Fisheries Management of the European Catfish Silurus glanis Is Strongly Correlated to the Management of Non-Native Fish Species (Common Carp Cyprinus carpio, Rainbow Trout Oncorhynchus mykiss, and Grass Carp Ctenopharyngodon idella)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Fish Species
2.3. Fish Stocking
2.4. Data Collection
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vooren, C.M. Ecological aspects of the introduction of fish species into natural habitats in Europe, with special reference to the Netherlands: A literature survey. J. Fish Biol. 1972, 4, 565–583. [Google Scholar] [CrossRef]
- Denoel, M.; Dzukic, G.; Kalezic, M.L. Effects of widespread fish introductions on paedomorphic newts in Europe. Conserv. Biol. 2005, 19, 162–170. [Google Scholar] [CrossRef]
- Simon, A.; Britton, R.; Gozlan, R.; Van Oosterhout, C.; Volckaert, F.A.; Hänfling, B. Invasive cyprinid fish in Europe originate from the single introduction of an admixed source population followed by a complex pattern of spread. PLoS ONE 2011, 6, e18560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maceda-Veiga, A.; Escribano-Alacid, J.; de Sostoa, A.; García-Berthou, E. The aquarium trade as a potential source of fish introductions in southwestern Europe. Biol. Invasions 2013, 15, 2707–2716. [Google Scholar] [CrossRef]
- Vejřík, L.; Vejříková, I.; Blabolil, P.; Eloranta, A.P.; Kočvara, L.; Peterka, J.; Sajdlova, Z.; Chung, S.H.T.; Smejkal, M.; Kiljunen, M.; et al. European catfish (Silurus glanis) as a freshwater apex predator drives ecosystem via its diet adaptability. Sci. Rep. 2017, 7, 15970. [Google Scholar] [CrossRef]
- Vejřík, L.; Vejříková, I.; Kočvara, L.; Blabolil, P.; Peterka, J.; Sajdlová, Z.; Jůza, T.; Šmejkal, M.; Kolařík, T.; Bartoň, D.; et al. The pros and cons of the invasive freshwater apex predator, European catfish Silurus glanis, and powerful angling technique for its population control. J. Environ. Manag. 2019, 241, 374–382. [Google Scholar] [CrossRef]
- Copp, G.H.; Robert Britton, J.; Cucherousset, J.; García-Berthou, E.; Kirk, R.; Peeler, E.; Stakėnas, S. Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish Fish. 2009, 10, 252–282. [Google Scholar] [CrossRef]
- Britton, J.R.; Cucherousset, J.; Davies, G.D.; Godard, M.J.; Copp, G.H. Non-native fishes and climate change: Predicting species responses to warming temperatures in a temperate region. Freshw. Biol. 2010, 55, 1130–1141. [Google Scholar] [CrossRef]
- Cucherousset, J.; Horky, P.; Slavík, O.; Ovidio, M.; Arlinghaus, R.; Boulêtreau, S.; Britton, R.; García-Berthou, E.; Santoul, F. Ecology, behaviour and management of the European catfish. Rev. Fish Biol. Fish. 2018, 28, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Snow, R.A.; Shoup, D.E.; Porta, M.J.; Patterson, C.P. Effects of Wintertime Stocking of Rainbow Trout on the Forage Community of an Oklahoma Impoundment. N. Am. J. Fish. Manag. 2019, 39, 289–298. [Google Scholar] [CrossRef]
- Lyach, R. Harvest Rates of Rheophilic Fish Vimba vimba, Chondrostoma nasus, and Barbus barbus Have a Strong Relationship with Restocking Rates and Harvest Rates of Their Predator Silurus glanis in Lowland Mesotrophic Rivers in Central Europe. Sustainability 2021, 13, 11379. [Google Scholar] [CrossRef]
- Lyach, R.; Remr, J. Changes in recreational catfish Silurus glanis harvest rates between years 1986–2017 in Central Europe. J. Appl. Ichthyol. 2019, 35, 1094–1104. [Google Scholar] [CrossRef]
- Holm, J.C.; Refstie, T.; Bø, S. The effect of fish density and feeding regimes on individual growth rate and mortality in rainbow trout (Oncorhynchus mykiss). Aquaculture 1990, 89, 225–232. [Google Scholar] [CrossRef]
- Bekcan, S.; Dogankaya, L.; Cakirogullari, G.C. Growth and body composition of European catfish (Silurus glanis L.) fed diets containing different percentages of protein. Isr. J. Aquacult.-Bamid. 2006, 58, 137–142. [Google Scholar] [CrossRef]
- Caves, S.; Baumann, J.R.; Stich, D.S. Density-Dependent Changes in Grass Carp Growth and Mortality in Long-Term Aquatic Plant Management. N. Am. J. Fish. Manag. 2021, 41, 355–365. [Google Scholar] [CrossRef]
- Nielsen, H.M.; Ødegård, J.; Olesen, I.; Gjerde, B.; Ardo, L.; Jeney, G.; Jeney, Z. Genetic analysis of common carp (Cyprinus carpio) strains: I: Genetic parameters and heterosis for growth traits and survival. Aquaculture 2010, 304, 14–21. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.R-project.org/ (accessed on 1 September 2021).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Nakagawa, S.; Johnson, P.C.; Schielzeth, H. The coefficient of determination R 2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 2017, 14, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Zuur, A.F.; Ieno, E.N.; Elpick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Lyach, R. How Did the Czech Fishing Union Convince over 99% of Czech Recreational Anglers to Report Their Harvested Fish and Their Fishing Visits into Their Angling Logbooks? Sustainability 2021, 13, 13499. [Google Scholar] [CrossRef]
- Lyach, R. The Effect of Fishery Management on the Yield of the Critically Endangered European Eel Anguilla anguilla in Mesotrophic Rivers and Streams in Central Europe. Fishes 2022, 7, 42. [Google Scholar] [CrossRef]
- Lyach, R.; Čech, M. Do recreational fisheries metrics vary on differently sized fishing grounds? Fish. Manag. Ecol. 2018, 25, 356–365. [Google Scholar] [CrossRef]
- Arlinghaus, R.; Schwab, A.; Cooke, S.J.; Cowx, I.G. Contrasting pragmatic and suffering-centred approaches to fish welfare in recreational angling. J. Fish Biol. 2009, 75, 2448–2463. [Google Scholar] [CrossRef] [PubMed]
- Jankovský, M.; Boukal, D.S.; Pivnička, K.; Kubečka, J. Tracing possible drivers of synchronously fluctuating species catches in individual logbook data. Fish. Manag. Ecol. 2011, 18, 297–306. [Google Scholar] [CrossRef]
- Arlinghaus, R.; Beardmore, B.; Riepe, C.; Pagel, T. Species-specific preference heterogeneity in German freshwater anglers, with implications for management. J. Outdoor Recreat. Tour. 2019, 32, 100216. [Google Scholar] [CrossRef]
- Beardmore, B.; Hunt, L.M.; Haider, W.; Dorow, M.; Arlinghaus, R. Effectively managing angler satisfaction in recreational fisheries requires understanding the fish species and the anglers. Can. J. Fish. Aquat. Sci. 2015, 72, 500–513. [Google Scholar] [CrossRef]
- Holland, S.M.; Ditton, R.B. Fishing trip satisfaction: A typology of anglers. N. Am. J. Fish. Manag. 1992, 12, 28–33. [Google Scholar] [CrossRef]
- Arlinghaus, R. On the apparently striking disconnect between motivation and satisfaction in recreational fishing: The case of catch orientation of German anglers. N. Am. J. Fish. Manag. 2006, 26, 592–605. [Google Scholar] [CrossRef]
- Laursen, D.C.; Silva, P.I.; Larsen, B.K.; Höglund, E. High oxygen consumption rates and scale loss indicate elevated aggressive behaviour at low rearing density, while elevated brain serotonergic activity suggests chronic stress at high rearing densities in farmed rainbow trout. Physiol. Behav. 2013, 122, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.; Tetzlaff, D.; Kleine, L.; Maneta, M.P.; Soulsby, C. Isotope-aided modelling of ecohydrologic fluxes and water ages under mixed land use in central Europe: The 2018 drought and its recovery. Hydrol. Process. 2020, 34, 3406–3425. [Google Scholar] [CrossRef]
- Terziyski, D.I.; Kalchev, R.K.; Vasileva, P.L.; Piskov, I.A.; Iliev, I.Z. Fish abundance differences and relations to plankton primary production in two variants of pond stocking with common carp (Cyprinus carpio L.), grass carp (Ctenopharyngodon idella Val.) and bighead carp (Aristichthys nobilis Rich.) larvae. Aquac. Aquar. Conserv. Legis. 2009, 2, 251–260. [Google Scholar]
- Moring, J.R. Effect of angling effort on catch rate of wild salmonids in streams stocked with catchable-size trout. N. Am. J. Fish. Manag. 1993, 13, 234–237. [Google Scholar] [CrossRef]
- Hoenig, J.M.; Jones, C.M.; Pollock, K.H.; Robson, D.S.; Wade, D.L. Calculation of catch rate and total catch in roving surveys of anglers. Biometrics 1997, 53, 306–317. [Google Scholar] [CrossRef]
- Hunt, L.M.; Arlinghaus, R.; Lester, N.; Kushneriuk, R. The effects of regional angling effort, angler behavior, and harvesting efficiency on landscape patterns of overfishing. Ecol. Appl. 2011, 21, 2555–2575. [Google Scholar] [CrossRef]
- Sundström, L.F.; Petersson, E.; Höjesjö, J.; Johnsson, J.I.; Järvi, T. Hatchery selection promotes boldness in newly hatched brown trout (Salmo trutta): Implications for dominance. Behav. Ecol. 2004, 15, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Gokcek, C.K.; Akyurt, I. The effect of stocking density on yield, growth, and feed efficiency of himri barbel (Barbus luteus) nursed in cages. Isr. J. Aquac.-Bammidgeh 2007, 59, 99–103. [Google Scholar] [CrossRef]
- Bašić, T.; Britton, J.R. Characterizing the trophic niches of stocked and resident cyprinid fishes: Consistency in partitioning over time, space and body sizes. Ecol. Evol. 2016, 6, 5093–5104. [Google Scholar] [CrossRef] [Green Version]
- Schramm, H.L., Jr.; Gerard, P.D. Temporal changes in fishing motivation among fishing club anglers in the United States. Fish. Manag. Ecol. 2004, 11, 313–321. [Google Scholar] [CrossRef]
- Curtis, J. Pike (Esox lucius) stock management in designated brown trout (Salmo trutta) fisheries: Anglers’ preferences. Fish. Res. 2018, 207, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.D.; Binder, T.R.; McGrath, K.P.; Cooke, S.J.; Godin, J.G.J. Capture technique and fish personality: Angling targets timid bluegill sunfish, Lepomis macrochirus. Can. J. Fish. Aquat. Sci. 2011, 68, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Andersen, K.H.; Marty, L.; Arlinghaus, R. Evolution of boldness and life history in response to selective harvesting. Can. J. Fish. Aquat. Sci. 2018, 75, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Gigliotti, L.M.; Taylor, W.W. The effect of illegal harvest on recreational fisheries. N. Am. J. Fish. Manag. 1990, 10, 106–110. [Google Scholar] [CrossRef]
- Kaemingk, M.A.; Chizinski, C.J.; Allen, C.R.; Pope, K.L. Ecosystem size predicts social-ecological dynamics. Ecol. Soc. 2019, 24, 17. [Google Scholar] [CrossRef]
- Camp, E.V.; Ahrens, R.N.; Crandall, C.; Lorenzen, K. Angler travel distances: Implications for spatial approaches to marine recreational fisheries governance. Mar. Policy 2018, 87, 263–274. [Google Scholar] [CrossRef]
- Ditton, R.B.; Holland, S.M.; Anderson, D.K. Recreational fishing as tourism. Fisheries 2002, 27, 17–24. [Google Scholar] [CrossRef]
- Musil, J.; Jurajda, P.; Adámek, Z.; Horký, P.; Slavík, O. Non-native fish introductions in the Czech Republic–species inventory, facts and future perspectives. J. Appl. Ichthyol. 2010, 26, 38–45. [Google Scholar] [CrossRef]
- Christley, R.M. Power and error: Increased risk of false positive results in underpowered studies. Open Epidemiol. J. 2010, 3, 16–19. [Google Scholar] [CrossRef]
- Essig, R.J.; Holliday, M.C. Development of a recreational fishing survey: The marine recreational fishery statistics survey case study. Am. Fish. Soc. 1991, 12, 245–254. [Google Scholar]
- Pollock, K.H.; Jones, C.M.; Brown, T.L. Angler Survey Methods and Their Applications in Fisheries Management; American Fisheries Society Special Publication, Bethesda: Rockville, MD, USA, 1994; Volume 25, p. 371. [Google Scholar]
- Cooke, S.J.; Dunlop, W.I.; McLennan, D.M.; Power, G. Applications and characteristics of angler diary programs in Ontario, Canada. Fish. Manag. Ecol. 2000, 7, 473–487. [Google Scholar] [CrossRef] [Green Version]
- Bray, G.S.; Schramm, H.L. Evaluation of a state-wide volunteer angler diary program for use as a fishery assessment tool. N. Am. J. Fish Manag. 2001, 21, 606–615. [Google Scholar] [CrossRef]
- Mosindy, T.E.; Duffy, M.J. The use of angler diary surveys to evaluate long-term changes in muskellunge populations on Lake of the Woods, Ontario. Environ. Biol. Fishes 2007, 79, 71–83. [Google Scholar] [CrossRef]
Species | Harvested Fish (n) | Harvested Fish (kg) | Size of Harv. Fish (kg) | Stocked Fish (n) | Stocked Fish (kg) | Size of Stock. Fish (kg) |
---|---|---|---|---|---|---|
C. carpio | 929,840 | 2,138,632 | 2.30 | 8,352,487 | 6,646,407 | 0.80 |
O. mykiss | 128,965 | 52,145 | 0.40 | 315,412 | 108,325 | 0.34 |
C. idella | 128,632 | 303,456 | 2.36 | 45,821 | 20,157 | 0.44 |
S. glanis | 19,214 | 218,563 | 11.38 | 133,524 | 18,562 | 0.14 |
all fish species | 12,462,547 | 13,254,781 | 1.06 | 201,352,847 | 10,012,955 | 0.05 |
Response Variable | Fixed Variables | Estimate | 95 CI: Low | 95 CI: Up | SD (Slope) | p-Value |
---|---|---|---|---|---|---|
Yield per effort of C. carpio | Intercept | 4.97 × 10−1 | 4.45 × 10−1 | 5.63 × 10−1 | 7.64 × 10−2 | <0.01 |
angling effort | −9.43 × 10−4 | −1.14 × 10−3 | −7.33 × 10−4 | 8.47 × 10−4 | <0.01 | |
area | −8.78 × 10−4 | −9.85 × 10−4 | −6.33 × 10−4 | 3.80 × 10−4 | 0.02 | |
C. carpio stocking | 2.26 × 10−1 | 1.97 × 10−1 | 2.63 × 10−1 | 1.11 × 10−1 | 0.04 | |
C. carpio—size of stocked fish | −6.60 × 10−4 | −8.65 × 10−4 | −3.25 × 10−4 | 8.42 × 10−3 | 0.94 | |
S. glanis yield | 9.17 × 10−1 | 7.63 × 10−1 | 1.10 × 10+0 | 5.21 × 10−1 | <0.01 | |
S. glanis—size of harv. fish | −2.83 × 10−4 | −3.52 × 10−4 | −2.31 × 10−4 | 2.07 × 10−4 | 0.17 | |
S. glanis stocking | −6.86 × 10−2 | −8.85 × 10−2 | −4.25 × 10−2 | 6.90 × 10−2 | <0.01 | |
S. glanis—size of stocked fish | −5.17 × 10−3 | −6.63 × 10−3 | −3.52 × 10−3 | 3.82 × 10−3 | 0.18 |
Response Variable | Fixed Variables | Estimate | 95 CI: Low | 95 CI: Up | SD (Slope) | p-Value |
---|---|---|---|---|---|---|
Yield per effort of O. mykiss | Intercept | −1.61 × 10−3 | −1.95 × 10−3 | −1.42 × 10−3 | 1.35 × 10+0 | <0.01 |
angling effort | −3.39 × 10−7 | −3.52 × 10−7 | 2.84 × 10−7 | 1.00 × 10+1 | <0.01 | |
area | 8.03 × 10−5 | 6.33 × 10−5 | 9.23 × 10−5 | 1.39 × 10+1 | <0.01 | |
O. mykiss stocking | 1.23 × 10−3 | 9.53 × 10−4 | 1.49 × 10−3 | 9.63 × 10+0 | <0.01 | |
O. mykiss—size of st. fish | 6.68 × 10−3 | 4.12 × 10−3 | 8.23 × 10−3 | 2.39 × 10+0 | 0.06 | |
S. glanis yield | −2.33 × 10−2 | −2.63 × 10−1 | −1.93 × 10−1 | 9.80 × 10−2 | <0.01 | |
S. glanis—size of harv. fish | 1.95 × 10−6 | 1.25 × 10−6 | 2.85 × 10−6 | 4.70 × 10−1 | 0.66 | |
S. glanis stocking | −8.96 × 10−4 | −1.01 × 10−3 | −6.13 × 10−4 | 8.47 × 10−1 | <0.01 | |
S. glanis—size of stocked fish | 7.98 × 10−6 | 6.63 × 10−6 | 9.54 × 10−6 | 1.71 × 10−1 | 0.87 |
Response Variable | Fixed Variables | Estimate | 95 CI: Low | 95 CI: Up | SD (Slope) | p-Value |
---|---|---|---|---|---|---|
Yield per effort of C. idella | Intercept | 2.03 × 10−4 | 1.56 × 10−4 | 2.56 × 10−4 | 7.14 × 10−3 | <0.01 |
angling effort | 3.59 × 10−7 | 2.86 × 10−7 | 4.86 × 10−7 | 4.71 × 10−7 | <0.01 | |
area | −3.79 × 10−5 | −5.52 × 10−5 | −2.24 × 10−5 | 8.92 × 10−5 | <0.01 | |
C. idella stocking | 1.59 × 10−2 | 1.24 × 10−2 | 1.86 × 10−1 | 9.96 × 10−4 | <0.01 | |
C. idella—size of stocked fish | 5.62 × 10−3 | 4.33 × 10−3 | 6.63 × 10−3 | 6.14 × 10−3 | 0.36 | |
S. glanis yield | 6.91 × 10−1 | 4.33 × 10−1 | 8.86 × 10−1 | 9.12 × 10−2 | <0.01 | |
S. glanis—size of harvested fish | 8.43 × 10−7 | 6.63 × 10−7 | 9.96 × 10−7 | 9.86 × 10−6 | 0.93 | |
S. glanis stocking | −7.56 × 10−3 | −8.33 × 10−3 | −6.85 × 10−3 | 5.82 × 10−3 | 0.02 | |
S. glanis—size of stocked fish | −6.47 × 10−4 | −7.53 × 10−4 | −5.24 × 10−4 | 2.58 × 10−4 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyach, R. Fisheries Management of the European Catfish Silurus glanis Is Strongly Correlated to the Management of Non-Native Fish Species (Common Carp Cyprinus carpio, Rainbow Trout Oncorhynchus mykiss, and Grass Carp Ctenopharyngodon idella). Sustainability 2022, 14, 6001. https://doi.org/10.3390/su14106001
Lyach R. Fisheries Management of the European Catfish Silurus glanis Is Strongly Correlated to the Management of Non-Native Fish Species (Common Carp Cyprinus carpio, Rainbow Trout Oncorhynchus mykiss, and Grass Carp Ctenopharyngodon idella). Sustainability. 2022; 14(10):6001. https://doi.org/10.3390/su14106001
Chicago/Turabian StyleLyach, Roman. 2022. "Fisheries Management of the European Catfish Silurus glanis Is Strongly Correlated to the Management of Non-Native Fish Species (Common Carp Cyprinus carpio, Rainbow Trout Oncorhynchus mykiss, and Grass Carp Ctenopharyngodon idella)" Sustainability 14, no. 10: 6001. https://doi.org/10.3390/su14106001
APA StyleLyach, R. (2022). Fisheries Management of the European Catfish Silurus glanis Is Strongly Correlated to the Management of Non-Native Fish Species (Common Carp Cyprinus carpio, Rainbow Trout Oncorhynchus mykiss, and Grass Carp Ctenopharyngodon idella). Sustainability, 14(10), 6001. https://doi.org/10.3390/su14106001