The Impact of Integration of Industry 4.0 and Internal Organizational Forces on Sustaining Competitive Advantages and Achieving Strategic Objectives
Abstract
:1. Introduction
2. Research Conceptual Model and Hypotheses
2.1. Theoretical Model
2.2. Research Hypotheses
2.2.1. Technical Virtuosity
2.2.2. Economic and Social Atmosphere
Construct | Item No. | Indicator | References |
---|---|---|---|
Technical virtuosity (TV) | Q1 | Industry 4.0 implications. | [45,46,54] |
Q2 | Research & developments introducing new technical practices to support technical virtuosity. | [41,42,43] | |
Q3 | Explore the newest production supportive techniques. | [49,55,56,57] | |
Q4 | Digitalization of technical virtuosity. | [58,59] | |
Economic and Social Atmosphere (ESA) | Q5 | Create a digital culture and work circumstances. | [31,46,58] |
Q6 | Design flexible employee reorganization standards. | [30,60] | |
Q7 | Periodically conduct the cost–benefits assessment. | [31,47] | |
Q8 | Competencies for the digital economy. | [19,51,61,62] | |
Q9 | Global standards of socioeconomic position. | [54,55] | |
Decentralized processes (DP) | Q10 | Decentralized organizational structure. | [63,64] |
Q11 | Horizontal and vertical decentralization level. | [64,65,66] | |
Integrated production workplace (IPW) | Q12 | Implementation of an integrated digital workplace. | [22,67,68] |
Q13 | Degree of workforce productivity and innovation. | [67,68] | |
Q14 | Rate of knowledge and expertise exchange. | [67,68] | |
Technological innovation (TI) | Q15 | Introduce new technology-based products. | [62,69,70,71] |
Q16 | Introduce new technology-based processes. | [62,69,70] | |
Economic innovation (EI) | Q17 | Change economic structure. | [52,72,73] |
Q18 | Create new business models with the new economic activities. | [52,72,73] | |
Commercial innovation (CI) | Q19 | Protect and exploit the intellectual property of intangible or tangible assets such as unique products difficult to imitate by competitors. | [42,53,62,69,71] |
Q20 | Adopt innovativeness in promotion and marketing processes to adapt to recent trends and changes. | [42,53,62,69,71] | |
Sustainable competitive advantages (SCA) | Q21 | Differentiation among other competitors. | [74,75] |
Q22 | Continues improvements in economic indicators. | [74,75] |
2.2.3. Decentralized Processes
2.2.4. Integrated Production Workplace
2.2.5. Technological Innovation
2.2.6. Economic Innovation
2.2.7. Commercial Innovations
2.2.8. Sustainable Competitive Advantage
3. Research Methodology
3.1. Survey Design
3.2. Data Collection and the Analysis Method
3.3. Analysis and Results
3.3.1. The Measurement Model: Reliability and Validity Analyses
3.3.2. Structural Model
4. Discussion
5. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Götz, M.; Vistula University; Jankowska, B. Poznan University of Economics and Business Adoption of Industry 4.0 Technologies and Company Competitiveness: Case Studies from a Post-Transition Economy. Foresight STI Gov. 2020, 14, 61–78. [Google Scholar] [CrossRef]
- Hitt, M.A.; Ireland, R.D.; Hoskisson, R.E. The Management of Strategy: Concepts and Cases; Thomson/South-Western: Mason, OH, USA, 2008; Volume 42. [Google Scholar]
- Fred, M.E.D.; David, R.; David, F.R. Strategic Management: Concepts and Cases: A Competitive Advantage Approach; Pearson–Prentice Hall: Florence, Italy, 2013. [Google Scholar]
- Kohnová, L.; Papula, J.; Salajová, N. Internal factors supporting business and technological transformation in the context of industry 4.0. Bus. Theory Pract. 2019, 20, 137–145. [Google Scholar] [CrossRef]
- Horváth, D.; Szabó, R.Z. Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? Technol. Forecast. Soc. Chang. 2019, 146, 119–132. [Google Scholar] [CrossRef]
- Ramadan, M.; Salah, B.; Othman, M.; Ayubali, A.A. Industry 4.0-based real-time scheduling and dispatching in lean manufacturing systems. Sustainability 2020, 12, 2272. [Google Scholar] [CrossRef] [Green Version]
- Adolph, S.; Tisch, M.; Metternich, J. Challenges and Approaches To Competency Development for Future Production. J. Int. Sci. Publ. 2014, 12, 1001–1010. [Google Scholar]
- Bauer, W.; Hämmerle, M.; Schlund, S.; Vocke, C. Transforming to a Hyper-connected Society and Economy—Towards an ‘Industry 4.0’. Procedia Manuf. 2015, 3, 417–424. [Google Scholar] [CrossRef]
- Spath, D.; Ganschar, O.; Gerlach, S.; Hämmerle, M.; Krause, T.; Schlund, S. Produktionsarbeit der Zukunft; Fraunhofer IAO: Stuttgart, Germany, 2013; pp. 1–150. [Google Scholar]
- Tortorella, G.L.; Giglio, R.; van Dun, D.H. Industry 4.0 adoption as a moderator of the impact of lean production practices on operational performance improvement. Int. J. Oper. Prod. Manag. 2019, 39, 860–886. [Google Scholar] [CrossRef]
- Lasi, H.; Fettke, P.; Kemper, H.G.; Feld, T.; Hoffmann, M. Industry 4.0. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Posada, J.; Toro, C.; Barandiaran, I.; Oyarzun, D.; Stricker, D.; De Amicis, R.; Pinto, E.B.; Eisert, P.; Döllner, J.; Vallarino, I. Visual Computing as a Key Enabling Technology for Industrie 4.0 and Industrial Internet. IEEE Comput. Graph. Appl. 2015, 35, 26–40. [Google Scholar] [CrossRef]
- Valdez, A.C.; Brauner, P.; Schaar, A.K.; Holzinger, A.; Ziefle, M. Reducing Complexity with Simplicity—Usability Methods for Industry 4.0. In Proceedings of the 19th triennial congress of the IEA, Florence, Italy, 9–14 August 2015; pp. 1–8. [Google Scholar]
- Longo, F.; Nicoletti, L.; Padovano, A. Smart operators in industry 4.0: A human-centered approach to enhance operators’ capabilities and competencies within the new smart factory context. Comput. Ind. Eng. 2017, 113, 144–159. [Google Scholar] [CrossRef]
- Oztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Salah, B.; Khan, R.; Ramadan, M.; Ahmad, R.; Saleem, W. Lab Scale Implementation of Industry 4.0 for an Automatic Yogurt Filling Production System—Experimentation, Modeling and Process Optimization. Appl. Sci. 2021, 11, 9821. [Google Scholar] [CrossRef]
- Bueno, A.; Filho, M.G.; Frank, A.G. Smart production planning and control in the Industry 4.0 context: A systematic literature review. Comput. Ind. Eng. 2020, 149, 106774. [Google Scholar] [CrossRef]
- Mohelska, H.; Sokolova, M. Management approaches for industry 4.0—The organizational culture perspective. Technol. Econ. Dev. Econ. 2018, 24, 2225–2240. [Google Scholar] [CrossRef] [Green Version]
- Felsberger, A.; Qaiser, F.H.; Choudhary, A.; Reiner, G. The impact of Industry 4.0 on the reconciliation of dynamic capabilities: Evidence from the European manufacturing industries. Prod. Plan. Control 2022, 33, 277–300. [Google Scholar] [CrossRef]
- Durana, P.; Kral, P.; Stehel, V.; Lazaroiu, G.; Sroka, W. Quality culture of manufacturing enterprises: A possibleway to adaptation to industry 4.0. Soc. Sci. 2019, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Bendul, J.C.; Blunck, H. The design space of production planning and control for industry 4.0. Comput. Ind. 2019, 105, 260–272. [Google Scholar] [CrossRef]
- Shaughnessy, H. Creating digital transformation: Strategies and steps. Strateg. Leadersh. 2018, 46, 19–25. [Google Scholar] [CrossRef]
- Schalock, R.L.; Verdugo, M.A.; van Loon, J. Understanding organization transformation in evaluation and program planning. Eval. Program Plann. 2018, 67, 53–60. [Google Scholar] [CrossRef]
- Cugno, M.; Castagnoli, R.; Büchi, G. Openness to Industry 4.0 and performance: The impact of barriers and incentives. Technol. Forecast. Soc. Chang. 2021, 168, 120756. [Google Scholar] [CrossRef]
- Agostini, L.; Filippini, R. Organizational and managerial challenges in the path toward Industry 4.0. Eur. J. Innov. Manag. 2019, 22, 406–421. [Google Scholar] [CrossRef]
- Birkel, H.S.; Veile, J.W.; Müller, J.M.; Hartmann, E.; Voigt, K.I. Development of a risk framework for Industry 4.0 in the context of sustainability for established manufacturers. Sustainability 2019, 11, 384. [Google Scholar] [CrossRef] [Green Version]
- Basl, J. Pilot Study of Readiness of Czech Companies to Implement the Principles of Industry 4.0. Manag. Prod. Eng. Rev. 2017, 8, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.M.; Buliga, O.; Voigt, K.I. Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0. Technol. Forecast. Soc. Chang. 2018, 132, 2–17. [Google Scholar] [CrossRef]
- Kiel, D.; Müller, J.M.; Arnold, C.; Voigt, K.I. Sustainable industrial value creation: Benefits and challenges of industry 4.0. Int. J. Innov. Manag. 2017, 21, 3–8. [Google Scholar] [CrossRef]
- Raj, A.; Dwivedi, G.; Sharma, A.; de Sousa Jabbour, A.B.L.; Rajak, S. Barriers to the adoption of industry 4.0 technologies in the manufacturing sector. Int. J. Prod. Econ. 2019, 224, 107546. [Google Scholar] [CrossRef]
- Dalenogare, L.S.; Benitez, G.B.; Ayala, N.F.; Frank, A.G. The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 2018, 204, 383–394. [Google Scholar] [CrossRef]
- Stock, T.; Obenaus, M.; Kunz, S.; Kohl, H. Industry 4.0 as enabler for a sustainable development: A qualitative assessment of its ecological and social potential. Process Saf. Environ. Prot. 2018, 118, 254–267. [Google Scholar] [CrossRef]
- Müller, J.M.; Buliga, O.; Voigt, K.I. The role of absorptive capacity and innovation strategy in the design of industry 4.0 business Models—A comparison between SMEs and large enterprises. Eur. Manag. J. 2021, 39, 333–343. [Google Scholar] [CrossRef]
- Marcucci, G.; Antomarioni, S.; Ciarapica, F.E.; Bevilacqua, M. The impact of Operations and IT-related Industry 4.0 key technologies on organizational resilience. Prod. Plan. Control 2021, 1–15. [Google Scholar] [CrossRef]
- Frank, A.G.; Dalenogare, L.S.; Ayala, N.F. Industry 4.0 technologies: Implementation patterns in manufacturing companies. Int. J. Prod. Econ. 2019, 210, 15–26. [Google Scholar] [CrossRef]
- Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Erevelles, S.; Fukawa, N.; Swayne, L. Big Data consumer analytics and the transformation of marketing. J. Bus. Res. 2016, 69, 897–904. [Google Scholar] [CrossRef]
- Sutapa, S.; Mulyana, M.; Wasitowati, W. The Role of Market Orientation, Creativity and Innovation in Creating Competitive Advantages and Creative Industry Performance. J. Din. Manaj. 2017, 8, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; El-Kassar, A.N. Role of big data analytics in developing sustainable capabilities. J. Clean. Prod. 2019, 213, 1264–1273. [Google Scholar] [CrossRef]
- Ramadan, M.; Shuqqo, H.; Qtaishat, L.; Asmar, H.; Salah, B. Sustainable competitive advantage driven by big data analytics and innovation. Appl. Sci. 2020, 10, 6784. [Google Scholar] [CrossRef]
- Kuncoro, W.; Suriani, W.O. Achieving sustainable competitive advantage through product innovation and market driving. Asia Pac. Manag. Rev. 2018, 23, 186–192. [Google Scholar] [CrossRef]
- Dewi, R.S.; Alhabsji, T.; Arifin, Z.; Abdillah, Y. Adaptive capability: Capability to create innovation and competitive advantages of SME’s in the industry 4.0 era. Int. J. Innov. Creat. Chang. 2020, 11, 124–143. [Google Scholar]
- Pereira, A.C.; Romero, F. A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manuf. 2017, 13, 1206–1214. [Google Scholar] [CrossRef]
- Claver, E.; Llopis, J.; Garcia, D.; Molina, H. Organizational culture for innovation and new technological behavior. J. High Technol. Manag. Res. 1988, 9, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Stolarick, K.M. IT Spending and Firm Productivity: Additional Evidence from the Manufacturing Sector; Center for Economic Studies, US Department of Commerce, Bureau of the Census: Washington, DC, USA, 1999. [Google Scholar]
- Kolyasnikov, M.; Kelchevskaya, N. Knowledge management strategies in companies: Trends and the impact of Industry 4.0. Upravlenets 2020, 11, 82–96. [Google Scholar] [CrossRef]
- Bag, S.; Telukdarie, A.; Pretorius, J.H.C.; Gupta, S. Industry 4.0 and supply chain sustainability: Framework and future research directions. Benchmarking 2018, 28, 1410–1450. [Google Scholar] [CrossRef]
- Saniuk, S.; Grabowska, S.; Straka, M. Identification of Social and Economic Expectations: Contextual Reasons for the Transformation Process of Industry 4.0 into the Industry 5.0 Concept. Sustainability 2022, 14, 1391. [Google Scholar] [CrossRef]
- Vacek, J. On the road: From industry 4.0 to society 4.0. Trendy Podn. 2017, 7, 43–49. [Google Scholar]
- Yoo, I. Economic Innovation Caused by Digital Transformation and Impact on Social Systems. Sustainability 2022, 14, 2600. [Google Scholar] [CrossRef]
- Upadhyay, P.; Kumar, A. The intermediating role of organizational culture and internal analytical knowledge between the capability of big data analytics and a firm ’ s performance. Int. J. Inf. Manag. 2020, 52, 102100. [Google Scholar] [CrossRef]
- Bonilla, S.H.; Silva, H.R.O.; da Silva, M.T.; Gonçalves, R.F.; Sacomano, J.B. Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges. Sustainability 2018, 10, 3740. [Google Scholar] [CrossRef] [Green Version]
- Brahma, S.; Kavasseri, R.; Cao, H.; Chaudhuri, N.R.; Alexopoulos, T.; Cui, Y. Real-Time Identification of Dynamic Events in Power Systems Using PMU Data, and Potential Applications-Models, Promises, and Challenges. IEEE Trans. Power Deliv. 2017, 32, 16618276. [Google Scholar] [CrossRef]
- Rosli, M.M.; Sidek, S. The Impact of Innovation on the Performance of Small and Medium Manufacturing Enterprises: Evidence from Malaysia. J. Innov. Manag. Small Mediu. Enterp. 2013, 2013, 885666. [Google Scholar] [CrossRef]
- Udriyah, U.; Tham, J.; Azam, S.M. The effects of market orientation and innovation on competitive advantage and business perfor- mance of textile SMEs. Manag. Sci. Lett. 2019, 9, 1419–1428. [Google Scholar]
- Moniz, A.B.; Krings, B.J. Robots working with humans or humans working with robots? Searching for social dimensions in new human-robot interaction in industry. Societies 2016, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Libes, D.; Shin, S.; Woo, J. Considerations and Recommendations for Data Availability for Data Analytics for Manufacturing. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 68–75. [Google Scholar]
- Calabrese, A.; Ghiron, N.L.; Tiburzi, L. ‘Evolutions’ and ‘revolutions’ in manufacturers’ implementation of industry 4.0: A literature review, a multiple case study, and a conceptual framework. Prod. Plan. Control. 2021, 32, 213–227. [Google Scholar] [CrossRef]
- Krioni, O.V.; Efimenko, N.V. Competencies for the Digital Economy: Possibilities of the Education System of the Republic of Bashkortostan. In Proceedings of the 2nd International Scientific and Practical Conference on Digital Economy (ISCDE 2020), Yekaterinburg, Russia, 5–6 November 2020; Atlantis Press: Dordrecht, The Netherlands, 2020; Volume 156, pp. 393–396. [Google Scholar]
- Williams, L.D. Concepts of Digital Economy and Industry 4.0 in Intelligent and information systems. Int. J. Intell. Netw. 2021, 2, 122–129. [Google Scholar] [CrossRef]
- Hülsmann, M.; Windt, K. Understanding Autonomous Cooperation and Control in Logistics: The Impact of Autonomy on Management, Information, Communication and Material Flow; Springer Science & Business Media: Bremen, Germany, 2007; pp. 1–417. [Google Scholar]
- Windt, K.; Böse, F.; Phili, T. Autonomy in production logistics: Identification, characterisation and application. Robot. Comput. Integr. Manuf. 2008, 24, 572–578. [Google Scholar]
- Marques, M.; Agostinho, C.; Zacharewicz, G.; Jardim-Gonçalves, R. Decentralized decision support for intelligent manufacturing in Industry 4.0. J. Ambient Intell. Smart Environ. 2017, 9, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Rosenberg, M.; Brettel, M.; Friederichsen, N. How Virtualization, Decentrazliation and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2014, 8, 37–44. [Google Scholar]
- Haddud, A.; McAllen, D. Digital workplace management: Exploring aspects related to culture, innovation, and leadership. In Proceedings of the 2018 Portland International Conference on Management of Engineering and Technology (PICMET), Honolulu, HI, USA, 19–23 August 2018. [Google Scholar]
- Hamburg, I. Implementation of a Digital Workplace Strategy to Drive Behavior Change and Improve Competencies. In Strategy and Behaviors in the Digital Economy; IntechOpen: Londen, UK, 2019; p. 13. [Google Scholar]
- Fettig, K.; Gacic, T.; Koskal, A.; Kuhn, A.; Stuber, F. Impact of Industry 4.0 on Organizational Structures. In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018. [Google Scholar]
- Smith, R. The End of Competitive Advantage: How to Keep Your Strategy Moving as Fast as Your Business. Res. Manag. 2013, 56, 64. [Google Scholar]
- Cetindamar, D.; Phaal, R.; Probert, D. Technology Management: Activities and Tools, 2nd ed.; Macmillan International Higher Education: London, UK, 2016. [Google Scholar]
- Krayneva, R.; Bugaev, A.; Zhuravleva, T.; Vojtovič, S. Management and promotion of economic innovation potential. J. Int. Stud. 2017, 10, 146–158. [Google Scholar] [CrossRef]
- Yoo, I.; Yi, C.-G. Conceptual Approach to Understand Economic Innovation: Based on the Digital Technology Innovation. J. Korea Technol. Innov. Soc. 2021, 24, 799–819. [Google Scholar] [CrossRef]
- Higgins, J.M. Innovate or Evaporate: Creative Techniques for Strategists. Long Range Plann. 1996, 29, 370–380. [Google Scholar] [CrossRef]
- Hollander, R. Sustained Competitive Advantage Using Industry 4.0 Technologies. Bachelor’s Thesis, University of Twente, Enschede, The Netherlands, 2018. [Google Scholar]
- Shamim, S.; Cang, S.; Yu, H.; Li, Y. Management approaches for Industry 4.0: A human resource management perspective. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016. [Google Scholar]
- Bousbia, S.; Trentesaux, D. Self-organization in distributed manufacturing control: State-of-the-art and future trends. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia, 6–9 October 2002; Volume 5, pp. 661–666. [Google Scholar]
- Ejsmont, K. The Impact of Industry 4.0 on Employees—Insights from Australia. Sustainability 2021, 13, 3095. [Google Scholar] [CrossRef]
- Porter, M.E.; Heppelmann, J.E. How smart, connected products are transforming competition. Harv. Bus. Rev. 2014, 92, 64–88. [Google Scholar]
- Simetinger, F.; Zhang, Z. Deriving secondary traits of industry 4.0: A comparative analysis of significant maturity models. Syst. Res. Behav. Sci. 2020, 37, 663–678. [Google Scholar] [CrossRef]
- Bergek, A.; Berggren, C.; Tell, F. Do technology strategies matter? A comparison of two electrical engineering corporations, 1988–1998. Technol. Anal. Strateg. Manag. 2009, 21, 445–470. [Google Scholar] [CrossRef]
- Bayraktar, C.A.; Hancerliogullari, G.; Cetinguc, B.; Calisir, F. Competitive strategies, innovation, and firm performance: An empirical study in a developing economy environment. Technol. Anal. Strateg. Manag. 2017, 29, 38–52. [Google Scholar] [CrossRef]
- Carvalho, L.C. Handbook of Research on Internationalization of Entrepreneurial Innovation in the Global Economy; IGI Global: Hershey, PA, USA, 2015; pp. 1–547. [Google Scholar]
- Moreno, M.R.; Molina, C.M. Inhibitors of e-Government adoption: Determinants of habit and adoption intentions. J. Innov. Knowl. 2017, 3, 172–180. [Google Scholar] [CrossRef]
- Côrte-Real, N.; Ruivo, P.; Oliveira, T. Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value? Inf. Manag. 2020, 57, 103141. [Google Scholar] [CrossRef]
- Lahovnik, M.; Breznik, L. Technological innovation capabilities as a source of competitive advantage: A case study from the home appliance industry. Transform. Bus. Econ. 2014, 13, 144–160. [Google Scholar]
- Schilke, O. On the contingent value of dynamic capabilities for competitive advantage: The nonlinear moderating effect of environmental dynamism. Strateg. Manag. J. 2014, 35, 179–203. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- van Kollenburg, G.; Bouman, R.; Offermans, T.; Gerretzen, J.; Buydens, L.; van Manen, H.J.; Jansen, J. Process PLS: Incorporating substantive knowledge into the predictive modelling of multiblock, multistep, multidimensional and multicollinear process data. Comput. Chem. Eng. 2021, 154, 107466. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hamid, M.R.A.; Sami, W.; Sidek, M.H.M. Discriminant Validity Assessment: Use of Fornell & Larcker criterion versus HTMT Criterion. J. Phys. Conf. Ser. 2017, 890, 012163. [Google Scholar]
- Voorhees, C.M.; Brady, M.K.; Calantone, R.; Ramirez, E. Discriminant validity testing in marketing: An analysis, causes for concern, and proposed remedies. J. Acad. Mark. Sci. 2016, 44, 119–134. [Google Scholar] [CrossRef]
- Hulland, J. Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strateg. Manag. J. 2014, 20, 195–204. [Google Scholar] [CrossRef]
- Morizot, J. Construct Validity of Adolescents’ Self-Reported Big Five Personality Traits: Importance of Conceptual Breadth and Initial Validation of a Short Measure. Assessment 2014, 21, 580–606. [Google Scholar] [CrossRef]
- Hair, J.; Risher, J.; Sarstedt, M.; Ringle, C. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Cepeda-Carrion, G.; Cegarra-Navarro, J.G.; Cillo, V. Tips to use partial least squares structural equation modelling (PLS-SEM) in knowledge management. J. Knowl. Manag. 2019, 23, 67–89. [Google Scholar] [CrossRef]
- Codesido, S.; Hanafi, M.; Gagnebin, Y.; González-Ruiz, V.; Rudaz, S.; Boccard, J. Network principal component analysis: A versatile tool for the investigation of multigroup and multiblock datasets. Bioinformatics 2021, 37, 1297–1303. [Google Scholar] [CrossRef]
- Chen, J.; Yin, X.; Mei, L. Holistic Innovation: An Emerging Innovation Paradigm. Int. J. Innov. Stud. 2018, 2, 1–13. [Google Scholar] [CrossRef]
- Crnjac, M.; Veža, I.; Banduka, N. From concept to the introduction of industry 4.0. Int. J. Ind. Eng. Manag. 2017, 8, 21–30. [Google Scholar]
Construct | R2 | Cranach’s Alpha (α) | Composite Reliability (CR) | AVE |
---|---|---|---|---|
Technical Virtuosity | 0.730 | 0.829 | 0.551 | |
Economic and Social Atmosphere | 0.760 | 0.836 | 0.506 | |
Decentralized Processes | 0.486 | 0.781 | 0.646 | |
Integrated Production Workplace | 0.676 | 0.762 | 0.522 | |
Technological Innovation | 0.193 | 0.748 | 0.849 | 0.738 |
Economic Innovation | 0.620 | 0.786 | 0.890 | 0.802 |
Commercial Innovations | 0.343 | 0.785 | 0.863 | 0.759 |
Sustainable Competitive Advantages | 0.391 | 0.519 | 0.806 | 0.675 |
Nr. | Constructs | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
1 | Commercial Innovations | 0.871 | |||||||
2 | Decentralized Processes | 0.466 | 0.804 | ||||||
3 | Economic and Social Atmosphere | 0.500 | 0.520 | 0.896 | |||||
4 | Economic Innovation | 0.558 | 0.499 | 0.475 | 0.711 | ||||
5 | Integrated Production Technologies | 0.546 | 0.369 | 0.365 | 0.637 | 0.722 | |||
6 | Sustainable Competitive Advantages | 0.517 | 0.228 | 0.253 | 0.565 | 0.541 | 0.822 | ||
7 | Technical Virtuosity | 0.558 | 0.627 | 0.787 | 0.601 | 0.472 | 0.258 | 0.742 | |
8 | Technological Innovation | 0.300 | 0.257 | 0.377 | 0.586 | 0.396 | 0.475 | 0.355 | 0.859 |
Nr. | Construct | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
1 | Commercial Innovations | ||||||||
2 | Decentralized Processes | 0.649 | |||||||
3 | Economic and Social Atmosphere | 0.691 | 0.814 | ||||||
4 | Economic Innovation | 0.747 | 0.806 | 0.629 | |||||
5 | Integrated Production Technologies | 0.811 | 0.830 | 0.492 | 0.437 | ||||
6 | Sustainable Competitive Advantages | 0.789 | 0.494 | 0.378 | 0.523 | 0.675 | |||
7 | Technical Virtuosity | 0.704 | 0.621 | 0.870 | 0.802 | 0.723 | 0.420 | ||
8 | Technological Innovation | 0.448 | 0.429 | 0.561 | 0.541 | 0.571 | 0.789 | 0.513 |
Constructs | Indicators | Outer Loading | T-Values |
---|---|---|---|
Technical Virtuosity | Q1 | 0.771 | 17.311 |
Q2 | 0.761 | 13.074 | |
Q3 | 0.624 | 8.748 | |
Q4 | 0.800 | 18.056 | |
Economic and Social Atmosphere | Q5 | 0.672 | 8.601 |
Q6 | 0.735 | 13.021 | |
Q7 | 0.789 | 19.369 | |
Q8 | 0.715 | 13.489 | |
Q9 | 0.636 | 6.691 | |
Decentralized Processes | Q10 | 0.918 | 26.206 |
Q11 | 0.671 | 5.224 | |
Integrated production workplace | Q12 | 0.650 | 4.627 |
Q13 | 0.625 | 4.265 | |
Q14 | 0.867 | 11.562 | |
Technological Innovation | Q15 | 0.883 | 31.883 |
Q16 | 0.835 | 17.288 | |
Economic Innovation | Q17 | 0.858 | 28.245 |
Q18 | 0.932 | 98.256 | |
Commercial Innovations | Q19 | 0.843 | 22.091 |
Q20 | 0.898 | 42.479 | |
Sustainable competitive advantages | Q21 | 0.808 | 13.215 |
Q22 | 0.835 | 17.089 |
Hypotheses: Relationship | B-Value | STDEV | T-Value | p-Value | Conclusion |
---|---|---|---|---|---|
H1: Technical Virtuosity → Technological Innovation | 0.204 | 0.132 | 1.547 | 0.123 | H1 is not supported |
H2: Technical Virtuosity → Economic Innovation | 0.762 | 0.084 | 9.107 | 0.000 | H2 is supported |
H3: Economic and Social Atmosphere → Economic Innovation | −0.006 | 0.065 | 0.095 | 0.924 | H3 is not supported |
H4: Economic and Social Atmosphere → Commercial Innovations | 0.585 | 0.0.67 | 8.784 | 0.000 | H4 is supported |
H5: Decentralized Processes → Technological Innovation | 0.021 | 0.119 | 0.177 | 0.860 | H5 is not supported |
H6: Decentralized Processes → Economic Innovations | 0.045 | 0.094 | 0.482 | 0.630 | H6 is not supported |
H7: Integrated Production Workplace → Technological Innovation | 0.292 | 0.084 | 3.490 | 0.001 | H7 is supported |
H8: Technological Innovation → Sustainable Competitive Advantages | 0.383 | 0.101 | 3.799 | 0.000 | H8 is supported |
H9: Economic Innovation → Sustainable Competitive Advantages | −0.123 | 0.104 | 1.188 | 0.235 | H9 is not supported |
H10: Commercial Innovations → Sustainable Competitive Advantages | 0.464 | 0.085 | 5.455 | 0.000 | H10 is supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, M.; Amer, T.; Salah, B.; Ruzayqat, M. The Impact of Integration of Industry 4.0 and Internal Organizational Forces on Sustaining Competitive Advantages and Achieving Strategic Objectives. Sustainability 2022, 14, 5841. https://doi.org/10.3390/su14105841
Ramadan M, Amer T, Salah B, Ruzayqat M. The Impact of Integration of Industry 4.0 and Internal Organizational Forces on Sustaining Competitive Advantages and Achieving Strategic Objectives. Sustainability. 2022; 14(10):5841. https://doi.org/10.3390/su14105841
Chicago/Turabian StyleRamadan, Muawia, Tariq Amer, Bashir Salah, and Mohammed Ruzayqat. 2022. "The Impact of Integration of Industry 4.0 and Internal Organizational Forces on Sustaining Competitive Advantages and Achieving Strategic Objectives" Sustainability 14, no. 10: 5841. https://doi.org/10.3390/su14105841
APA StyleRamadan, M., Amer, T., Salah, B., & Ruzayqat, M. (2022). The Impact of Integration of Industry 4.0 and Internal Organizational Forces on Sustaining Competitive Advantages and Achieving Strategic Objectives. Sustainability, 14(10), 5841. https://doi.org/10.3390/su14105841