Revolutionary Strategies Analysis and Proposed System for Future Infrastructure in Internet of Things
Abstract
:1. Introduction
Motivation, Objectives, and Contributions
- To clarify IoT vision and definitions and to provide a comprehensive overview of IoT features
- To elaborate on the various IoT architectures, and protocols that result from the integration of IoT with different technologies
- Designing a technical taxonomy to classify the various IoT applications
- To provide a discussion about open IoT issues and challenges in IoT applications.
2. Literature Survey
3. IoT Architectures
3.1. IoT General Architecture
3.1.1. Perception Layer
3.1.2. Network Layer
3.1.3. Application Layer
3.2. IoHT Architecture
3.3. IoT Architecture with FC
3.3.1. Cloud Computing
3.3.2. Fog Layer
3.3.3. Sensor or Physical Layer
3.4. IoT Architecture for Smart Homes
3.5. Blockchain-Based Smart City Architecture
4. IoT Applications
4.1. Smart Home
4.2. Smart Agriculture
4.3. Smart Cities
4.4. Smart Health Care
4.5. Smart Grids
4.6. Smart Industry
5. IoT Communication Protocols
5.1. Constrained Application Protocol (CoAP)
5.2. Advanced Message Queuing Protocol (AMQP)
5.3. Data Distribution Service (DDS)
5.4. Message Queue Telemetry Transport (MQTT)
5.5. IPv6 over Low-Power Wireless Personal Area Networks Protocol (6LoWPAN)
5.6. Routing Protocol for Low Power and Lossy Networks (RPL)
5.7. Wi-Fi Protocol
6. Key Challenges of IoT
6.1. Data Management
6.2. Information Decryption and Encryption
6.3. Data Privacy
6.4. Interoperability and Standardization
6.5. System Security
6.6. Availability
6.7. Transfer Speed and Power Consumption
7. Future Directions
7.1. IoT Trends in Transport
- The use of data from many IoT devices produces rich videos and images.
- To gain valuable insight into the IoT transportation network, it is required to improve the quality of images and videos.
- For fast-tracking systems, a minimum event detection time is required.
- For real-time tracking of full transport telematics and V2V, minimization of end-to-end delays is required.
- Various methods to protect privacy in terms of such metrics as the position, activity, and description of vehicles must be ensured.
7.2. Blockchain Technologies
7.3. Modern Artificial Intelligence and Management
- IoT privacy, security, and their link during operations should be taken into account when using IoT for healthcare applications.
- In health IoT systems, powerful analytic methods are required for emergency cases.
7.4. Enhanced IoT Edge Computation
- Data in data centres manages all the processes in IoT.
- Focus on the reliability of the network that is used to run the IoT applications [114].
7.5. Software-as-a-Service
- It lets businesses outsource Information Technology (IT) projects [116].
- Related trends in IoT allow businesses a communications outlet for promotion.
7.6. Smart Home IoT Devices
7.7. IoT Security
- When developing IoT systems, security and privacy issues should be considered.
- Safe systems for information delivery should be developed and applied.
- Compared with other conventional IoT systems, the architecture of the IoT system for the delivery of information should be economical.
8. Importance of Blockchain and Big Data Analytics in IoT
8.1. Big Data Analytics in IoT
8.2. Blockchain Analytics in IoT
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
List of Abbreviations | Definition |
A-SEP | Advance Stable Election Protocol |
AMQP | Advanced Message Queuing Protocol |
CoAP | Constrained Application Protocol |
CPS | Cyber-Physical System |
DCPS | Data-Centric Publish-Subscribe |
DDS | Data Distribution Service |
DoS | Denial of Service |
DLRL | Data Local Reconstruction Layer |
DTLS | Datagram Transport Layer Security |
GIS | Geographic Information System |
HetNet | Heterogeneous Networks |
ICT | Information and Communication Technology |
IPv6 | Internet Protocol version 6 |
IETF | Internet Engineering Task Force |
LSH | Locality-Sensitive Hashing |
LEACH | Low-Energy Adaptive Clustering Hierarchy |
LLN | Low-Power and Lossy Network |
MAC | Medium Access Control |
MEN | Mobile Edge Nodes |
MQTT | Message Queue Telemetry Transport |
OT | Operative Technology |
PIR | Proximity infra-red |
RPL | Routing Protocol for Low Power and Lossy Network |
RFID | Radio Frequency Identification |
SEP | Stable Election Protocol |
SSN | System Security Networking |
V2V | Vehicle-To-Vehicle |
References
- Hajjaji, Y.; Boulila, W.; Farah, I.R.; Romdhani, I.; Hussain, A. Big data and IoT-based applications in smart environments: A systematic review. Comput. Sci. Rev. 2021, 39, 100318. [Google Scholar] [CrossRef]
- Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process Automation in an IoT–Fog–Cloud Ecosystem: A Survey and Taxonomy. IoT 2021, 2, 92–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Jin, R.; Lin, K.; Liu, W. High-performance isolation computing technology for smart IoT healthcare in cloud environments. IEEE Internet Things J. 2021, 8, 16872–16879. [Google Scholar] [CrossRef]
- Jacob, T.P.; Pravin, A.; Ramachandran, M.; Al-Turjman, F. Differential spectrum access for next generation data traffic in massive-IoT. Microprocess. Microsyst. 2021, 82, 103951. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Aihara, N.; Yamazaki, S.; Ohuchi, K.; Mizuno, H. Energy-Efficiency Comparison of Ad-hoc Routings in a Shadowing Environment for Smart IoT. In Proceedings of the 2021 International Conference on Information Netw. (ICOIN), Jeju Island, Korea, 13–16 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 801–804. [Google Scholar]
- Tsiknas, K.; Taketzis, D.; Demertzis, K.; Skianis, C. Cyber Threats to Industrial IoT: A Survey on Attacks and Countermeasures. IoT 2021, 2, 163–188. [Google Scholar] [CrossRef]
- Ojanperä, T.; Mäkelä, J.; Majanen, M.; Mämmelä, O.; Martikainen, O.; Väisänen, J. Evaluation of LiDAR data processing at the mobile network edge for connected vehicles. EURASIP J. Wirel. Commun. Netw. 2021, 1, 1–23. [Google Scholar] [CrossRef]
- Rana, A.K.; Sharma, S. Industry 4.0 Manufacturing Based on IoT, Cloud Computing, and Big Data: Manufacturing Purpose Scenario. In Advances in Communication and Computational Technology; Singh Hura, G., Singh, A.K., Hoe, L.S., Eds.; Springer: New York, NY, USA; Singapore, 2021; pp. 1109–1119. [Google Scholar]
- Oktian, Y.E.; Witanto, E.N.; Lee, S.G. A Conceptual Architecture in Decentralizing Computing, Storage, and Networking Aspect of IoT Infrastructure. IoT 2021, 2, 205–221. [Google Scholar] [CrossRef]
- Almezhghwi, K.; Serte, S.; Al-Turjman, F. Convolutional neural networks for the classification of chest X-rays in the IoT era. Multimed. Tools Appl. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Bhushan, B.; Khamparia, A.; Sagayam, K.M.; Sharma, S.K.; Ahad, M.A.; Debnath, N.C. Blockchain for smart cities: A review of architectures, integration trends and future research directions. Sustain. Cities Soc. 2020, 61, 102360. [Google Scholar] [CrossRef]
- Bhushan, B.; Sahoo, C.; Sinha, P.; Khamparia, A. Unification of Blockchain and Internet of Things (BIoT): Requirements, working model, challenges and future directions. Wirel. Netw. 2021, 27, 55–90. [Google Scholar] [CrossRef]
- Inam, H.; Al-Turjman, F. Intelligent free energy usage through radiant energy space phenomenon: An IoT-powered prototype for modified Bedini generator. Microprocess. Microsyst. 2021, 21, 104319. [Google Scholar] [CrossRef]
- Jamil, H.; Umer, T.; Ceken, C.; Al-Turjman, F. Decision Based Model for Real-Time IoT Analysis Using Big Data and Machine Learning. Wirel. Pers. Commun. 2021, 121, 2747–2959. [Google Scholar] [CrossRef]
- Xu, L.; Wu, H.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Alhamoud, A.; Ruettiger, F.; Reinhardt, A.; Englert, F.; Burgstahler, D. Smartenergy. kom: An intelligent system for energy saving in smart home. In Proceedings of the 39th Annual IEEE Conference on Local Computer Networks Workshops, Edmonton, AB, Canada, 8–11 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 685–692. [Google Scholar]
- Akkaya, K.; Guvenc, I.; Aygun, R.; Pala, N.; Kadri, A. IoT-based occupancy monitoring techniques for energy-efficient smart buildings. In Proceedings of the 2015 IEEE Wireless Communications and Network Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 58–63. [Google Scholar]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 141, 22–32. [Google Scholar] [CrossRef]
- Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, S. Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [Google Scholar] [CrossRef]
- Abdur, A.; Qureshi, M.; Gill, S.; Ullah, S. Security issues in the Internet of Things (IoT): A comprehensive study. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 383. [Google Scholar] [CrossRef] [Green Version]
- Raja, A.; Naveedha, R.; Niranjanadevi, G.; Roobini, V. An internet of things (IoT) based security alert system using raspberry pi. Asia Pac. Int. J. Eng. Sci. 2016, 2, 37–41. [Google Scholar]
- Tahir, H.; Kanwer, A.; Junaid, M. Internet of Things (IoT): An overview of applications and security issues regarding implementation. Int. J. Multidiscip. Sci. Eng. 2016, 7, 14–22. [Google Scholar]
- Wang, Y.; Zhang, M.; Shu, W. An emerging intelligent optimization algorithm based on trust sensing model for wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2018, 1, 45. [Google Scholar] [CrossRef]
- Zhu, X.; Ding, B.; Li, W.; Gu, L.; Yang, Y. On development of security monitoring system via wireless sensing network. EURASIP J. Wirel. Commun. Netw. 2018, 1, 221. [Google Scholar] [CrossRef] [Green Version]
- Suchitra, C.; Vandana, C.P. Internet of things and security issues. Int. J. Comput. Sci. Mob. Comput. 2016, 5, 133–139. [Google Scholar]
- Zhang, W.; Kumar, M.; Yu, J.; Yang, J. Medical long-distance monitoring system based on internet of things. EURASIP J. Wirel. Commun. Netw. 2018, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Xu, L.; Wang, F.; Xu, Q. An anonymous batch handover authentication protocol for big flow wireless mesh networks. EURASIP J. Wirel. Commun. Netw. 2018, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Afanasyev, I.; Mazzara, M.; Chakraborty, S.; Zhuchkov, N.; Maksatbek, A.; Yesildirek, A.; Kassab, M.; Distefano, S. Towards the internet of robotic things: Analysis, architecture, components and challenges. In Proceedings of the 2019 12th International Conference on Developments in eSystems Engineering (DeSe), Kazan, Russia, 7–10 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3–8. [Google Scholar]
- Dharshini, S.; Subashini, M.M. An overview on wireless body area networks. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT 2017), Vellore, India, 21–22 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–10. [Google Scholar]
- Alezabi, K.A.; Hashim, F.; Hashim, S.J.; Ali, B.M.; Jamalipour, A. Efficient authentication and re-authentication protocols for 4G/5G heterogeneous networks. EURASIP J. Wirel. Commun. Netw. 2020, 77, 1–34. [Google Scholar] [CrossRef]
- Weber, R.H. Internet of things-new security and privacy challenges. Comput. Law Secur. Rev. 2010, 26, 23–30. [Google Scholar] [CrossRef]
- Toor, A.; ul Islam, S.; Ahmed, G.; Jabbar, S.; Khalid, S.; Sharif, A.M. Energy efficient edge-of-things. EURASIP J. Wirel. Commun. Netw. 2020, 1, 82. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, Y.; Philip-Chen, C.L. Hybrid content-based routing using network and application layer filtering. In Proceedings of the IEEE 36th International Conference on Distributed Computing Systems (ICDCS), Nara, Japan, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 221–231. [Google Scholar]
- Huang, S.; Zhu, L.; Liu, S. Based on virtual beamforming cooperative jamming with Stackelberg game for physical layer security in the heterogeneous wireless network. EURASIP J. Wirel. Commun. Netw. 2018, 1, 69. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Alqahtani, A.; Solaiman, E.; Perera, C.; Jayaraman, P.P.; Buyya, R.; Morgan, G.; Ranjan, R. IoT-CANE: A unified knowledge management system for data-centric Internet of Things application systems. J. Parallel Distrib. Comput. 2019, 131, 161–172. [Google Scholar] [CrossRef]
- Pierleoni, P.; Conti, M.; Belli, A.; Palma, L.; Incipini, L.; Sabbatini, L.; Valenti, S.; Mercuri, M.; Concetti, R. Iot solution based on MQTT protocol for real-time building monitoring. In Proceedings of the 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy, 19–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 57–62. [Google Scholar]
- Luk, M.; Mezzour, G.; Perrig, A.; Gligor, V. MiniSec: Secure sensor network communication architecture. In Proceedings of the 6th International Conference on Information Processing in Sensor Networks, Cambridge, MA, USA, 25–27 April 2007; Association for Computing Machinery: New York, NY, USA, 2007. [Google Scholar]
- Li, Q.; Ning, H.; Zhu, T.; Cui, S.; Chen, L. A hybrid approach to inferring the Internet of Things for complex activity recognition. EURASIP J. Wirel. Commun. Netw. 2019, 1, 251. [Google Scholar] [CrossRef]
- Xiang, X.; Liu, W.; Wang, T.; Xie, M.; Li, X.; Song, H.; Liu, A.; Zhang, G. Delay and energy-efficient data collection scheme-based matrix filling theory for dynamic traffic IoT. EURASIP J. Wirel. Commun. Netw. 2019, 1, 168. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Hussain, R.; Hassan, S.A.; Hossain, E. Machine learning in IoT security: Current solutions and future challenges. IEEE Commun. Surv. Tutor. 2020, 22, 1686–1721. [Google Scholar] [CrossRef] [Green Version]
- Novosel, L.; Šišul, G. Performance evaluation of chaotic spreading sequences on software-defined radio. EURASIP J. Wirel. Commun. Netw. 2017, 1, 80. [Google Scholar] [CrossRef]
- Wu, M.; Wu, Y.; Liu, X.; Ma, M.; Liu, A.; Zhao, M. Learning-based synchronous approach from forwarding nodes to reduce the delay for Industrial Internet of Things. EURASIP J. Wirel. Commun. Netw. 2018, 1, 10. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Psannis, K.E.; Gupta, B.B. IoT-based Big Data secure management in the Fog over a 6G Wireless Network. IEEE Internet Things J. 2020, 8, 5164–5171. [Google Scholar] [CrossRef]
- Temglit, N.; Chibani, A.; Djouani, K.; Sacer, M.A. A distributed agent-based approach for optimal QoS selection in web of object choreography. IEEE Syst. J. 2018, 12, 1655–1666. [Google Scholar] [CrossRef]
- Wan, J.; Al-awlaqi, M.A.; Li, M.; O’Grady, M.; Gu, X.; Wang, J.; Cao, N. Wearable IoT enabled real-time health monitoring system. EURASIP J. Wirel. Commun. Netw. 2018, 1, 1–10. [Google Scholar] [CrossRef]
- Ali, A.M.; Al Ghamdi, M.A.; Iqbal, M.M.; Khalid, S.; Aldabbas, H.; Saeed, S. Next-generation UWB antennas gadgets for human health care using SAR. EURASIP J. Wirel. Commun. Netw. 2021, 1, 33. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, S.; Yuan, X. Ambient backscatter communication-based smart 5G IoT network. EURASIP J. Wirel. Commun. Netw. 2021, 1, 34. [Google Scholar] [CrossRef]
- Majeed, S.; Sohail, A.; Qureshi, K.N.; Kumar, A.; Iqbal, S.; Lloret, J. Unmanned aerial vehicles optimal airtime estimation for energy aware deployment in IoT-enabled fifth generation cellular networks. EURASIP J. Wirel. Commun. Netw. 2020, 1, 254. [Google Scholar] [CrossRef]
- Jebarani, M.E.; Kumaraguru, S. Secured Human Health Monitoring Using Wireless Medical Sensor Networks Review. Eur. J. Mol. Clin. Med. 2020, 7, 1913–1924. [Google Scholar]
- Raji, M.F.; Li, J.; Haq, A.U.; Ejianya, V.; Khan, J.; Khan, A.; Khalil, M.; Ali, A.; Shahid, M.; Ahamad, B.; et al. A New Approach for Enhancing the Services of the 5G Mobile Network and IOT-Related Communication Devices Using Wavelet-OFDM and Its Applications in Healthcare. Sci. Program. 2020, 10, 2020. [Google Scholar] [CrossRef]
- Palattella, M.R.; Dohler, M.; Grieco, A.; Rizzo, G.; Torsner, J.; Engel, T.; Ladid, L. Internet of things in the 5G era: Enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 2016, 34, 510–527. [Google Scholar] [CrossRef] [Green Version]
- Mothukuri, V.; Khare, P.; Parizi, R.M.; Pouriyeh, S.; Dehghantanha, A.; Srivastava, G. Federated Learning-based Anomaly Detection for IoT Security Attacks. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Behera, T.M.; Mohapatra, S.K.; Samal, U.C.; Khan, M.S.; Daneshmand, M.; Gandomi, A.H. Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet Things J. 2019, 6, 5132–5139. [Google Scholar] [CrossRef] [Green Version]
- Farman, H. Multi Criterion based zone head selection in Internet of Things based on wireless sensor networks, future generation. Future Gener. Comput. Syst. 2018, 87, 364–371. [Google Scholar] [CrossRef]
- Behera, M.; Samal, U.; Mohapatra, K. Energy efficient modified LEACH protocol for IoT applications. IET Wirel. Sens. Syst. 2018, 8, 223–228. [Google Scholar] [CrossRef]
- Butler, D. Computing: Everything, everywhere. Nature 2020, 440, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liu, A.; Xie, M.; Wang, T. UAVs joint vehicles as data mules for fast codes dissemination for edge network in smart city. Peer-Peer Netw. Appl. 2019, 12, 1550–1574. [Google Scholar] [CrossRef]
- Alzahrani, B.A.; Irshad, A.; Albeshri, A.; Alsubhi, K. A provably secure and lightweight patient-healthcare authentication protocol in wireless body area networks. Wirel. Pers. Commun. 2021, 117, 47–69. [Google Scholar] [CrossRef]
- Wang, T.; Qiu, L.; Xu, G.; Sangaiah, A. Energy-efficient and trustworthy data collection protocol based on mobile fog computing in Internet of Things. IEEE Trans. Ind. Inform. 2019, 16, 3531–3539. [Google Scholar] [CrossRef]
- Qi, L.; Wang, R.; Hu, C.; Li, S.; He, Q.; Xu, X. Time-aware distributed service recommendation with privacy-preservation. Inf. Sci. 2019, 480, 354–364. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, K.; Lei, L.; Zheng, K.; Leung, V.C. Blockchain-based decentralized trust management in vehicular networks. IEEE Internet Things J. 2018, 6, 1495–1505. [Google Scholar] [CrossRef]
- Marche, C.; Nitti, M. A Binary Trust Game for the Internet of Things. IoT 2021, 1, 50–70. [Google Scholar] [CrossRef]
- Wang, T.; Luo, H.; Zheng, X.; Xie, M. Crowd sourcing mechanism for trust evaluation in CPCS based on intelligent mobile edge computing. ACM Transection Intell. Syst. Technol. 2019, 10, 1–19. [Google Scholar]
- Khraisat, A.; Alazab, A. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy, validation strategy, attacks, public datasets and challenges. Cybersecurity 2021, 4, 18. [Google Scholar] [CrossRef]
- Haris, M.; Al-Maadeed, S. Integrating Blockchain Technology in 5G enabled IoT: A Review. In Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, 2–5 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 367–371. [Google Scholar]
- Srivastav, H.; Dwivedi, R. Energy Efficiency in Sensor Based IoT using Mobile Agents: A Review. In Proceedings of the 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), Uttar Pradesh, India, 28–29 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 314–319. [Google Scholar]
- Fu, X.; Ding, T.; Peng, R.; Liu, C.; Cheriet, M. Joint UAV channel modeling and power control for 5G IoT networks. EURASIP J. Wirel. Commun. Netw. 2021, 1, 106. [Google Scholar] [CrossRef]
- Yi, H.; Lin, W.; Huang, X.; Cai, X.; Chi, R.; Nie, Z. Energy Trading IoT System Based on Blockchain. Swarm Evol. Comput. 2021, 37, 100891. [Google Scholar] [CrossRef]
- Gulzar, M.; Abbas, G.; Waqas, M. Climate Smart Agriculture: A Survey and Taxonomy. In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST), Karachi, Pakistan, 26–27 March 2020; Curran Associates, Inc.: Red Hook, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Answer, M.; Ashfaque, A. Security of IoT Using Block chain: A Review. In Proceedings of the 2020 International Conference on Information Science and Communication Technology (ICISCT), Karachi, Pakistan, 8–9 February 2020; Curran Associates, Inc.: Red Hook, NY, USA, 2020; pp. 1–5. [Google Scholar]
- Mughal, D.M.; Shah, S.T.; Chung, M.Y. An Efficient Spectrum Utilization Scheme for Energy-Constrained IoT Devices in Cellular Networks. IEEE Internet Things J. 2021, 8, 13414–13424. [Google Scholar] [CrossRef]
- José, V.; Sobral, V. Routing Protocols for Low Power and Lossy Networks in Internet of Things Applications. Sensors 2019, 19, 2144. [Google Scholar]
- Jangid, A.; Dubey, P.; Chandavarkar, R. Security issues and challenges in Healthcare Automated Devices. In Proceedings of the 12th International Conference on Communication Systems and Networks (COMSNETS 2020), Bengaluru, India, 7–11 January 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 19–23. [Google Scholar]
- Mocnej, J.; Pekar, A.; Seah, W.K.; Papcun, P.; Kajati, E.; Cupkova, D.; Koziorek, J.; Zolotova, I. Quality-enabled decentralized IoT architecture with efficient resources utilization. Robot. Comput. Integr. Manuf. 2021, 67, 102001. [Google Scholar] [CrossRef]
- Sarrab, M.; Alshohoumi, F. Assisted-Fog-Based Framework for IoT-Based Healthcare Data Preservation. Int. J. Cloud Appl. Comput. 2021, 11, 1–6. [Google Scholar] [CrossRef]
- Goyal, S.; Sharma, N.; Bhushan, B.; Shankar, A.; Sagayam, M. Iot enabled technology in secured healthcare: Applications, challenges and future directions. In Cognitive Internet of Medical Things for Smart Healthcare 2021; Hassanien, E., Khamparia, A., Gupta, D., Shankar, K., Slowik, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 25–48. [Google Scholar]
- Esposito, C.; Ficco, M.; Gupta, B.B. Blockchain-based authentication and authorization for smart city applications. Inf. Process. Manag. 2021, 58, 102468. [Google Scholar] [CrossRef]
- Maddikunta, P.K.; Hakak, S.; Alazab, M.; Bhattacharya, S.; Gadekallu, T.R.; Khan, W.Z.; Pham, Q.V. Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sens. J. 2021, 13, 78–98. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Labus, A.; Radenković, B.; Rodić, B.; Barać, D.; Malešević, A. Enhancing smart healthcare in dentistry: An approach to managing patients’ stress. Inform. Health Soc. Care 2021, 1, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Zahra, S.R.; Chishti, M.A. Smart Cities Pilot Projects: An IoT Perspective. In Smart Cities: A Data Analytics Perspective; Ayoub Khan, M., Algarni, F., Tabrez Quasim, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 231–255. [Google Scholar]
- Hussain, A.; Ali, T.; Althobiani, F.; Draz, U.; Irfan, M.; Yasin, S.; Shafiq, S.; Safdar, Z.; Glowacz, A.; Nowakowski, G.; et al. Security Framework for IoT Based Real-Time Health Applications. Electronics 2021, 10, 719. [Google Scholar] [CrossRef]
- Lombardi, M.; Pascale, F.; Santaniello, D. Internet of Things: A General Overview between Architectures, Protocols and Applications. Information 2021, 12, 87. [Google Scholar] [CrossRef]
- Agarwal, T.; Niknejad, P.; Barzegaran, M.R.; Vanfretti, L. Multi-level Time-Sensitive Network (TSN) using the Data Distribution Services (DDS) for Synchronized Three-Phase Measurement Data Transfer. IEEE Access 2019, 7, 131407–131417. [Google Scholar] [CrossRef]
- Akhtar, S.; Zahoor, E. Formal Specification and Verification of MQTT Protocol in PlusCal-2. Wirel. Pers. Commun. 2021, 22, 1589–1606. [Google Scholar] [CrossRef]
- Bruniaux, A.; Koutsiamanis, R.A.; Papadopoulos, G.Z.; Montavont, N. Defragmenting the 6LoWPAN Fragmentation Landscape: A Performance Evaluation. Sensors 2021, 5, 1711. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.K.; Sharma, S. Contiki Cooja Security Solution (CCSS) with IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) in Internet of Things Applications. In Mobile Radio Communications and 5G Networks; Springer: Singapore, 2021; pp. 251–259. [Google Scholar]
- Pancaroglu, D.; Sen, S. Load balancing for RPL-based Internet of Things: A review. Ad Hoc Netw. 2021, 18, 102491. [Google Scholar] [CrossRef]
- Kasrin, N.; Benabbas, A.; Elmamooz, G.; Nicklas, D.; Steuer, S.; Sünkel, M. Data-sharing markets for integrating IoT data processing functionalities. CCF Trans. Pervasive Comput. Interact. 2021, 13, 76–93. [Google Scholar] [CrossRef]
- Debauche, O.; Trani, J.P.; Mahmoudi, S.; Manneback, P.; Bindelle, J.; Mahmoudi, S.; Lebeau, F. Data Management and Internet of Things: A Methodological Review in Smart Farming. Internet Things 2021, 15, 100378. [Google Scholar] [CrossRef]
- Chandu, Y.; Kumar, K.R.; Prabhukhanolkar, N.V.; Anish, A.N.; Rawal, S. Design and implementation of hybrid encryption for security of IOT data. In Proceedings of the 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon), Bengaluru, India, 17–19 August 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1228–1231. [Google Scholar]
- Kumar, A.; Sharma, S.; Goyal, N.; Gupta, S.K.; Kumari, S.; Kumar, S. Energy-efficient fog computing in Internet of Things based on Routing Protocol for Low-Power and Lossy Network with Contiki. Int. J. Commun. Syst. 2021, 87, e5049. [Google Scholar] [CrossRef]
- Hamza, R.; Yan, Z.; Muhammad, K.; Bellavista, P.; Titouna, F. A privacy-preserving cryptosystem for IoT E-healthcare. Inf. Sci. 2020, 527, 493–510. [Google Scholar] [CrossRef]
- Tan, X.; Su, S.; Huang, Z.; Guo, X.; Zuo, Z.; Sun, X.; Li, L. Wireless sensor networks intrusion detection based on SMOTE and the random forest algorithm. Sensors 2019, 19, 203. [Google Scholar] [CrossRef] [Green Version]
- Badmus, I.; Laghrissi, A.; Matinmikko-Blue, M.; Pouttu, A. End-to-end network slice architecture and distribution across 5G micro-operator leveraging multi-domain and multi-tenancy. EURASIP J. Wirel. Commun. Netw. 2021, 1, 1–23. [Google Scholar] [CrossRef]
- Rana, A.K.; Krishna, R.; Dhwan, S.; Sharma, S.; Gupta, R. Review on artificial intelligence with internet of things-problems, challenges and opportunities. In Proceedings of the 2019 2nd International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 18–19 October 2019; pp. 383–387. [Google Scholar]
- Lu, D.; Ding, C.; Xu, J.; Wang, S. Hierarchical discriminant analysis. Sensors 2018, 18, 279. [Google Scholar] [CrossRef] [Green Version]
- Mezzanotte, P.; Palazzi, V.; Alimenti, F.; Roselli, L. Innovative rfid sensors for internet of things applications. IEEE J. Microw. 2021, 1, 55–65. [Google Scholar] [CrossRef]
- Culman, C.; Aminikhanghahi, J.; Cook, D. Easing power consumption of wearable activity monitoring with change point detection. Sensors 2020, 20, 310. [Google Scholar] [CrossRef] [Green Version]
- Centobelli, P.; Cerchione, R.; Esposito, E. Environmental sustainability in the service industry of transportation and logistics service providers: Systematic literature review and research directions. Transp. Res. Part D Transp. Environ. 2017, 53, 454–470. [Google Scholar] [CrossRef]
- Mo, X.; Qian, Q.; Guo, Q.; Cheng, Q. Spatial distribution features of the transportation-oriented logistics enterprises in Guangzhou. Trop. Geogr. 2010, 30, 521–527. [Google Scholar]
- Rey, A.; Panetti, E.; Maglio, R.; Ferretti, M. Determinants in adopting the Internet of Things in the transport and logistics industry. J. Bus. Res. 2021, 131, 584–590. [Google Scholar] [CrossRef]
- Olszewski, R.; Pałka, P.; Turek, A. Solving “Smart City” Transport Problems by Designing Carpooling Gamification Schemes with Multi-Agent Systems: The Case of the So-Called “Mordor of Warsaw”. Sensors 2018, 18, 141. [Google Scholar] [CrossRef] [Green Version]
- Ferrag, M.A.; Derdour, M.; Mukherjee, M.; Derhab, A.; Maglaras, L.; Janicke, H. Blockchain technologies for the internet of things: Research issues and challenges. IEEE Internet Things J. 2018, 6, 2188–2204. [Google Scholar] [CrossRef] [Green Version]
- Niknejad, N.; Ismail, W.; Bahari, M.; Hendradi, R.; Salleh, A.Z. Mapping the research trends on blockchain technology in food and agriculture industry: A bibliometric analysis. Environ. Technol. Innov. 2021, 21, 101272. [Google Scholar] [CrossRef]
- Budak, A.; Çoban, V. Evaluation of the impact of blockchain technology on supply chain using cognitive maps. Expert Syst. Appl. 2021, 184, 115455. [Google Scholar] [CrossRef]
- Tsao, Y.C.; Thanh, V.V.; Wu, Q. Sustainable microgrid design considering blockchain technology for real-time price-based demand response programs. Int. J. Electr. Power Energy Syst. 2021, 125, 106418. [Google Scholar] [CrossRef]
- Dhawan, S.; Chakraborty, C.; Frnda, J.; Gupta, R.; Rana, A.K.; Pani, S.K. SSII: Secured and high-quality Steganography using intelligent hybrid optimization algorithms for IoT. IEEE Access 2021, 9, 87563–87578. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Uță, C.; Ștefănescu, R.; Cocoșatu, M. Artificial Intelligence-Based Decision-Making Algorithms, Internet of Things Sensing Networks, and Deep Learning-Assisted Smart Process Management in Cyber-Physical Production Systems. Electronics 2021, 10, 2497. [Google Scholar] [CrossRef]
- Gorris, M.; Hoogenboom, S.A.; Wallace, M.B.; van Hooft, J.E. Artificial intelligence for the management of pancreatic diseases. Dig. Endosc. 2021, 33, 231–241. [Google Scholar] [CrossRef]
- Rana, A.K.; Sharma, S. Internet of Things Based Stable Increased-throughput Multi-hop Protocol for Link Efficiency (IoT-SIMPLE) For Health Monitoring Using Wireless Body Area Networks. Int. J. Sens. Wirel. Commun. Control. 2021, 11, 789–798. [Google Scholar] [CrossRef]
- Gregory, R.W.; Henfridsson, O.; Kaganer, E.; Kyriakou, H. The role of artificial intelligence and data network effects for creating user value. Acad. Manag. Rev. 2021, 46, 534–551. [Google Scholar] [CrossRef]
- Vaiyapuri, T.; Parvathy, V.S.; Manikandan, V.; Krishnaraj, N.; Gupta, D.; Shankar, K. A Novel Hybrid Optimization for Cluster-Based Routing Protocol in Information-Centric Wireless Sensor Networks for IoT Based Mobile Edge Computing. Wirel. Pers. Commun. 2021, 3, 1–24. [Google Scholar] [CrossRef]
- Guillén, M.A.; Llanes, A.; Imbernón, B.; Martínez-España, R.; Bueno-Crespo, A.; Cano, J.C.; Cecilia, J.M. Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning. J. Supercomput. 2021, 77, 818–840. [Google Scholar] [CrossRef]
- Li, S.; Kim, J.G.; Han, D.H.; Lee, K.S. A Survey of Energy-Efficient Communication Protocols with QoS Guarantees in Wireless Multimedia Sensor Networks. Sensors 2019, 19, 199. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, A.A.; Penha, R.; Kniess, C.T.; Travis, T. Use of sustainability indicators in the management of information technology projects. Rev. Adm. UFSM 2021, 14, 22–43. [Google Scholar] [CrossRef]
- Seneviratne, C.; Wijesekara, P.A.D.S.N.; Leung, H. Performance Analysis of Distributed Estimation for Data Fusion Using a Statistical Approach in Smart Grid Noisy Wireless Sensor Networks. Sensors 2020, 20, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Chouhan, L. Design of secure session key using unique addressing and identification scheme for smart home Internet of Things network. Trans. Emerg. Telecommun. Technol. 2021, 32, e3993. [Google Scholar] [CrossRef]
- Trabelsi, Z. IoT based Smart Home Security Education using a Hands-on Approach. In Proceedings of the 2021 IEEE Global Engineering Education Conference (EDUCON), Online, 21–23 April 2020; pp. 294–301. [Google Scholar]
- Srinivas, P.; Das, M.S.; Latha, Y.M. Future Smart Home Appliances Using IoT. In Innovations in Computer Science and Engineering; Saini, H.S., Sayal, R., Govardhan, A., Buyya, R., Eds.; Springer: Singapore, 2021; pp. 143–151. [Google Scholar]
- Charde, P. Design and Implement Smart Home Appliances Controller Using IOT. In Proceedings of the 3rd International Conference on Information Systems and Management Science (ISMS), Msida, Malta, 15–17 December 2020; Garg, L., Kesswani, N., Vella, J.G., Xuereb, P.A., Fung Lo, M., Diaz, R., Misra, S., Gupta, V., Randhawa, P., Eds.; Springer Nature: Singapore, 2020; Volume 303, p. 105. [Google Scholar]
- Kolanur, C.B.; Banakar, R.M.; Rajneesh, G. Design of IoT based Platform Development for Smart Home Appliances Control. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1969, p. 012052. [Google Scholar]
- Popescu, T.M.; Popescu, A.M.; Prostean, G. IoT Security Risk Management Strategy Reference Model (IoTSRM2). Future Internet 2021, 13, 148. [Google Scholar] [CrossRef]
- Kang, M.S. Design of AES-Based Encryption Chip for IoT Security. J. Inst. Internet Broadcasting Commun. 2021, 21, 1–6. [Google Scholar]
- Chen, T.H.; Lee, W.B.; Chen, H.B.; Wang, C.L. Revisited—The Subliminal Channel in Blockchain and Its Application to IoT Security. Symmetry 2021, 13, 855. [Google Scholar] [CrossRef]
- Bhatt, S.; Ragiri, P.R. Security trends in Internet of Things: A survey. SN Appl. Sci. 2021, 3, 1–14. [Google Scholar]
- Yao, X.; Farha, F.; Li, R.; Psychoula, I.; Chen, L.; Ning, H. Security and privacy issues of physical objects in the IoT: Challenges and opportunities. Digit. Commun. Netw. 2021, 7, 373–384. [Google Scholar] [CrossRef]
- Fathi, M.; Haghi Kashani, M.; Jameii, S.M.; Mahdipour, E. Big data analytics in weather forecasting: A systematic review. Arch. Comput. Methods Eng. 2021, 106, 1–29. [Google Scholar] [CrossRef]
- Chang, V. An ethical framework for big data and smart cities. Technol. Forecast. Soc. Chang. 2021, 165, 120559. [Google Scholar] [CrossRef]
- Sheng, J.; Amankwah-Amoah, J.; Khan, Z.; Wang, X. COVID-19 pandemic in the new era of big data analytics: Methodological innovations and future research directions. Br. J. Manag. 2021, 32, 1164–1183. [Google Scholar] [CrossRef]
- Završnik, A. Algorithmic justice: Algorithms and big data in criminal justice settings. Eur. J. Criminol. 2021, 18, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Kaffash, S.; Nguyen, A.T.; Zhu, J. Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis. Int. J. Prod. Econ. 2021, 231, 107868. [Google Scholar] [CrossRef]
- Barja-Martinez, S.; Aragüés-Peñalba, M.; Munné-Collado, Í.; Lloret-Gallego, P.; Bullich-Massagué, E.; Villafafila-Robles, R. Artificial intelligence techniques for enabling Big Data services in distribution networks: A review. Renew. Sustain. Energy Rev. 2021, 150, 111459. [Google Scholar] [CrossRef]
- Jaung, W.; Carrasco, L.R. A big-data analysis of human-nature relations in newspaper coverage. Geoforum 2022, 128, 11–20. [Google Scholar] [CrossRef]
- Boeing, G. Spatial information and the legibility of urban form: Big data in urban morphology. Int. J. Inf. Manag. 2021, 56, 102013. [Google Scholar] [CrossRef] [Green Version]
- Novak, A.; Bennett, D.; Kliestik, T. Product decision-making information systems, real-time sensor networks, and artificial intelligence-driven big data analytics in sustainable Industry 4.0. Econ. Manag. Financ. Mark. 2021, 16, 62–72. [Google Scholar]
- Sestrem Ochôa, I.; Augusto Silva, L.; De Mello, G.; Garcia, N.M.; de Paz Santana, J.F.; Quietinho Leithardt, V.R. A cost analysis of implementing a blockchain architecture in a smart grid scenario using sidechains. Sensors 2020, 20, 843. [Google Scholar] [CrossRef] [Green Version]
- Adi, E.; Anwar, A.; Baig, Z.; & Zeadally, S. Machine learning and data analytics for the IoT. Neural Comput. Appl. 2020, 32, 16205–16233. [Google Scholar] [CrossRef]
- Sestrem Ochôa, I.; Reis Quietinho Leithardt, V.; Calbusch, L.; De Paz Santana, J.F.; Delcio Parreira, W.; Oriel Seman, L.; Zeferino, C.A. Performance and Security Evaluation on a Blockchain Architecture for License Plate Recognition Systems. Appl. Sci. 2021, 11, 1255. [Google Scholar] [CrossRef]
- Iftekhar, A.; Cui, X. Blockchain-Based Traceability System That Ensures Food Safety Measures to Protect Consumer Safety and COVID-19 Free Supply Chains. Foods 2021, 10, 1289. [Google Scholar] [CrossRef] [PubMed]
- Shinde, R.; Patil, S.; Kotecha, K.; Ruikar, K. Blockchain for securing ai applications and open innovations. J. Open Innov. Technol. Mark. Complex. 2021, 7, 189. [Google Scholar] [CrossRef]
- Chen, X.; Tian, S.; Nguyen, K.; Sekiya, H. Decentralizing private blockchain-iot network with olsr. Future Internet 2021, 13, 168. [Google Scholar] [CrossRef]
- Ajayi, O.J.; Rafferty, J.; Santos, J.; Garcia-Constantino, M.; Cui, Z. BECA: A Blockchain-Based Edge Computing Architecture for Internet of Things Systems. IoT 2021, 2, 610–632. [Google Scholar] [CrossRef]
- Steenmans, K.; Taylor, P.; Steenmans, I. Blockchain Technology for Governance of Plastic Waste Management: Where Are We? Soc. Sci. 2021, 10, 434. [Google Scholar] [CrossRef]
- Medhane, D.V.; Sangaiah, A.K.; Hossain, M.S.; Muhammad, G.; Wang, J. Blockchain-enabled distributed security framework for next-generation IoT: An edge cloud and software-defined network-integrated approach. IEEE Internet Things J. 2020, 7, 6143–6149. [Google Scholar] [CrossRef]
- Sengupta, J.; Ruj, S.; Bit, S.D. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and IIoT. J. Netw. Comput. Appl. 2020, 149, 102481. [Google Scholar] [CrossRef]
- Lewis-Pye, A.; Roughgarden, T. How does blockchain security dictate blockchain implementation? In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Online, 15–19 November 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 1006–1019. [Google Scholar]
- Rana, S.K.; Kim, H.C.; Pani, S.K.; Rana, S.K.; Joo, M.I.; Rana, A.K.; Aich, S. Blockchain-Based Model to Improve the Performance of the Next-Generation Digital Supply Chain. Sustainability 2021, 13, 10008. [Google Scholar] [CrossRef]
- Sunarya, P.A.; Rahardja, U.; Sunarya, L.; Hardini, M. The Role of Blockchain as A Security Support For Student Profiles In Technology Education Systems. InfoTekJar J. Nas. Inform. Teknol. Jar. 2020, 4, 203–207. [Google Scholar]
- Manogaran, G.; Rawal, B.S.; Saravanan, V.; Kumar, P.M.; Martínez, O.S.; Crespo, R.G.; Krishnamoorthy, S. Blockchain based integrated security measure for reliable service delegation in 6G communication environment. Comput. Commun. 2020, 161, 248–256. [Google Scholar] [CrossRef]
Research Area | Research Topics and Literature Pool | Specific Concepts Covered |
---|---|---|
IoT Standardization | IoT framework [15,18,67,68] | IoT concept, construction of protocols, standardization of architecture, vision, and system creation. |
IoT System Architecture | Conceptual models [28,30,36,45,46,64] Hardware architectures [56] | System infrastructure, cloud-centric, workflow design, and concept templates. |
IoT Interoperability and Integration | General interoperability issues [35,39,47,48,49] Gateway’s support [57,58] | General questions, architecture and IoT platforms, technical and semantic, Interoperability. |
IoT Scalability | Massive scaling issues [21,24] Discovery service for the IoT [72] | Scaling of problems on large networks and sites, future exploration tools. |
IoT Management and Self-configuration | Devices management [21,54] Network management [55,61] Applications and data management [62,63,65] | Control and management of the IoT layer, tools, network, software, data, and confidence. |
IoT Identification and Unique Identity | IoT and IPv6 integration [25,32,73] Services discovery protocols [34,38] | Discuss challenges and approaches, internet protocol IoT incorporation, authentication, and authentication problems. |
IoT Power and Energy Consumption | Low-power communications [16,29,50,53] Low-power chipsets and terminals [59,66] | Energy-efficient regulation and management of computers and chips. |
IoT Security and Privacy | Security issues [17,20,22,23,26,27,31,33,37,52,60,70] | Problems with protection and privacy, concept and architecture of secure IoT networks. |
IoT Environmental Issues | Green IoT technologies [19,40,41,42,44,69] | Environmental technology participation in IoT architecture. |
Research Work | Major Research Direction | Evaluation Parameter | ||||
---|---|---|---|---|---|---|
RT | RL | AV | CT | EC | ||
Alhamoud et al. [16] | Energy, data processing | - | x | X | x | - |
Zanella et al. [18] | Smart city, transport, and healthcare | x | - | X | x | - |
Dharshini et al. [29] | Environment, power, and energy smart | x | - | X | x | x |
Alezabi et al. [30] | City, transport, and healthcare | x | - | X | x | x |
R.H. Weber [31] | Security and privacy | x | x | - | x | x |
Li et al. [35] | Security and privacy, reliability | x | x | X | - | - |
Pierleoni et al. [36] | Aggregation, Security, and privacy | - | x | X | - | - |
Luk et al. [37] | Security and privacy, architecture | x | x | X | - | - |
Xiang et al. [39] | Interoperability, QoS, scalability | - | - | X | x | |
Wu et al. [42] | Security, agriculture, environmental | x | x | - | - | x |
Stergiou et al. [43] | Data processing environmental | x | x | X | - | - |
Temglit et al. [44] | QoS | - | x | X | - | - |
Majeed et al. [48] | Environment, interoperability, scalability | x | - | - | - | x |
Jebarani et al. [49] | Environment, interoperability, reliability | x | x | X | - | x |
Raji et al. [50] | Energy, scalability | x | x | X | - | x |
Palattella et al. [51] | Interoperability, reliability, scalability | x | - | X | - | x |
Trupti et al. [53] | Energy, aggregation, and Throughput | - | x | - | x | - |
Khraisat et al. [64] | Security and privacy, data processing | x | x | X | - | x |
Anwar et al. [70] | Standardization, authentication, and identification | - | x | X | - | - |
Jangid et al. [73] | Security and privacy | x | x | X | - | x |
Application Protocol | Standard | Transport Protocol | Security | RESTful Support | QoS Support | Architecture |
---|---|---|---|---|---|---|
CoAP [82] | IETF RFC 7252 | UDP | DTLS | Yes | Yes | Tree |
AMQP [83] | ISO and IEC | TCP | TLS/SSL | No | Yes | Client/server |
DDS [84] | OMG (Object Management Group) | UDP | DTLS | No | Yes | Bus |
MQTT [85] | OASIS Standard | TCP | TLS/SSL | No | Yes | Tree |
6LoWPAN [86] | IETF group | TCP | AES | Yes | Yes | Mesh |
RPL [87] | IETF group | UDP | AES | No | Yes | Mesh |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Sharma, S.; Singh, A.; Alwadain, A.; Choi, B.-J.; Manual-Brenosa, J.; Ortega-Mansilla, A.; Goyal, N. Revolutionary Strategies Analysis and Proposed System for Future Infrastructure in Internet of Things. Sustainability 2022, 14, 71. https://doi.org/10.3390/su14010071
Kumar A, Sharma S, Singh A, Alwadain A, Choi B-J, Manual-Brenosa J, Ortega-Mansilla A, Goyal N. Revolutionary Strategies Analysis and Proposed System for Future Infrastructure in Internet of Things. Sustainability. 2022; 14(1):71. https://doi.org/10.3390/su14010071
Chicago/Turabian StyleKumar, Arun, Sharad Sharma, Aman Singh, Ayed Alwadain, Bong-Jun Choi, Jose Manual-Brenosa, Arturo Ortega-Mansilla, and Nitin Goyal. 2022. "Revolutionary Strategies Analysis and Proposed System for Future Infrastructure in Internet of Things" Sustainability 14, no. 1: 71. https://doi.org/10.3390/su14010071
APA StyleKumar, A., Sharma, S., Singh, A., Alwadain, A., Choi, B. -J., Manual-Brenosa, J., Ortega-Mansilla, A., & Goyal, N. (2022). Revolutionary Strategies Analysis and Proposed System for Future Infrastructure in Internet of Things. Sustainability, 14(1), 71. https://doi.org/10.3390/su14010071