A Short Review of Recent Progress in Improving the Fracture Toughness of FRP Composites Using Short Fibers
Abstract
:1. Introduction
2. Interlaminar Fracture Toughness Characterization and Testing of Composite Laminates
3. Short Fiber Toughening
3.1. Short Fiber Interlayer Toughening
3.2. Short Fiber Modified Resin Toughening
4. Conclusions
5. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aamir, M.; Tolouei-Rad, M.; Giasin, K.; Nosrati, A. Recent Advances in Drilling of Carbon Fiber-Reinforced Polymers for Aerospace Applications: A Review. Int. J. Adv. Manuf. Technol. 2019, 105, 2289–2308. [Google Scholar] [CrossRef]
- Alshahrani, H.; Ahmed, A. Enhancing Impact Energy Absorption, Flexural and Crash Performance Properties of Automotive Composite Laminates by Adjusting the Stacking Sequences Layup. Polymers 2021, 13, 3404. [Google Scholar] [CrossRef] [PubMed]
- Zangenberg, J.; Brondsted, P.; Koefoed, M. Design of a Fibrous Composite Preform for Wind Turbine Rotor Blades. Mater. Des. 2014, 56, 635–641. [Google Scholar] [CrossRef]
- Ullah, H.; Harland, A.R.; Silberschmidt, V.V. Dynamic Bending Behaviour of Woven Composites for Sports Products: Experiments and Damage Analysis. Mater. Des. 2015, 88, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, T.; Sun, W.; Bao, R.; Tan, R. Effects of Matrix Cracks on Delamination of Composite Laminates Subjected to Low-Velocity Impact. Compos. Struct. 2021, 262, 113354. [Google Scholar] [CrossRef]
- Wang, J. Research on Properties of Three-dimensional UHMWPE Fiber Composite with Difference Structures. Adv. Text. Technol. 2021, 29, 12–17. [Google Scholar] [CrossRef]
- Tao, N.; Gao, X. Research on Interface Modification and Bend of 3D Orthogonal Woven Glass Fiber Composites. Adv. Text. Technol. 2019, 27, 12–18. [Google Scholar] [CrossRef]
- Shen, X.; Liu, X.; Tian, W.; Zhu, C. Study on Mechanical Properties of Orthogonal and Quasi-Orthogonal 3D Woven Composite with Combined Structure. Adv. Text. Technol. 2019, 27, 6–11. [Google Scholar] [CrossRef]
- Hu, Q.; Memon, H.; Qiu, Y.; Liu, W.; Wei, Y. A Comprehensive Study on the Mechanical Properties of Different 3D Woven Carbon Fiber-Epoxy Composites. Materials 2020, 13, 2765. [Google Scholar] [CrossRef]
- Liao, B.; Zhou, J.; Zheng, J.; Tao, R.; Xi, L.; Zhao, T.; Li, Y.; Fang, D. Effect of Z-Pin Inclined Angle on the Impact Damage Suppression Effectiveness for Cross-Ply Composite Laminates. Compos. Pt. A-Appl. Sci. Manuf. 2021, 142, 106264. [Google Scholar] [CrossRef]
- Drake, D.A.; Sullivan, R.W.; Lovejoy, A.E.; Clay, S.B.; Jegley, D.C. Influence of Stitching on the Out-of-Plane Behavior of Composite Materials—A Mechanistic Review. J. Compos Mater. 2021, 55, 3307–3321. [Google Scholar] [CrossRef]
- Zhu, L.; Bin Rahman, M.; Wang, Z. Effect of Structural Differences on the Mechanical Properties of 3D Integrated Woven Spacer Sandwich Composites. Materials 2021, 14, 4284. [Google Scholar] [CrossRef] [PubMed]
- Bin Rahman, M.; Zhu, L. Low-Velocity Impact Response on Glass Fiber Reinforced 3D Integrated Woven Spacer Sandwich Composites. Materials 2022, 15, 2311. [Google Scholar] [CrossRef] [PubMed]
- Ning, N.; Wang, M.; Zhou, G.; Qiu, Y.; Wei, Y. Effect of Polymer Nanoparticle Morphology on Fracture Toughness Enhancement of Carbon Fiber Reinforced Epoxy Composites. Compos. Pt. B-Eng. 2022, 234, 109749. [Google Scholar] [CrossRef]
- Saghafi, H.; Palazzetti, R.; Heidary, H.; Brugo, T.M.; Zucchelli, A.; Minak, G. Toughening Behavior of Carbon/Epoxy Laminates Interleaved by PSF/PVDF Composite Nanofibers. Appl. Sci.-Basel 2020, 10, 5618. [Google Scholar] [CrossRef]
- Hu, Q.; Memon, H.; Qiu, Y.; Wei, Y. The Failure Mechanism of Composite Stiffener Components Reinforced with 3D Woven Fabrics. Materials 2019, 12, 2221. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, R.; Singh, K.K. Interlaminar Fracture Toughness Characterization of Laminated Composites: A Review. Polym. Rev. 2020, 60, 542–593. [Google Scholar] [CrossRef]
- Sharma, P.; Mali, H.S.; Dixit, A. Mechanical Behavior and Fracture Toughness Characterization of High Strength Fiber Reinforced Polymer Textile Composites. Iran. Polym. J. 2021, 30, 193–233. [Google Scholar] [CrossRef]
- Irwin, G.R. Structural Aspects of Brittle Fracture. Appl. Mater. Res. 1964, 3, 65–81. [Google Scholar]
- Griffith, A.A. The Phenomena of Rupture and Flow in Solids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1920, A221, 163–198. [Google Scholar] [CrossRef]
- Dikshit, V.; Bhudolia, S.; Joshi, S. Multiscale Polymer Composites: A Review of the Interlaminar Fracture Toughness Improvement. Fibers 2017, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. Available online: https://www.astm.org/d5528_d5528m-21.html (accessed on 3 May 2022).
- Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. Available online: https://www.astm.org/d7905_d7905m-19e01.html (accessed on 3 May 2022).
- Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. Available online: https://www.astm.org/d2344_d2344m-16.html (accessed on 3 May 2022).
- Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. Available online: https://www.astm.org/d7136_d7136m-20.html (accessed on 3 May 2022).
- Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. Available online: https://www.astm.org/d7137_d7137m-17.html (accessed on 3 May 2022).
- Sohn, M.-S.; Hu, X.-Z. Comparative Study of Dynamic and Static Delamination Behaviour of Carbon Fibre/Epoxy Composite Laminates. Composites 1995, 26, 849–858. [Google Scholar] [CrossRef]
- Park, B.Y.; Kim, S.C. A Study of the Interlaminar Fracture Toughness of a Carbon-Fiber/Epoxy Composite Containing Surface-Modified Short Kevlar Fibers. Compos. Sci. Technol. 1998, 58, 1599–1606. [Google Scholar] [CrossRef]
- Park, B.Y.; Kim, S.C.; Jung, B. Interlaminar Fracture Toughness of Carbon Fiber/Epoxy Composites Using Short Kevlar Fiber and/or Nylon-6 Powder Reinforcement. Polym. Adv. Technol. 1997, 8, 371–377. [Google Scholar] [CrossRef]
- Yadav, S.N.; Kumar, V.; Verma, S.K. Fracture Toughness Behaviour of Carbon Fibre Epoxy Composite with Kevlar Reinforced Interleave. Mater. Sci. Eng. B 2006, 132, 108–112. [Google Scholar] [CrossRef]
- Yasaee, M.; Bond, I.P.; Trask, R.S.; Greenhalgh, E.S. Mode I Interfacial Toughening through Discontinuous Interleaves for Damage Suppression and Control. Compos. Part A Appl. Sci. Manuf. 2012, 43, 198–207. [Google Scholar] [CrossRef]
- Yasaee, M.; Bond, I.P.; Trask, R.S.; Greenhalgh, E.S. Mode II Interfacial Toughening through Discontinuous Interleaves for Damage Suppression and Control. Compos. Part A Appl. Sci. Manuf. 2012, 43, 121–128. [Google Scholar] [CrossRef]
- Liu, W.; Li, W.; Ma, C.; Wang, S. Study on Properties of Interlayer Short Fiber Reinforced Carbon Fiber/Epoxy Composite Laminates. J. Phys. Conf. Ser. 2019, 1215, 012040. [Google Scholar] [CrossRef]
- Qi, G.; Zhang, B.; Du, S.; Yu, Y. Estimation of Aramid Fiber/Epoxy Interfacial Properties by Fiber Bundle Tests and Multiscale Modeling Considering the Fiber Skin/Core Structure. Compos. Struct. 2017, 167, 1–10. [Google Scholar] [CrossRef]
- Zheng, H.; Li, Y.; Tu, H. Research on Interlayer Properties of Short Fiber Intercalated Carbon Fiber/Epoxy Composites. Acta Mater. Compos. Sin. 2021, 1–13. [Google Scholar] [CrossRef]
- Wang, B.; Dong, N.; Ding, G. Mode I Interlaminar Fracture Toughness of CFRP Laminates Reinforced with Short Aramid Fibers. J. Adhes. Sci. Technol. 2020, 34, 2522–2536. [Google Scholar] [CrossRef]
- Wang, B.; Ding, G.; Wang, G.; Kang, S. Effects of Resin Pre-Coating on Interfacial Bond Strength and Toughness of Laminar CFRP with and without Short Aramid Fibre Toughening. J. Compos Mater. 2020, 54, 3883–3893. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Shi, Y. Low-Velocity Impact Damage Research on CFRPs with Kevlar-Fiber Toughening. Compos. Struct. 2019, 216, 127–141. [Google Scholar] [CrossRef]
- Yuan, B.; Ye, M.; Hu, Y.; Cheng, F.; Hu, X. Flexure and Flexure-after-Impact Properties of Carbon Fibre Composites Interleaved with Ultra-Thin Non-Woven Aramid Fibre Veils. Compos. Pt. A-Appl. Sci. Manuf. 2020, 131, 105813. [Google Scholar] [CrossRef]
- Yuan, B.; Tan, B.; Hu, Y.; Shaw, J.; Hu, X. Improving Impact Resistance and Residual Compressive Strength of Carbon Fibre Composites Using Un-Bonded Non-Woven Short Aramid Fibre Veil. Compos. Pt. A-Appl. Sci. Manuf. 2019, 121, 439–448. [Google Scholar] [CrossRef]
- Xu, F.; Yang, B.; Feng, L.; Huang, D.; Xia, M. Improved Interlaminar Fracture Toughness and Electrical Conductivity of CFRPs with Non-Woven Carbon Tissue Interleaves Composed of Fibers with Different Lengths. Polymers 2020, 12, 803. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Guo, Y.; Zhou, Y.; Wan, G.; Chen, Z.; Jia, Y. Multifunctional Nickel-Coated Carbon Fiber Veil for Improving Both Fracture Toughness and Electrical Performance of Carbon Fiber/Epoxy Composite Laminates. Polym. Compos. 2021, 42, 5335–5347. [Google Scholar] [CrossRef]
- Du, X.; Zhou, H.; Liu, H.; Zhou, H.; Mai, Y. Surface Functionalized CNTs Grafted Short Carbon Fibers in CFRP Composites as Interleaving Toughener and Damage Sensor. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Ma, P.; Nie, X. Interface Improvement of Multi Axial Warp-Knitted Layer Composite with Short Glass Fiber. Fiber. Polym. 2017, 18, 1413–1419. [Google Scholar] [CrossRef]
- Alkbir, M.F.M.; Sapuan, S.M.; Nuraini, A.A.; Ishak, M.R. Fibre Properties and Crashworthiness Parameters of Natural Fibre-Reinforced Composite Structure: A Literature Review. Compos. Struct. 2016, 148, 59–73. [Google Scholar] [CrossRef]
- Huang, X.; Yu, H.; Li, F.; Wang, F. Study on Preparation Process of Unsaturated Polyester Resin Composite Reninforced by Banana Fiber. Adv. Text. Technol. 2019, 27, 5–9. [Google Scholar] [CrossRef]
- Qian, W.; Xu, P.; Wang, L. Review on Polyester Fiber Recycling and Progress of Its Environmental Impact Assessment. Adv. Text. Technol. 2021, 29, 22–26. [Google Scholar] [CrossRef]
- Zhao, X.; Shao, X.; Jiang, G.; Pang, J. Application of Modefied Lignin in Carbon Fiber Reinforced Composite Materials. Packag. Eng. 2022, 43, 103–110. [Google Scholar]
- Memon, H.; Wei, Y.; Zhu, C. Recyclable and Reformable Epoxy Resins Based on Dynamic Covalent Bonds Present, Past, and Future. Polym. Test 2022, 105, 107420. [Google Scholar] [CrossRef]
- Memon, H.; Wei, Y.; Zhang, L.; Jiang, Q.; Liu, W. An Imine-Containing Epoxy Vitrimer with Versatile Recyclability and Its Application in Fully Recyclable Carbon Fiber Reinforced Composites. Compos. Sci. Technol. 2020, 199, 108314. [Google Scholar] [CrossRef]
- Yue, D. Current Situation and Development Prospects of the Resource Utilization of Coir Fiber. Packag. Eng. 2020, 41, 37–43. [Google Scholar] [CrossRef]
- Wang, H.; Memon, H.; AM Hassan, E.; Miah, M.; Ali, M. Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite. Materials 2019, 12, 1226. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hassan, E.; Memon, H.; Elagib, T.; Abad AllaIdris, F. Characterization of Natural Composites Fabricated from Abutilon-Fiber-Reinforced Poly (Lactic Acid). Processes 2019, 7, 583. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Memon, H.; Hassan, E.A.; Elagib, T.H.; Hassan, F.E.A.; Yu, M. Rheological and Dynamic Mechanical Properties of Abutilon Natural Straw and Polylactic Acid Biocomposites. Int. J. Polym. Sci. 2019, 2019, 8732520. [Google Scholar] [CrossRef]
- Jeong, J.-S.; Cheong, S.-K. Interlaminar Fracture Toughness of CFRP Laminates with Silk Fibers Interleave. J. Mech. Sci. Technol. 2013, 27, 3651–3656. [Google Scholar] [CrossRef]
- Mo, Z.; Hu, C.; Huo, Y.; Ye, D. Interlayer-Toughening Carbon Fiber/Epoxy Composites with Short Ramie Fiber. Acta Mater. Compos. Sin. 2017, 34, 1237–1244. [Google Scholar] [CrossRef]
- Yan, L.; Di, W.; Hao, M. Improving Interlaminar Fracture Toughness of Flax Fiber/Epoxy Composites with Chopped Flax Yarn Interleaving. Sci. China-Technol. Sci. 2015, 58, 1745–1752. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, K.; Li, Y. Improved Interlaminar Fracture Toughness of Carbon Fiber/Epoxy Composites with a Multiscale Cellulose Fiber Interlayer. Compos. Commun. 2021, 27, 100898. [Google Scholar] [CrossRef]
- Hu, C.; Zhou, Y.; Zhou, X.; Zhao, X.; Hong, J. Research Progress of Electrospun Oriented Nanofiber Yarns. Adv. Text. Technol. 2021, 29, 27–33. [Google Scholar] [CrossRef]
- Prasad, V.; Sekar, K.; Varghese, S.; Joseph, M.A. Enhancing Mode I and Mode II Interlaminar Fracture Toughness of Flax Fibre Reinforced Epoxy Composites with Nano TiO2. Compos. Pt. A-Appl. Sci. Manuf. 2019, 124, 105505. [Google Scholar] [CrossRef]
- Gabr, M.H.; Okumura, W.; Ueda, H.; Kuriyama, W.; Uzawa, K.; Kimpara, I. Mechanical and Thermal Properties of Carbon Fiber/Polypropylene Composite Filled with Nano-Clay. Compos. Pt. B-Eng. 2015, 69, 94–100. [Google Scholar] [CrossRef]
- Borowski, E.; Soliman, E.; Kandil, U.F.; Taha, M.R. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes. Polymers 2015, 7, 1020–1045. [Google Scholar] [CrossRef] [Green Version]
- Vallack, N.; Sampson, W.W. Materials Systems for Interleave Toughening in Polymer Composites. J. Mater. Sci. 2022, 57, 6129–6156. [Google Scholar] [CrossRef]
- Chawla, K.; Ray-Chaudhuri, S.; Kitey, R. Interlaminar Fracture Toughness of Short Fibre Reinforced GFRP Laminates. Procedia Struct. Integr. 2019, 14, 571–576. [Google Scholar] [CrossRef]
- Imagawa, S.; Nishida, H.; Okubo, K.; Fujii, T. Improvement of Mode-II Interlaminar Fracture Toughness of Carbon Textile Composites with Modified Matrix of Thermoplastic and Thermoset Epoxy-Addition of Glass Fibers. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 406, p. 012045. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, A.R.; Ladani, R.B.; Kinloch, A.J.; Wang, C.-H.; Mouritz, A.P. Improving the Delamination Resistance and Impact Damage Tolerance of Carbon Fibre-Epoxy Composites Using Multiscale Fibre Toughening. Compos. Pt. A-Appl. Sci. Manuf. 2021, 150, 106624. [Google Scholar] [CrossRef]
- Dasari, S.; Lohani, S.; Prusty, R.K. An Assessment of Mechanical Behavior of Glass Fiber/Epoxy Composites with Secondary Short Carbon Fiber Reinforcements. J. Appl. Polym. Sci. 2022, 139, e51841. [Google Scholar] [CrossRef]
- Dasari, S.; Lohani, S.; Sumit Dash, S.; Omprakash Fulmali, A.; Kumar Prusty, R.; Chandra Ray, B. A Novel Study of Flexural Behavior of Short Glass Fibers as Secondary Reinforcements in GFRP Composite. Mater. Today: Proc. 2021, 47, 3370–3374. [Google Scholar] [CrossRef]
- Yu, K.; He, X.; Li, J.; Liang, C. Toughening Effect of Basalt Fiber on Unsaturated Polyester Resin Composites. J. Jilin Univ. 2021, 1–7. [Google Scholar] [CrossRef]
- Cholake, S.T.; Moran, G.; Joe, B.; Bai, Y.; Raman, R.K.S.; Zhao, X.L.; Rizkalla, S.; Bandyopadhyay, S. Improved Mode I Fracture Resistance of CFRP Composites by Reinforcing Epoxy Matrix with Recycled Short Milled Carbon Fibre. Constr. Build. Mater. 2016, 111, 399–407. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Arumugam, V.; Souhith, R.; Santulli, C. Influence of Milled Glass Fiber Fillers on Mode I & Mode II Interlaminar Fracture Toughness of Epoxy Resin for Fabrication of Glass/Epoxy Composites. Fibers 2020, 8, 36. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Gao, X. Compressive Properties of Graphene Oxide Modified Carbon/Glass Hybrid Reinforced Composite. Adv. Text. Technol. 2022, 30, 75–84. [Google Scholar] [CrossRef]
- Dang, C.-Y.; Tang, B.-L.; Zeng, X.-L.; Xu, J.; Feng, M.-J.; Jiang, Y.; Shen, X.-J. Improved Interlaminar Shear Strength of Glass Fiber/Epoxy Composites by Graphene Oxide Modified Short Glass Fiber. Mater. Res. Express 2019, 6, 085324. [Google Scholar] [CrossRef]
- Nie, H.-J.; Shen, X.-J.; Tang, B.-L.; Dang, C.-Y.; Yang, S.; Fu, S.-Y. Effectively Enhanced Interlaminar Shear Strength of Carbon Fiber Fabric/Epoxy Composites by Oxidized Short Carbon Fibers at an Extremely Low Content. Compos. Sci. Technol. 2019, 183, 107803. [Google Scholar] [CrossRef]
- Nie, H.-J.; Xu, Z.; Tang, B.-L.; Dang, C.-Y.; Yang, Y.-R.; Zeng, X.-L.; Lin, B.-C.; Shen, X.-J. The Effect of Graphene Oxide Modified Short Carbon Fiber on the Interlaminar Shear Strength of Carbon Fiber Fabric/Epoxy Composites. J. Mater. Sci. 2021, 56, 488–496. [Google Scholar] [CrossRef]
- Lin, J.; Qin, X. Design and Performance of Hybrid Fiber Composite for Packaging Box. Packag. Eng. 2020, 41, 103–108. [Google Scholar]
- Li, W.; Wang, J.; Gai, Y.; Deng, C.; Li, C. Investigation on Tensile Properties of Three-Dimensional Orthogonal Basalt/Carbon Fiber Hybrid Composite. Adv. Text. Technol. 2019, 27, 1–5. [Google Scholar] [CrossRef]
Number | Fiber Length (mm) | Fiber Density (g/m2) | Fiber Type |
---|---|---|---|
1 | 3 | 5 | Kevlar |
2 | 3 | 10 | carbon fiber |
3 | 3 | 15 | glass fiber |
4 | 3 | 20 | basalt fiber |
5 | 7 | 5 | Kevlar |
6 | 7 | 10 | carbon fiber |
7 | 7 | 15 | glass fiber |
8 | 7 | 20 | basalt fiber |
9 | 11 | 5 | Kevlar |
10 | 11 | 10 | carbon fiber |
11 | 11 | 15 | glass fiber |
12 | 11 | 20 | basalt fiber |
13 | 15 | 5 | Kevlar |
14 | 15 | 10 | carbon fiber |
15 | 15 | 15 | glass fiber |
16 | 15 | 20 | basalt fiber |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Z.; Zhu, L. A Short Review of Recent Progress in Improving the Fracture Toughness of FRP Composites Using Short Fibers. Sustainability 2022, 14, 6215. https://doi.org/10.3390/su14106215
Wang Y, Wang Z, Zhu L. A Short Review of Recent Progress in Improving the Fracture Toughness of FRP Composites Using Short Fibers. Sustainability. 2022; 14(10):6215. https://doi.org/10.3390/su14106215
Chicago/Turabian StyleWang, Yongan, Zhenxing Wang, and Lvtao Zhu. 2022. "A Short Review of Recent Progress in Improving the Fracture Toughness of FRP Composites Using Short Fibers" Sustainability 14, no. 10: 6215. https://doi.org/10.3390/su14106215
APA StyleWang, Y., Wang, Z., & Zhu, L. (2022). A Short Review of Recent Progress in Improving the Fracture Toughness of FRP Composites Using Short Fibers. Sustainability, 14(10), 6215. https://doi.org/10.3390/su14106215