; Zhao, Z.; Xu, H. How does urbanization affect residential CO2 emissions? An analysis on urban agglomerations of China. J. Clean. Prod. 2019, 209, 876–885. [Google Scholar] [CrossRef]
- Lu, W.; Tam, V.W.; Du, L.; Chen, H. Impact of industrial agglomeration on haze pollution: New evidence from Bohai Sea Economic Region in China. J. Clean. Prod. 2021, 280, 124414. [Google Scholar] [CrossRef]
- Hong, Y.; Lyu, X.; Chen, Y.; Li, W. Industrial agglomeration externalities, local governments’ competition and environmental pollution: Evidence from Chinese prefecture–level cities. J. Clean. Prod. 2020, 277, 123455. [Google Scholar] [CrossRef]
- Weber, C. Ecosystem services provided by urban vegetation: A literature review. In Urban Environment; Rauch, S., Morrison, G., Norra, S., Schleicher, N., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 119–131. [Google Scholar]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Chen, C.; Sun, Y.; Lan, Q.; Jiang, F. Impacts of industrial agglomeration on pollution and ecological efficiency-A spatial econometric analysis based on a big panel dataset of China’s 259 cities. J. Clean. Prod. 2020, 258, 120721. [Google Scholar] [CrossRef]
- He, C.; Zhu, Y.; Zhu, S. Industrial Attributes, Provincial Characteristics and Industrial Agglomeration in China. Acta Geograph. Sin. 2010, 65, 1218–1228. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Miao, C.H.; Yuan, F. Impact of industrial spatial and organizational agglomeration patterns on industrial So2 emissions of prefecture-level cities in china. Acta Geogr. Sin. 2019, 74, 2045–2061. [Google Scholar]
- Zhao, X.; Shang, Y.; Song, M. What kind of cities are more conducive to haze reduction: Agglomeration or expansion? Habitat Int. 2019, 91, 102027. [Google Scholar] [CrossRef]
Variables | Definition | Mean | Max | Min | Std. Dev. | Obs. |
---|---|---|---|---|---|---|
Haze | PM2.5 concentration (μg/m3) | 33.26 | 90.86 | 2.02 | 15.77 | 6358 |
Agg1 | Manufacturing employment density (People per square kilometer) | 1622.40 | 134,715.90 | 1.76 | 4956.37 | 6358 |
Agg2 | Population density (People per square kilometer) | 415.03 | 2310.56 | 4.70 | 310.85 | 6358 |
Agg3 | LQ indicator of manufacturing | 0.99 | 14.41 | 0.04 | 0.57 | 6358 |
Agg4 | LQ indicator of secondary industry | 0.92 | 18.81 | 0.01 | 0.81 | 6358 |
GDP | GDP per capita (Yuan per capita) | 32,978.90 | 329,095.90 | 965.86 | 37,478.71 | 6358 |
Indus | The ratio of tertiary industry output to secondary industry (%) | 0.92 | 9.48 | 0.09 | 0.49 | 6358 |
Green | Urban greening rate (%) | 34.97 | 96.15 | 0.12 | 10.18 | 6358 |
FDI | Foreign investment per capita (Yuan per capita) | 842.03 | 19,868.53 | 0.09 | 1720.57 | 6358 |
Tec | R&D expenditure level (Yuan per capita) | 101.80 | 12,471.50 | 0.00 | 382.83 | 6358 |
Dec | The share local government fiscal revenue (%) | 33.01 | 97.53 | 0.65 | 20.00 | 6358 |
Year | Haze Pollution | Z-Value | Year | Haze Pollution | Z-Value |
---|---|---|---|---|---|
1998 | 0.484 *** | 37.519 | 2009 | 0.592 *** | 45.759 |
1999 | 0.484 *** | 37.501 | 2010 | 0.662 *** | 51.162 |
2000 | 0.577 *** | 44.722 | 2011 | 0.641 *** | 49.565 |
2001 | 0.589 *** | 45.630 | 2012 | 0.611 *** | 47.225 |
2002 | 0.596 *** | 46.065 | 2013 | 0.681 *** | 52.654 |
2003 | 0.692 *** | 53.529 | 2014 | 0.630 *** | 48.716 |
2004 | 0.557 *** | 43.093 | 2015 | 0.669 *** | 51.677 |
2005 | 0.600 *** | 46.41 | 2016 | 0.704 *** | 54.469 |
2006 | 0.606 *** | 46.909 | 2017 | 0.545 *** | 42.241 |
2007 | 0.706 *** | 54.537 | 2018 | 0.582 *** | 45.375 |
2008 | 0.615 *** | 47.525 | 2019 | 0.743 *** | 57.400 |
Variables | Geographical Concentration | Regional Specialization | ||||
---|---|---|---|---|---|---|
FE | SLM | SDM | FE | SLM | SDM | |
(1) | (2) | (3) | (4) | (5) | (6) | |
Agg3 | 0.04 *** (2.57) | 2.00 ** (1.91) | 0.14 * (1.45) | 0.03 *** (6.80) | 0.35 ** (1.98) | 0.07 ** (2.33) |
Agg2 | −0.46 * (−1.81) | −38.44 *** (−2.46) | −2.56 * (−1.72) | −0.36 *** (−7.15) | −5.13 ** (−2.03) | −0.98 ** (−2.35) |
Agg | 2.88 ** (2.61) | 183.27 *** (5.27) | 26.74 *** (7.69) | 1.60 *** (7.03) | 23.02 ** (1.94) | 5.28 *** (2.70) |
Constant | 26.03 *** (48.66) | −239.97 *** (−22.39) | −318.17 *** (−22.49) | 1.66 *** (4.86) | −15.00 ** (−2.01) | 22.78 ** (1.97) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
W×Haze | — | 0.24 *** (1.3 × 105) | 0.27 *** (8.9 × 104) | — | 0.24 *** (1.0 × 105) | 0.27 *** (7.9 × 104) |
W×Agg | — | — | 3.27 *** (5.04) | — | — | −0.21 *** (−89.73) |
R2/sigma2_e | 0.13 | −2.71 *** (−103.37) | −2.67 *** (−102.75) | 0.21 | 1.91 *** (21.31) | 3.19 *** (19.32) |
Obs. | 6358 | 6358 | 6358 | 6358 | 6358 | 6358 |
Variables | Geographical Concentration | Regional Specialization | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Agg3 | 6.41 ** (2.34) | 6.41 ** (2.34) | 0.02 *** (3.98) | 0.03 *** (5.00) |
Agg2 | −84.79 ** (−2.23) | −84.79 ** (−2.23) | −0.27 *** (−3.93) | −0.36 *** (−5.37) |
Agg | 374.12 ** (2.12) | 376.12 ** (2.13) | 1.48 *** (5.62) | 2.08 *** (8.10) |
Constant | −555.45 ** (−2.04) | −5555.45 ** (−2.04) | −2.25 *** (−7.27) | 1.26 *** (4.19) |
Controls | Yes | Yes | Yes | Yes |
R2 | 0.950 | 0.969 | 0.975 | 0.985 |
Obs. | 60 | 60 | 60 | 60 |
Variables | Geography Concentration | Regional Specialization | ||||
---|---|---|---|---|---|---|
Mega City | Large City | Small m City | Mega City | Large City | Small m City | |
Agg2 | — | −0.02 *** (−8.12) | — | — | 0.18 *** (10.74) | — |
Agg | 0.08 ** (2.27) | 0.40 *** (32.59) | 0.37 *** (44.48) | 0.05 (0.98) | −1.80 *** (−11.49) | −0.13 *** (4.53) |
Constant | 4.19 *** (11.80) | 4.46 *** (45.90) | 3.44 *** (31.91) | 4.45 *** (9.05) | 3.02 (0.77) | 3.68 *** (16.06) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
R2 | 0.09 | 0.41 | 0.59 | 0.09 | 0.19 | 0.14 |
Obs. | 19 × 22 | 191 × 22 | 79 × 22 | 19 × 22 | 191 × 22 | 79 × 22 |
Relationship | Positive | Invested-U | Positive | Positive | U shaped | Negative |
Variables | Geographical Concentration | Regional Specialization | ||||||
---|---|---|---|---|---|---|---|---|
SLM | SDM | SLM | SDM | SLM | SDM | SLM | SDM | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Agg3 | 2.00 ** (1.91) | 0.14 * (1.45) | 0.21 *** (3.72) | 0.02 * (1.69) | 0.35 ** (1.98) | 0.07 ** (2.33) | 0.10 *** (2.75) | 0.08 ** (1.88) |
Agg2 | −38.44 *** (−2.46) | −2.56 * (−1.72) | −0.56 *** (−3.21) | −0.03 * (−1.84) | −5.13 ** (−2.03) | −0.98 ** (−2.35) | −1.38 *** (−3.30) | −0.52 * (−1.95) |
Agg | 183.27 *** (5.27) | 26.74 *** (7.69) | 2.05 *** (3.61) | 5.53 ** (52.49) | 23.02 ** (1.94) | 5.28 *** (2.70) | 5.28 *** (3.22) | 2.07 ** (1.82) |
Constant | −239.97 *** (−22.39) | −318.17 *** (−22.49) | −55.71 *** (−44.23) | 0.36 (0.29) | −15.00 ** (−2.01) | 22.78 ** (1.97) | −70.06 *** (−23.58) | −151.15 *** (−53.42) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
W×Haze | 0.24 *** (1.3 × 105) | 0.27 *** (8.9 × 104) | 0.27 *** (2.2 × 105) | 0.27 *** (1.4 × 105) | 0.24 *** (1.0 × 105) | 0.27 *** (7.9 × 104) | 0.27 *** (2.3 × 105) | 0.27 *** (1.9 × 105) |
W×Agg | — | 2.98 *** (13.40) | — | 0.89 *** (117.74) | — | −0.21 *** (−89.73) | — | −0.24 *** (−62.82) |
sigma2_e | −2.71 *** (−103.37) | −2.67 *** (−102.75) | 10.27 *** (48.96) | 6.93 *** (54.40) | −3.63 *** (−137.12) | −1.32 *** (−16.21) | 6.95 *** (50.74) | 5.10 *** (65.49) |
Obs. | 6358 | 6358 | 6358 | 6358 | 6358 | 6358 | 6358 | 6358 |
Variables | Geography Concentration | Regional Specialization | ||||
---|---|---|---|---|---|---|
Sys-GMM (1) | SLM (2) | SDM (3) | Sys-GMM (4) | SLM (5) | SDM (6) | |
Haze(t−1) | 0.64 *** (1157.31) | — | — | 0.55 *** (231.41) | — | — |
Agg3 | 0.001 *** (4.15) | 0.18 *** (3.26) | 0.13 *** (4.04) | 0.002 *** (2.78) | 0.09 * (1.38) | 0.03 *** (3.26) |
Agg2 | −0.02 *** (−25.54) | −0.51 *** (−3.22) | −0.52 *** (−4.96) | −0.03 *** (−3.03) | −1.33 * (−1.80) | −0.29 ** (−1.92) |
Agg | 0.07 *** (31.85) | 5.32 *** (12.57) | 1.42 *** (4.52) | 0.12 *** (2.91) | 5.69 ** (2.05) | 0.88 *** (3.14) |
Constant | 1.28 *** (622.57) | 0.18 *** (3.26) | 0.13 *** (4.04) | 2.44 *** (40.53) | −27.22 *** (−28.18) | −45.24 *** (−15.21) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
W×Haze/AR(1) | 0.001 | 0.24 *** (1.1 × 105) | 0.24 *** (1.2 × 105) | 0.005 | 0.24 *** (9.9 × 104) | 0.24 *** (1.0×105) |
W×Agg/AR(2) | 0.21 | — | 0.12 *** (11.39) | 0.19 | — | −0.44 *** (−52.93) |
Sargan/sigma2_e | 1.00 | 2.42 *** (19.60) | 1.81 *** (22.64) | 1.00 | 2.00 *** (21.31) | 1.74 *** (26.18) |
Obs. | 6069 | 6358 | 6358 | 6069 | 6358 | 6358 |
Variables | Geography Concentration | Regional Specialization | ||||
---|---|---|---|---|---|---|
Mega City | Large City | Small m City | Mega City | Large City | Small m City | |
Haze(t−1) | 0.72 *** (31.55) | 0.67 *** (823.96) | 0.51 *** (80.81) | 0.78 *** (68.19) | 0.67 *** (2136.08) | 0.58 *** (170.30) |
Agg2 | −0.004 *** (−5.72) | 0.01 *** (6.75) | ||||
Agg | 0.03 * (1.33) | 0.06 *** (11.13) | 0.03 *** (2.73) | 0.03 * (1.76) | −0.07 *** (−4.15) | −0.02 ** (−2.47) |
Constant | 0.84 ** (7.81) | 1.42 *** (108.62) | 2.39 *** (43.73) | 0.72 *** (10.88) | 1.15 *** (27.36) | 1.16 *** (29.49) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
AR(1) | 0.001 | 0 | 0 | 0 | 0 | 0 |
AR(2) | 0.06 | 0.21 | 0.26 | 0.04 | 0.08 | 0.03 |
Sargan | 1.00 | 0.96 | 1.00 | 1.00 | 0.96 | 1.00 |
Obs. | 19 × 21 | 191 × 21 | 79 × 21 | 19 × 21 | 191 × 21 | 79 × 21 |
Relationship | Positive | Inverted-U | Positive | Positive | U shaped | Negative |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Yu, W.; Wu, S. The Impact of the Dynamics of Agglomeration Externalities on Air Pollution: Evidence from Urban Panel Data in China. Sustainability 2022, 14, 580. https://doi.org/10.3390/su14010580
Tan X, Yu W, Wu S. The Impact of the Dynamics of Agglomeration Externalities on Air Pollution: Evidence from Urban Panel Data in China. Sustainability. 2022; 14(1):580. https://doi.org/10.3390/su14010580
Chicago/Turabian StyleTan, Xiaolan, Wentao Yu, and Shiwei Wu. 2022. "The Impact of the Dynamics of Agglomeration Externalities on Air Pollution: Evidence from Urban Panel Data in China" Sustainability 14, no. 1: 580. https://doi.org/10.3390/su14010580
APA StyleTan, X., Yu, W., & Wu, S. (2022). The Impact of the Dynamics of Agglomeration Externalities on Air Pollution: Evidence from Urban Panel Data in China. Sustainability, 14(1), 580. https://doi.org/10.3390/su14010580