Determination of Empirical Environmental Indices for the Location of Cemeteries—An Innovative Proposal for Worldwide Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of the Hierarchy Analysis through the Saaty Matrix
2.3. Determination of Empirical Indices
2.4. Theoretical Validation of Empirical Indices
3. Results
3.1. Hierarchy Analysis through the Saaty Matrix
3.2. Empirical Indices
3.3. Theoretical Validation of Empirical Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uçisik, A.S.; Rushbrook, P. The Impact of Cemeteries on the Enviroment and Public Health. Waste Manag. Soil Pollut. WHO Reg. Off. Eur. 1998, 1, 15. Available online: http://whqlibdoc.who.int/euro/1998-99/eur_icp_ehna_01_04_01(a).pdf (accessed on 18 May 2021).
- Keijzer, E.E.; Kok, H.J.G. Environmental Impact of Different Funeral Technologies. 2011. Available online: www.tno.nl (accessed on 17 March 2022).
- Keijzer, E. The environmental impact of activities after life: Life cycle assessment of funerals. Int. J. Life Cycle Assess. 2017, 22, 715–730. [Google Scholar] [CrossRef]
- Flores Gómez, G.; Crisanto-Perrazo, T.; Toulkeridis, T.; Fierro-Naranjo, G.; Guevara-García, P.; Mayorga-Llerena, E.; Vizuete-Freire, D.; Salazar, E.; Sinde-Gonzalez, I. Proposal of an Initial Environmental Management and Land Use for Critical Cemeteries in Central Ecuador. Sustainability 2022, 14, 1577. [Google Scholar] [CrossRef]
- Wordldometers. Población Mundial: 7.8 Billones de Personas (2021)—Worldometer. Available online: https://www.worldometers.info/es/poblacion-mundial/ (accessed on 17 March 2022).
- Harker, A. Landscapes of the dead: An argument for conservation burial. Berkeley Plan. J. 2012, 25, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Ferraz Ferreira, A.R. Body Disposal in Portugal: Current Practices and Potential Adoption of Alkaline Hydrolysis and Natural Burial as Sustainable Alternatives; Facultad de Ciencias Universidad do Portorio: Porto, Portugal, 2016. [Google Scholar]
- Toulkeridis, T.; Ortiz-Prad, E.; Chunga-Mora, J.; Heredia-, M.; Debut, A. Excess Mortality Data Analysis of COVID-19 Infections and Fatalities in Ecuador. Uniciencia 2022, 36, 1–12. [Google Scholar] [CrossRef]
- Rodrigues, L.; Pacheco, A. Groundwater contamination from cemeteries cases of study. In Proceedings of the Environmental 2010: Situation and Perspectives for the European Union, Porto, Portugal, 6–10 May 2003; pp. 1–6. Available online: http://www.waylandwells.info/wp-content/uploads/2012/07/Groundwater-Contamination-from-Cemeteries-Case-Studies-2010.pdf (accessed on 5 April 2021).
- Zychowski, J.; Bryndal, T. Impact of cemeteries on groundwater contamination by bacteria and viruses—A review. J. Water Health 2015, 13, 285–301. [Google Scholar] [CrossRef]
- Pallocci, M.; Petroni, G.; Treglia, M.; Giammatteo, J.; Marella, G.L.; Arcangeli, M. Law proposal “provisions on the post-mortem body donation and the use of bodies for the purposes of study, scientific research and training”: Comment and analysis of the bill and the historical-juridical-ethical aspects of cadaveric dissection and practic. Acta Med. Mediterr. 2020, 36, 999–1005. [Google Scholar] [CrossRef]
- Ross, A.H.; Cunningham, S.L. Time-since-death and bone weathering in a tropical environment. Forensic Sci. Int. 2011, 204, 126–133. [Google Scholar] [CrossRef]
- Clark, M.A.; Worrell, M.B.; Pless, J.E. Forensic Taphonomy: The Postmortem Fate of Human Remains. Forensic Sci. Int. 2001, 116, 227–228. [Google Scholar] [CrossRef]
- Ferreira, M.T.; Cunha, E. Can we infer post mortem interval on the basis of decomposition rate? A case from a Portuguese cemetery. Forensic Sci. Int. 2013, 226, 298.e1–298.e6. [Google Scholar] [CrossRef]
- Neckel, A.; Korcelski, C.; Silva, L.F.O.; Kujawa, H.A.; Bodah, B.W.; Figueiredo, A.M.R.; Maculan, L.S.; Gonçalves, A.C.; Bodah, E.T.; Moro, L.D. Metals in the soil of urban cemeteries in Carazinho (South Brazil) in view of the increase in deaths from COVID-19: Projects for cemeteries to mitigate environmental impacts. Environ. Dev. Sustain. 2021, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Hofle, M.G. Degradation of Putrescine and Cadaverine in Seawater Cultures by Marine Bacteria. Appl. Environ. Microbiol. 1984, 47, 843–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canning, L.; Szmigin, I. Death and disposal: The universal, environmental dilemma. J. Mark. Manag. 2010, 26, 1129–1142. [Google Scholar] [CrossRef]
- Neckel, A.; Costa, C.; Mario, D.N.; Sabadin, C.E.S.; Bodah, E.T. Environmental damage and public health threat caused by cemeteries: A proposal of ideal cemeteries for the growing urban sprawl. Urbe 2017, 9, 216–230. [Google Scholar] [CrossRef]
- Scalenghe, R.; Pantani, O.L. Connecting existing cemeteries saving good soils (for livings). Sustainability 2020, 12, 93. [Google Scholar] [CrossRef] [Green Version]
- Rumble, H.; Troyer, J.; Walter, T.; Woodthorpe, K. Disposal or dispersal? Environmentalism and final treatment of the British dead. Mortality 2014, 19, 243–260. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Temple, T.; Pollard, S.J.; Jones, R.J.A.; Ritz, K. Environmental considerations for common burial site selection after pandemic events. In Criminal and Environmental Soil Forensics; Springer: Dordrecht, The Netherlands, 2009; pp. 87–101. [Google Scholar]
- Spongberg, A.L.; Becks, P.M. Inorganic soil contamination from cemetery leachate. Water. Air. Soil Pollut. 2000, 117, 313–327. [Google Scholar] [CrossRef]
- Aruomero, A.S.; Afolabi, O. Comparative assessment of trace metals in soils associated with casket burials: Towards implementing green burials. Eurasian J. Soil Sci. 2014, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Neckel, A.; Korcelski, C.; Kujawa, H.A.; Schaefer da Silva, I.; Prezoto, F.; Walker Amorin, A.L.; Maculan, L.S.; Gonçalves, A.C.; Bodah, E.T.; Bodah, B.W.; et al. Hazardous elements in the soil of urban cemeteries; constructive solutions aimed at sustainability. Chemosphere 2021, 262, 128248. [Google Scholar] [CrossRef]
- Lins, E.; Lins, M.; Baltar, S.; Lins, M.; Maria, C.; Silva, M. Negative environmental impacts generated by cemetery: Case study. Int. J. Adv. Sci. Res. 2019, 4, 16–19. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiOlvyMn872AhWMTTABHcTUB5oQFnoECAQQAQ&url=http%3A%2F%2Fwww.allsciencejournal.com%2Fdownload%2F476%2F4-6-33-218.pdf&usg=AOvVaw1NDpin6-8z6Mkecxij42k1 (accessed on 17 March 2022).
- Méndez, Y.; Calderón, F. Evaluación de las aguas subterráneas contaminadas con putrescina y cadaverina en las zonas aledañas a los cementerios del norte de Bogotá y el campus de la Universidad Santo Tomás. Hallazgos 2010, 7, 151–163. [Google Scholar] [CrossRef]
- Organización Panamericana de la Salud. La Gestión de cadáveres en Situaciones De Desastres, 6th ed.; Morgan, O., Tidball-Binz, M., van Alphen, D., Eds.; Organización Panamericana de la Salud: Washington, DC, USA, 2017; ISBN 92 75 32630 4 I. [Google Scholar]
- Jaimes Morales, J.; Pérez Díaz, K.; Severiche Sierra, C.A. Riesgo toxicológicos por la exposición ocupacional al formaldehido en sala de anatomía patológica. Ciencia y Salud Virtual 2014, 6, 141. [Google Scholar] [CrossRef] [Green Version]
- Saltzman, B.E.; Gross, S.B.; Yeager, D.W.; Meiners, B.G.; Gartside, P.S. Total body burdens and tissue concentrations of lead, cadmium, copper, zinc, and ash in 55 human cadavers. Environ. Res. 1990, 52, 126–145. [Google Scholar] [CrossRef]
- Dent, B.; Knight, M. Cemeteries: A Special Kind of Landfill. The Context of Their Sustainablemanagement. In Proceedings of the Conference of the International Association of Hydrogeologists: Groundwater: Sustainable Solutions, Melbourne, Australia, 22 April 1998. [Google Scholar]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Sci. Int. 2010, 200, 60–66. [Google Scholar] [CrossRef]
- Velasco Rivera, A.; Minota Zea, Y.M. Evaluación por contaminación en suelos aledaños a los cementerios Jardines del Recuerdo e Inmaculada. Cienc. e Ing. Neogranadina 2012, 22, 165. [Google Scholar] [CrossRef]
- Pedrosa, A.; Figueiredo, F.P.O.; Azevedo, J.M.M.; Tavares, A.O. Geologia ambiental associada a cemitérios: Estudo de caso na região centro de Portugal. Comun. Geol. 2014, 101, 1037–1041. Available online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/185 (accessed on 17 March 2022).
- Vélez, S.; Monsalve, T.; Quiroz, M.L.; Castañeda, D.; Cardona-Gallo, S.A.; Terrazas, A.; Sedov, S. The study of necrosols and cemetery soils. Dyna 2019, 86, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Francis, D.; Kellaher, L.; Neophytou, G. Sustaining cemeteries: The user perspective. Mortality 2000, 5, 34–52. [Google Scholar] [CrossRef]
- Rawson, A.C. R.I.P. to RLUIPA: The Ongoing Debate of RLUIPA as Applied to Local Cemetery Ordinances is Finally Laid to Rest. Roger Williams Univ. Law Rev. 2018, 23, 10. [Google Scholar]
- Morgan, O. Infectious disease risks from dead bodies following natural disasters. Rev. Panam. Salud Publica Pan Am. J. Public Health 2004, 15, 307–312. [Google Scholar] [CrossRef]
- da Cruz, N.J.T.; Lezana, Á.G.R.; dos Santos, P.C.F.; Santana Pinto, I.M.B.; Zancan, C.; Silva de Souza, G.H. Environmental impacts caused by cemeteries and crematoria, new funeral technologies, and preferences of the Northeastern and Southern Brazilian population as for the funeral process. Environ. Sci. Pollut. Res. 2017, 24, 24121–24134. [Google Scholar] [CrossRef] [PubMed]
- Scrimshaw, M.D.; Wong, J.W.C. A survey of green burial sites in England and Wales and an assessment of the feasibility of a groundwater vulnerability tool. Environ. Technol. 2008, 29, 1. [Google Scholar] [CrossRef] [PubMed]
- Zychowski, J. Impact of cemeteries on groundwater chemistry: A review. Catena 2012, 93, 29–37. [Google Scholar] [CrossRef]
- Pinder, G.F. Groundwater hydrology. In Groundwater Quantity and Quality Management; Wiley: Hoboken, NJ, USA, 2011; pp. 10–35. [Google Scholar]
- Fineza, A.G.; Marques, E.A.G.; Bastos, R.K.X.; Betim, L.S. Impacts on the groundwater quality within a cemetery area in southeast Brazil. Soils Rocks 2014, 37, 161–169. Available online: https://www.soilsandrocks.com/sr-3725 (accessed on 17 March 2022).
- Rhoades, J.D.; Kandiah, A.; Mashali, A.M. Saline waters as resources. In The Use of Saline Waters for Crop Production: Guidelines on Water, Soil and Crop Management; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992; ISBN 92-5-103237-8. [Google Scholar]
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Energy: Treatment and Reuse; McGraw-Hill: New York, NY, USA, 2004; ISBN 007124140X. [Google Scholar]
- Eche, J.J.E. Evaluación de Impacto Ambiental de un Cementerio Tipo Parque Ecológico. Rev. Inst. Investig. Fac. Ing. Geológica Minera Metal. Geográfica 2001, 4, 53–58. [Google Scholar] [CrossRef]
- Neckel, A.; Celso Gonçalves Junior, A.; Ribeiro, L.A.; Oliveira, C.; Silva, A.; Cardoso, G.T. Cemeteries heavy metals concentration analysisof soils and the contamination risk for the surrounding resident population. J. Eng. Res. Appl. 2016, 6, 30–35. Available online: www.ijera.com (accessed on 27 April 2022).
- Li, Y.; Wang, C.; Tang, H. Research advances in nutrient runoff on sloping land in watersheds. Aquat. Ecosyst. Health Manag. 2006, 9, 27–32. [Google Scholar] [CrossRef]
- Bouwer, H. Ground-water hydrology. Nature 1924, 113, 175. [Google Scholar] [CrossRef]
- Jonker, C.; Olivier, J. Mineral Contamination from Cemetery Soils: Case Study of Zandfontein Cemetery, South Africa. Int. J. Environ. Res. Public Health 2012, 9, 511–520. [Google Scholar] [CrossRef]
- Arcos Yánez, E.S. Identificación de Zonas Ambientalmente no Adecuadas Para la Ubicación de Camposantos en los Cantones Mejía, Quito y Rumiñahui; Universidad de las Fuerzas Armdas “ESPE”: Sangolqui, Ecuador, 2020. [Google Scholar]
- Guayasamín Vergara, J.D. Establecimiento de Índices Empíricos Ambientales Para Manejo de Cadáveres Humanos: Entierro y Cremación en Ecuador; Universidad de las Fuerzas Armadas ESPE: Sangolqui, Ecuador, 2021. [Google Scholar]
- Nawrocki, S.P. Forensic taphonomy. In Handbook of Forensic Anthropology and Archaeology; Taylor and Francis: Abingdon, UK, 2016; pp. 373–390. ISBN 9781315528922. [Google Scholar]
- Harrington, D.E.; Krynski, K.J. The effect of state funeral regulations on cremation rates: Testing for demand inducement in funeral markets. J. Law Econ. 2002, 45, 199–225. [Google Scholar] [CrossRef] [Green Version]
- Okafor, I.A.; Chia, T. Covid-19: Emerging Considerations for Body Sourcing and Handling. A Perspective View from Nigeria. Anat. Sci. Educ. 2021, 14, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Nguyen, X.L.; Chou, T.Y.; Van Hoang, T.; Fang, Y.M.; Nguyen, Q.H. Research on Optimal Cemetery Location Selection using Approach of Fuzzy Set Theory and Analytic Hierarchy Process in Environment of Geographic Information System: A Case Study in Hung Ha District, Thai Binh province, Vietnam. Int. J. Res. Innov. Earth Sci. 2019, 6. Available online: http://www.ijries.org/administrator/components/com_jresearch/files/publications/IJRIES_187_FINAL.pdf (accessed on 22 May 2021).
- Mahlangu, S.; Lorentz, S.; Diamond, R.; Dippenaar, M. Surface water-groundwater interaction using tritium and stable water isotopes: A case study of Middelburg, South Africa. J. African Earth Sci. 2020, 171, 103886. [Google Scholar] [CrossRef]
- Dian, Z. Land for the Dead Locating Urban Cemeteries, Case Study Guilin, China; International Institute for Geo-Information Science and Earth Observation: Enschede, The Netherlands, 2004. [Google Scholar]
- Lotfi, S.; Habibi, K.; Javad Koohsari, M. Integrating multi-criteria models and Geographical information system for cemetery site selection (A case study of the Sanandaj city, Iran). Acta Geogr. Slov. 2009, 49, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Stroganova, M.; Prokofieva, T. Urban soils classification for Russian cities of the taiga zone. Soil Classif. 2002, 153–156. [Google Scholar]
- Sukhacheva, E.Y.; Revina, Y.S. Medium-Scale Soil Map of the Crimea Southern Coast. Eurasian Soil Sci. 2020, 53, 397–404. [Google Scholar] [CrossRef]
- Judge, R. Towards a Methodology for Identifying Potential Sites for Cemeteries. Ph.D. Thesis, Nelson Mandela Metropolitan University, Gqeberha, South Africa, 2012. [Google Scholar]
- Długozima, A. How to find a suitable location for a cemetery? Application of multi-criteria evaluation for identifying potential sites for cemeteries in Białystok, Poland. Morav. Geogr. Rep. 2022, 30, 34–53. [Google Scholar] [CrossRef]
- Municipio del Distrito Metropolitano de Quito Plan de Uso y Gestión del Suelo 2020–2030; Corporación Instituto de la Ciudad: Quito, Ecuador, 2020.
- Gobierno Autónomo Descentralizado Municipal del Cantón Mejía. Actualización del Plan de Ordenamiento Territorial del Cantón Mejía 2015–2025. 2014. p. 510. Available online: http://www.municipiodemejia.gob.ec/documents/ordenanzas/act-pdot-2015.pdf (accessed on 22 May 2021).
- Plan de Desarrollo y and T. [PDOT]. Atlas Cantón Rumiñahui. Sangolquí-Ecuador, Dirección de Planificación. GADMUR. 2012. Available online: http://181.112.151.212/Documentacion/LOTAIP/2015/pdf/s/DOCUMENTO_PDYOT_FINAL.pdf (accessed on 4 April 2021).
- Saaty, T.L. What is the analytic hierarchy process? In Mathematical Models for Decision Support; Springer: Berlin/Heidelberg, Germany, 1988; pp. 109–121. [Google Scholar]
- Saaty, T.; Kułakowski, K. Axioms of the Analytic Hierarchy Process (AHP) and its Generalization to Dependence and Feedback: The Analytic Network Process (ANP). arXiv 2016, arXiv:1605.05777. [Google Scholar]
- Saaty, T.L. Fundamentals of the Analytic Hierarchy Process; Springer: Dordrecht, The Netherland, 2001; pp. 15–35. [Google Scholar]
- Toulkeridis, T.; Tamayo, E.; Simón-Baile, D.; Merizalde-Mora, M.J.; Reyes-Yunga, D.F.; Viera-Torres, M.; Heredia, M. Climate change according to ecuadorian academics-perceptions versus facts. Granja 2020, 31, 21–49. [Google Scholar] [CrossRef] [Green Version]
Description | Variables | |||||||
---|---|---|---|---|---|---|---|---|
10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | |
Phreatic level (A) | A | A | A | A | A | A | A | A |
Distance to water sources (B) | B | B | B | B | B | B | B | B |
Precipitation (C) | C | C | C | C | C | C | C | C |
Sloping land (D) | D | D | D | D | D | D | D | - |
Soil type (E) | E | E | E | E | E | E | - | - |
Graveyard age (F) | F | F | F | F | F | - | - | - |
Temperature (G) | G | G | G | G | - | - | - | - |
Number of graves (H) | H | H | H | - | - | - | - | - |
Geologic fault (I) | I | I | - | - | - | - | - | - |
Population density (J) | J | - | - | - | - | - | - | - |
A | B | C | D | E | F | G | H | I | J |
---|---|---|---|---|---|---|---|---|---|
(m) | (m) | (mm) | (%) | (Type) | (Year) | (°C) | (und) | (Km) | (hab/km2) |
0.5–1.5 | 0–200 | >3000 | Very Strong > 40 | Gross sand, Sandy, Loamy Sandy | <1833 | >20 | >50,001 | 0–5 | Very High > 160 |
1.5–2.5 | 200–500 | 2000–3000 | Strong 25–40 | Sandy loam, Loam, Slimy loam | 1833–1933 | 16-20 | 25,000–50,000 | 5–10 | High (81–160) |
2.5–3.5 | 500–1500 | 1000–2000 | Half 5–25 | Clay loam—Slimy | 1933–1983 | 11–15 | 5001–25,000 | 10–15 | Half (21–80) |
3.5–4.5 | 1500–4000 | 500–1000 | Mild 2–5 | Clay loam, Slimy, Sandy—Clay | 1983–2008 | 06–10 | 1001–5000 | 15–20 | Drop (3–20) |
>4.5 | >4000 | 0–500 | Level 0–2 | Silty—Clay, Clayey | 2008–2020 | 1–5 | 0–1000 | >20 | Empty areas (0–2) |
Description | Variables | |||||||
---|---|---|---|---|---|---|---|---|
10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | |
A | 0.2915 | 0.3119 | 0.3311 | 0.3543 | 0.3825 | 0.4185 | 0.4673 | 0.5396 |
B | 0.2126 | 0.2206 | 0.2394 | 0.2392 | 0.2504 | 0.2625 | 0.2772 | 0.2970 |
C | 0.1498 | 0.1524 | 0.1551 | 0.1573 | 0.1596 | 0.1599 | 0.1601 | 0.1634 |
D | 0.1036 | 0.1033 | 0.1030 | 0.1017 | 0.1006 | 0.0973 | 0.0954 | - |
E | 0.6987 | 0.0683 | 0.0672 | 0.0650 | 0.0641 | 0.0618 | - | - |
F | 0.0452 | 0.0436 | 0.0427 | 0.0413 | 0.0428 | - | - | - |
G | 0.0452 | 0.0436 | 0.0427 | 0.0413 | - | - | - | - |
H | 0.0292 | 0.0282 | 0.0288 | - | - | - | - | - |
I | 0.0292 | 0.0282 | - | - | - | - | - | - |
J | 0.0203 | - | - | - | - | - | - | - |
Item | Description | Indices | Nanegal | Tumbaco | Calderon | |||
---|---|---|---|---|---|---|---|---|
Category | Value | Category | Value | Category | Value | |||
1 | A | 0.2915 | 4 | 1.18 | 2 | 0.59 | 1 | 0.30 |
2 | B | 0.2126 | 5 | 1.06 | 3 | 0.64 | 3 | 0.64 |
3 | C | 0.1498 | 4 | 0.60 | 2 | 0.30 | 1 | 0.15 |
4 | D | 0.1036 | 5 | 0.52 | 3 | 0.31 | 2 | 0.21 |
5 | E | 0.6987 | 2 | 0.14 | 2 | 0.14 | 2 | 0.14 |
6 | F | 0.0452 | 3 | 0.14 | 3 | 0.14 | 3 | 0.14 |
7 | G | 0.0452 | 5 | 0.23 | 4 | 0.18 | 3 | 0.14 |
8 | H | 0.0292 | 1 | 0.03 | 3 | 0.09 | 1 | 0.03 |
9 | I | 0.0292 | 2 | 0.06 | 5 | 0.15 | 3 | 0.09 |
10 | J | 0.0203 | 5 | 0.10 | 5 | 0.1 | 5 | 0.10 |
Total | 4.05 | Total | 2.63 | Total | 1.92 |
Item | Description | Indices | Nanegal | Tumbaco | Calderon | |||
---|---|---|---|---|---|---|---|---|
Category | Value | Category | Value | Category | Value | |||
1 | A | 0.3311 | 4 | 1.32 | 2 | 0.66 | 1 | 0.33 |
2 | B | 0.2394 | 5 | 1.15 | 3 | 0.69 | 3 | 0.69 |
3 | C | 0.1551 | 4 | 0.62 | 2 | 0.31 | 1 | 0.16 |
4 | D | 0.1030 | 5 | 0.52 | 3 | 0.31 | 2 | 0.21 |
5 | E | 0.0672 | 2 | 0.13 | 2 | 0.13 | 2 | 0.13 |
6 | F | 0.0427 | 3 | 0.13 | 3 | 0.13 | 3 | 0.13 |
7 | G | 0.0427 | 5 | 0.21 | 4 | 0.17 | 3 | 0.13 |
8 | H | 0.0288 | 1 | 0.03 | 3 | 0.09 | 1 | 0.03 |
Total | 4.11 | Total | 2.49 | Total | 1.80 |
Item | Description | Indices | Nanegal | Tumbaco | Calderon | |||
---|---|---|---|---|---|---|---|---|
Category | Value | Category | Value | Category | Value | |||
1 | A | 0.3825 | 4 | 1.53 | 2 | 0.77 | 1 | 0.38 |
2 | B | 0.2504 | 5 | 1.25 | 3 | 0.75 | 3 | 0.75 |
3 | C | 0.1596 | 4 | 0.64 | 2 | 0.32 | 1 | 0.16 |
4 | D | 0.1006 | 5 | 0.50 | 3 | 0.30 | 2 | 0.20 |
5 | E | 0.0641 | 2 | 0.13 | 2 | 0.13 | 2 | 0.13 |
6 | F | 0.0428 | 3 | 0.13 | 3 | 0.13 | 3 | 0.13 |
Total | 4.18 | Total | 2.39 | Total | 1.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisanto-Perrazo, T.; Guayasamín-Vergara, J.; Mayorga-Llerena, E.; Sinde-Gonzalez, I.; Vizuete-Freire, D.; Toulkeridis, T.; Flores Gomez, G.; Fierro-Naranjo, G. Determination of Empirical Environmental Indices for the Location of Cemeteries—An Innovative Proposal for Worldwide Use. Sustainability 2022, 14, 6284. https://doi.org/10.3390/su14106284
Crisanto-Perrazo T, Guayasamín-Vergara J, Mayorga-Llerena E, Sinde-Gonzalez I, Vizuete-Freire D, Toulkeridis T, Flores Gomez G, Fierro-Naranjo G. Determination of Empirical Environmental Indices for the Location of Cemeteries—An Innovative Proposal for Worldwide Use. Sustainability. 2022; 14(10):6284. https://doi.org/10.3390/su14106284
Chicago/Turabian StyleCrisanto-Perrazo, Tania, Jonathan Guayasamín-Vergara, Eduardo Mayorga-Llerena, Izar Sinde-Gonzalez, Diego Vizuete-Freire, Theofilos Toulkeridis, Geomara Flores Gomez, and Greta Fierro-Naranjo. 2022. "Determination of Empirical Environmental Indices for the Location of Cemeteries—An Innovative Proposal for Worldwide Use" Sustainability 14, no. 10: 6284. https://doi.org/10.3390/su14106284
APA StyleCrisanto-Perrazo, T., Guayasamín-Vergara, J., Mayorga-Llerena, E., Sinde-Gonzalez, I., Vizuete-Freire, D., Toulkeridis, T., Flores Gomez, G., & Fierro-Naranjo, G. (2022). Determination of Empirical Environmental Indices for the Location of Cemeteries—An Innovative Proposal for Worldwide Use. Sustainability, 14(10), 6284. https://doi.org/10.3390/su14106284