Mapping Pervious Surfaces and Canopy Cover Using High-Resolution Airborne Imagery and Digital Elevation Models to Support Urban Planning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Mapping Urban Greening Using NDVI
- NDVI represents the normalized difference vegetation index;
- NIR represents the spectral reflectance recorded in the near-infrared region;
- Red represents the spectral reflectance recorded in the red (visible) region.
2.3. Input Data
2.4. Pervious Surfaces Mapping
2.5. Urban Tree Canopy Cover Mapping
2.6. Accuracy Assessment
2.7. Mapping the UGI Indicators Using Neighborhood Blocks
3. Results
3.1. Urban Green Infrastructure Extraction and Validation
3.1.1. Map of Pervious Surfaces
3.1.2. Map of Canopy Cover
3.2. Synthesis Map by Land Cover Units
4. Discussion
4.1. Strengths and Limitations of the Proposed Approach
4.1.1. Mapping Process
4.1.2. Accuracy of the Results
4.1.3. Potential Usages and Further Studies
4.2. Supporting Urban Planning
4.2.1. Potential Usages in Urban Planning
4.2.2. Integration in the Current Planning Tools
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019.
- Padmanaban, R.; Bhowmik, A.K.; Cabral, P. Satellite image fusion to detect changing surface permeability and emerging urban heat islands in a fast-growing city. PLoS ONE 2019, 14, e0208949. [Google Scholar] [CrossRef] [PubMed]
- de Vries, S.; Snep, R. Biodiversity in the Context of ‘Biodiversity–Mental Health’ Research. In Biodiversity and Health in the Face of Climate Change; Marselle, M.R., Stadler, J., Korn, H., Irvine, K.N., Bonn, A., Eds.; Springer International Publishing: Cham, Germany, 2019; pp. 159–173. ISBN 978-3-030-02318-8. [Google Scholar]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Pelorosso, R. Modeling and urban planning: A systematic review of performance-based approaches. Sustain. Cities Soc. 2019, 52, 101867. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. A performance-based planning approach integrating supply and demand of urban ecosystem services. Landsc. Urban Plan. 2020, 201, 103842. [Google Scholar] [CrossRef]
- Peroni, F.; Pristeri, G.; Codato, D.; Pappalardo, S.E.; De Marchi, M. Biotope Area Factor: An Ecological Urban Index to Geovisualize Soil Sealing in Padua, Italy. Sustainability 2019, 12, 150. [Google Scholar] [CrossRef] [Green Version]
- La Rosa, D.; Wiesmann, D. Land cover and impervious surface extraction using parametric and non-parametric algorithms from the open-source software R: An application to sustainable urban planning in Sicily. GIScience Remote Sens. 2013, 50, 231–250. [Google Scholar] [CrossRef]
- Yu, D.; Xun, B.; Shi, P.; Shao, H.; Liu, Y. Ecological restoration planning based on connectivity in an urban area. Ecol. Eng. 2012, 46, 24–33. [Google Scholar] [CrossRef]
- Lin, B.; Meyers, J.; Barnett, G. Understanding the potential loss and inequities of green space distribution with urban densification. Urban For. Urban Green. 2015, 14, 952–958. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Z. Assessing of Urban Vegetation Biomass in Combination with LiDAR and High-resolution Remote Sensing Images. Int. J. Remote Sens. 2020, 42, 964–985. [Google Scholar] [CrossRef]
- Zhong, Q.; Ma, J.; Zhao, B.; Wang, X.; Zong, J.; Xiao, X. Assessing spatial-temporal dynamics of urban expansion, vegetation greenness and photosynthesis in megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 111374. [Google Scholar] [CrossRef]
- Prohmdirek, T.; Chunpang, P.; Laosuwan, T. The relationship between normalized difference vegetation index and canopy temperature that affects the urban heat island phenomenon. Geomatics Appl. Geogr. 2020, 15, 222–234. [Google Scholar] [CrossRef]
- Morgenroth, J.; Östberg, J. Measuring and Monitoring Urban Trees and Urban Forests. In Routledge Handbook of Urban Forestry, 1st ed.; Ferrini, F., Konijnendijk van den Bosch, C.C., Fini, A., Eds.; Routledge: London, UK, 2017; pp. 33–48. ISBN 9781315627106. [Google Scholar]
- Woods Ballard, B.; Wilson, B.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SuDS Manual (C753); CIRIA: London, UK, 2015. [Google Scholar]
- European Commission. Guidelines on Best Practice to Limit, Mitigate or Compensate Soil Sealing; Publications Office of the European Union: Luxembourg, 2012; Available online: https://ec.europa.eu/environment/soil/pdf/guidelines/pub/soil_en.pdf (accessed on 19 February 2022).
- Jim, C.Y. Constraints to Urban Trees and Their Remedies in the Built Environment. In Routledge Handbook of Urban Forestry, 1st ed.; Ferrini, F., Konijnendijk van den Bosch, C.C., Fini, A., Eds.; Routledge: London, UK, 2017; pp. 273–290. ISBN 9781315627106. [Google Scholar]
- Nowak, D.J. Assessing the Benefits and Economic Values of Trees. In Routledge Handbook of Urban Forestry, 1st ed.; Ferrini, F., van den Bosch, C.C.K., Fini, A., Eds.; Routledge: London, UK, 2017; pp. 152–163. ISBN 9781315627106. [Google Scholar]
- Hanssen, F.; Barton, D.N.; Nowell, M.; Cimburova, Z. Mapping Urban Tree Canopy Cover Using Airborne Laser Scanning-Applications to Urban Ecosystem Accounting for Oslo; NINA Report 1677; Norwegian Institute for Nature Research: Oslo, Norway, 2019. [Google Scholar]
- Nowak, D.J.; Walton, J.T.; Stevens, J.C.; Crane, D.E.; Hoehn, R.E. Effect of Plot and Sample Size on Timing and Precision of Urban Forest Assessments Methods Effect of Plot Size on Data Collection Time and Total Population Estimate Precision. Arboric. Urban For. 2008, 34, 386–390. [Google Scholar] [CrossRef]
- Alonzo, M.; McFadden, J.P.; Nowak, D.J.; Roberts, D.A. Mapping urban forest structure and function using hyperspectral imagery and lidar data. Urban For. Urban Green. 2016, 17, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, R.; Freeman, C.; Aryal, J. Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landsc. Urban Plan. 2007, 81, 179–192. [Google Scholar] [CrossRef]
- Östberg, J.; Wiström, B.; Randrup, T.B. The state and use of municipal tree inventories in Swedish municipalities—Results from a national survey. Urban Ecosyst. 2018, 21, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Klobucar, B.; Sang, N.; Randrup, T.B. Comparing Ground and Remotely Sensed Measurements of Urban Tree Canopy in Private Residential Property. Trees For. People 2021, 5, 100114. [Google Scholar] [CrossRef]
- Myeong, S.; Nowak, D.J.; Hopkins, P.F.; Brock, R.H. Urban cover mapping using digital, high-spatial resolution aerial imagery. Urban Ecosyst. 2001, 5, 243–256. [Google Scholar] [CrossRef]
- Galle, N.J.; Nitoslawski, S.A.; Pilla, F. The Internet of Nature: How taking nature online can shape urban ecosystems. Anthr. Rev. 2019, 6, 279–287. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lin, H.; Li, Y.; Zhang, Y.; Fang, C. Mapping urban impervious surface with dual-polarimetric SAR data: An improved method. Landsc. Urban Plan. 2016, 151, 55–63. [Google Scholar] [CrossRef]
- Schmidt, S.; Barron, C. Mapping Impervious Surfaces Precisely—A GIS-Based Methodology Combining Vector Data and High-Resolution Airborne Imagery. J. Geovis. Spat. Anal. 2020, 4, 14. [Google Scholar] [CrossRef]
- Pereira, L.E.; de Oliveira, E.F.; da Rosa Oliveira, M.; Amorim, G.M.; Grigio, A.M.; Filho, A.C.P. Methods to model impermeable URBAN areas using soil moisture characteristics. J. Flood Risk Manag. 2018, 12, e12480. [Google Scholar] [CrossRef]
- Rujoiu-Mare, M.-R.; Mihai, B.-A. Mapping Land Cover Using Remote Sensing Data and GIS Techniques: A Case Study of Prahova Subcarpathians. Procedia Environ. Sci. 2016, 32, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Pristeri, G.; Peroni, F.; Pappalardo, S.; Codato, D.; Masi, A.; De Marchi, M. Whose Urban Green? Mapping and Classifying Public and Private Green Spaces in Padua for Spatial Planning Policies. ISPRS Int. J. Geo-Inform. 2021, 10, 538. [Google Scholar] [CrossRef]
- Pristeri, G.; Peroni, F.; Pappalardo, S.E.; Codato, D.; Castaldo, A.G.; Masi, A.; De Marchi, M. Mapping and Assessing Soil Sealing in Padua Municipality through Biotope Area Factor Index. Sustainability 2020, 12, 5167. [Google Scholar] [CrossRef]
- MacFaden, S.W.; O’Neil-Dunne, J.P.; Royar, A.R.; Lu, J.W.; Rundle, A. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis. J. Appl. Remote Sens. 2012, 6, 063567. [Google Scholar] [CrossRef]
- Richardson, J.J.; Moskal, L.M. Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban For. Urban Green. 2014, 13, 152–157. [Google Scholar] [CrossRef]
- Shao, Z.; Ding, L.; Li, D.; Altan, O.; Huq, E.; Li, C. Exploring the Relationship between Urbanization and Ecological Environment Using Remote Sensing Images and Statistical Data: A Case Study in the Yangtze River Delta, China. Sustainability 2020, 12, 5620. [Google Scholar] [CrossRef]
- García, P.; Pérez, E. Mapping of soil sealing by vegetation indexes and built-up index: A case study in Madrid (Spain). Geoderma 2016, 268, 100–107. [Google Scholar] [CrossRef]
- Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing Transformations and Their Effects on Multispectral Recognition. In Proceedings of the Sixth International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 13–16 October 1969; pp. 97–131. [Google Scholar]
- Spadoni, G.L.; Cavalli, A.; Congedo, L.; Munafò, M. Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sens. Appl. Soc. Environ. 2020, 20, 100419. [Google Scholar] [CrossRef]
- Cavada, N.; Ciolli, M.; Rocchini, D.; Barelli, C.; Marshall, A.R.; Rovero, F. Integrating field and satellite data for spatially explicit inference on the density of threatened arboreal primates. Ecol. Appl. 2017, 27, 235–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J.; Lyon, J.G.; Worthy, L.D. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens. Environ. 2006, 105, 142–154. [Google Scholar] [CrossRef]
- Favargiotti, S.; Pianegonda, A. The Foodscape as Ecological System. Landscape Resources for R-Urban Metabolism, Social Empowerment and Cultural Production. In Urban Services to Ecosystems: Green Infrastructure Benefits from the Landscape to the Urban Scale, 1st ed.; Catalano, C., Andreucci, M.B., Guarino, R., Bretzel, F., Leone, M., Pasta, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 17, pp. 279–295. ISBN 978-3-030-75929-2. [Google Scholar]
- Minora, F. Mutual Housing: Pratiche di Resilienza Abitativa. Available online: https://drive.google.com/file/d/17lXMmXtXU4W60CdLl-Q60kvrCFiFquh8/view (accessed on 19 February 2022).
- Comune di Trento. 2018. Il Futuro Della Città Di Trento Si Costruisce Oggi. Obiettivi e Percorso Della Variante Generale al Piano Regolatore Generale. Available online: https://www.comune.trento.it/Aree-tematiche/Ambiente-e-territorio/Urbanistica/Il-nuovo-PRG-Piano-regolatore-generale/Obiettivi-e-percorso-della-variante-generale-al-Piano-regolatore-generale-2018/Il-futuro-della-citta-di-Trento-si-costruisce-oggi-Schema-del-documento (accessed on 19 February 2022).
- Ricci, M.; Favargiotti, S. Trento Leaf Plan: Cinque Sfide per Il Metabolismo Urbano. EcoWebTown J. Sustain. Des. 2019, 19, 1–10. [Google Scholar]
- Nikologianni, A.; Betta, A.; Pianegonda, A.; Favargiotti, S.; Moore, K.; Grayson, N.; Morganti, E.; Berg, M.; Ternell, A.; Ciolli, M.; et al. New Integrated Approaches to Climate Emergency Landscape Strategies: The Case of Pan-European SATURN Project. Sustainability 2020, 12, 8419. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G.F. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 2719. [Google Scholar] [CrossRef]
- Akbar, T.A.; Hassan, Q.K.; Ishaq, S.; Batool, M.; Butt, H.J.; Jabbar, H. Investigative Spatial Distribution and Modelling of Existing and Future Urban Land Changes and Its Impact on Urbanization and Economy. Remote Sens. 2019, 11, 105. [Google Scholar] [CrossRef] [Green Version]
- Pei, Z.; Fang, S.; Yang, W.; Wang, L.; Wu, M.; Zhang, Q.; Han, W.; Khoi, D.N. The Relationship between NDVI and Climate Factors at Different Monthly Time Scales: A Case Study of Grasslands in Inner Mongolia, China (1982–2015). Sustainability 2019, 11, 7243. [Google Scholar] [CrossRef] [Green Version]
- Atasoy, M. Monitoring the urban green spaces and landscape fragmentation using remote sensing: A case study in Osmaniye, Turkey. Environ. Monit. Assess. 2018, 190, 713. [Google Scholar] [CrossRef]
- Wan, T.; Lu, H.; Lu, Q.; Luo, N. Classification of High-Resolution Remote-Sensing Image Using OpenStreetMap Information. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2305–2309. [Google Scholar] [CrossRef]
- Parmehr, E.G.; Amati, M.; Taylor, E.J.; Livesley, S.J. Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban For. Urban Green. 2016, 20, 160–171. [Google Scholar] [CrossRef]
- Stehman, S.V. Basic probability sampling designs for thematic map accuracy assessment. Int. J. Remote Sens. 1999, 20, 2423–2441. [Google Scholar] [CrossRef]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Allen, J.S. Mapping Urbanization Trends in a Forested Landscape Using Google Earth Engine. Remote Sens. Earth Syst. Sci. 2019, 2, 173–182. [Google Scholar] [CrossRef]
- Copernicus Land Monitoring Service. Corine Land Cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 19 February 2022).
- Lichtblau, E.; Oswald, C.J. Classification of impervious land-use features using object-based image analysis and data fusion. Comput. Environ. Urban Syst. 2019, 75, 103–116. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, Y.; Zhang, C.; Huang, X.; Cheng, T. Mapping impervious surfaces with a hierarchical spectral mixture analysis incorporating endmember spatial distribution. Geo-Spatial Inf. Sci. 2022, 1–18. [Google Scholar] [CrossRef]
- Yang, J.; He, Y. Automated mapping of impervious surfaces in urban and suburban areas: Linear spectral unmixing of high spatial resolution imagery. Int. J. Appl. Earth Obs. Geoinformation 2016, 54, 53–64. [Google Scholar] [CrossRef]
- Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Scheuer, S.; Kremer, P.; Mascarenhas, A.; Kraemer, R.; et al. Remote sensing in urban planning: Contributions towards ecologically sound policies? Landsc. Urban Plan. 2020, 204, 103921. [Google Scholar] [CrossRef]
- Kaspersen, P.S.; Fensholt, R.; Drews, M. Using Landsat Vegetation Indices to Estimate Impervious Surface Fractions for European Cities. Remote Sens. 2015, 7, 8224–8249. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Saikia, A. How green was my valley: Forest canopy density in relation to topography and anthropogenic effects in Manipur valley, India. Geogr. Tidsskr. J. Geogr. 2018, 118, 137–150. [Google Scholar] [CrossRef]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.-E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2015, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Shen, L.; Li, C. Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Pauleit, S.; Ambrose-Oji, B.; Andersson, E.; Anton, B.; Buijs, A.; Haase, D.; Elands, B.; Hansen, R.; Kowarik, I.; Kronenberg, J.; et al. Advancing urban green infrastructure in Europe: Outcomes and reflections from the GREEN SURGE project. Urban For. Urban Green. 2019, 40, 4–16. [Google Scholar] [CrossRef]
- Pauleit, S.; Hansen, R.; Rall, E.L.; Zölch, T.; Andersson, E.; Luz, A.C.; Szaraz, L.; Tosics, I.; Vierikko, K. Urban Landscapes and Green Infrastructure. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017; Volume 28, pp. 6–28. [Google Scholar]
- Cortinovis, C.; Geneletti, D. Mapping and assessing ecosystem services to support urban planning: A case study on brownfield regeneration in Trento, Italy. One Ecosyst. 2018, 3, e25477. [Google Scholar] [CrossRef]
- Zardo, L.; Geneletti, D.; Pérez-Soba, M.; Van Eupen, M. Estimating the cooling capacity of green infrastructures to support urban planning. Ecosyst. Serv. 2017, 26, 225–235. [Google Scholar] [CrossRef]
- Lamelas, M.; Hoppe, A.; De La Riva, J.; Marinoni, O. Modelling environmental variables for geohazards and georesources assessment to support sustainable land-use decisions in Zaragoza (Spain). Geomorphology 2009, 111, 88–103. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Shi, T.; Qu, X.; Walter, M.T. Effects of urbanization on direct runoff characteristics in urban functional zones. Sci. Total Environ. 2018, 643, 301–311. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L. Linking ecological and built components of urban mosaics: An open cycle of ecological design. J. Ecol. 2007, 96, 8–12. [Google Scholar] [CrossRef]
- Landry, S.; Pu, R. The impact of land development regulation on residential tree cover: An empirical evaluation using high-resolution IKONOS imagery. Landsc. Urban Plan. 2010, 94, 94–104. [Google Scholar] [CrossRef]
- Frew, T.; Baker, D.; Donehue, P. Performance based planning in Queensland: A case of unintended plan-making outcomes. Land Use Policy 2016, 50, 239–251. [Google Scholar] [CrossRef]
- Norton, B.A.; Coutts, A.M.; Livesley, S.J.; Harris, R.J.; Hunter, A.M.; Williams, N.S.G. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 2015, 134, 127–138. [Google Scholar] [CrossRef]
- Ronchi, S.; Arcidiacono, A.; Pogliani, L. Integrating green infrastructure into spatial planning regulations to improve the performance of urban ecosystems. Insights from an Italian case study. Sustain. Cities Soc. 2019, 53, 101907. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Altwegg, J.; Sirén, E.A.; van Strien, M.J.; Weibel, B.; Grêt-Regamey, A.; Altwegg, J.; Sirén, E.A.; van Strien, M.J.; Weibel, B.; et al. Integrating ecosystem services into spatial planning—A spatial decision support tool. Landsc. Urban Plan. 2017, 165, 206–219. [Google Scholar] [CrossRef] [Green Version]
Class | NDVI Range |
---|---|
Water | From −0.28 to 0.015 |
Built-up | From 0.015 to 0.14 |
Barren land | From 0.14 to 0.18 |
Shrubs and grassland | From 0.18 to 0.27 |
Sparse vegetation | From 0.27 to 0.36 |
Dense vegetation | From 0.36 to 0.74 |
Name | Description | Use | Source |
---|---|---|---|
CIR Orthophotos | 20 cm/pixel resolution, multiband (RGB-NIR), 2014–2016 (ETRS89, EPSG: 6707) | NDVI calculation | GeoCatalogo PAT (2016) |
Boundaries of Administrative Units | Shapefile of the administrative boundaries of the Municipality of Trento | Administrative boundaries | ISTAT (2021) |
LiDAR DTM Digital Terrain Model | Digital Terrain Model | Calculation of vegetation height | GeoCatalogo PAT (2014) |
LiDAR DSM Digital Surface Model | Digital Surface Model | Calculation of vegetation height | GeoCatalogo PAT (2014) |
Copernicus | Land use and land cover maps | Subdivision in blocks | Copernicus Land Monitoring Service (2018) |
Class Name | Reference | |||
---|---|---|---|---|
Pervious | Impervious | Row Total | Commission Error | |
Classified data | ||||
Pervious | 105 | 0 | 105 | 0% |
Impervious | 13 | 32 | 45 | 29% |
Column total | 118 | 32 | 150 | |
Omission error | 11% | 0% | Overall accuracy 91.33% |
Class Name | Reference | |||||
---|---|---|---|---|---|---|
Low Vegetation | Medium Vegetation | High Vegetation | Not Vegetated | Row Total | Commission Error | |
Classified data | ||||||
Low vegetation | 68 | 22 | 7 | 3 | 100 | 29% |
Medium vegetation | 2 | 80 | 18 | 0 | 100 | 20% |
High vegetation | 1 | 2 | 97 | 0 | 100 | 3% |
Not vegetated | 5 | 2 | 2 | 91 | 100 | 7% |
Column total | 76 | 106 | 124 | 94 | 400 | |
Omission error | 4% | 23% | 2% | 3% | Overall accuracy 84.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Codemo, A.; Pianegonda, A.; Ciolli, M.; Favargiotti, S.; Albatici, R. Mapping Pervious Surfaces and Canopy Cover Using High-Resolution Airborne Imagery and Digital Elevation Models to Support Urban Planning. Sustainability 2022, 14, 6149. https://doi.org/10.3390/su14106149
Codemo A, Pianegonda A, Ciolli M, Favargiotti S, Albatici R. Mapping Pervious Surfaces and Canopy Cover Using High-Resolution Airborne Imagery and Digital Elevation Models to Support Urban Planning. Sustainability. 2022; 14(10):6149. https://doi.org/10.3390/su14106149
Chicago/Turabian StyleCodemo, Anna, Angelica Pianegonda, Marco Ciolli, Sara Favargiotti, and Rossano Albatici. 2022. "Mapping Pervious Surfaces and Canopy Cover Using High-Resolution Airborne Imagery and Digital Elevation Models to Support Urban Planning" Sustainability 14, no. 10: 6149. https://doi.org/10.3390/su14106149
APA StyleCodemo, A., Pianegonda, A., Ciolli, M., Favargiotti, S., & Albatici, R. (2022). Mapping Pervious Surfaces and Canopy Cover Using High-Resolution Airborne Imagery and Digital Elevation Models to Support Urban Planning. Sustainability, 14(10), 6149. https://doi.org/10.3390/su14106149