Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming
Abstract
:1. Introduction
2. Materials and Methods
- Traditional or low-density systems (LD) with less than 250 trees/ha and olive groves more than 100 years old;
- Intensive or medium-density systems (MD) with tree density between 300 and 500 and olive trees between the ages of 30 and 50 years;
- Super-intensive or super-high-density systems (SHD) with over 1200 trees/ha and olive trees up to 20 years old.
2.1. Life Cycle Assessment (LCA)
2.1.1. Functional Units and Boundaries Definitions
- 1 hectare of cultivated area (1 ha) to compare different olive-growing systems (LD, MD, SHD) and different agricultural practices;
- 1 ton of fruits harvested (1 t) to compare different farming methods (INT, BIO) and as a reference point for any research developments beyond the farm-gate of this study (olive harvest).
2.1.2. Life Cycle Inventory (LCI) Analysis
- Planting, corresponding to the zero year;
- Juvenile unproductive, depending on growing systems;
- Transition, lasting about 2–3 years, and during these years the production is around half of the full production;
- Adult full production.
- Extraction and treatment of raw materials;
- Seedlings production and manufacturing of machinery components, i.e., the agronomical inputs used;
- Transport of utilized input in the farm and from the farm to the field (transport of pesticides and fertilizers were overlooked because they were considered “local storehouse”);
- Distribution of plant protection products and fertilizers, through atomizing and ploughing;
- Energy consumption of used machinery and their emissions;
- Reuse of biomass pruning (in particular, leaves and twigs cut up using mulcher and used as soil mulch; thicker branches sold as fuel);
- Final disposal of plastic materials (irrigation pipes) and end-of-life biomass (scenery);
- Land use and land occupation.
2.1.3. Life Cycle Impact Assessment
3. Results
3.1. GWP100 per ha of Cultivated Area
- The LD_BIO system has the highest level of GHG emissions (266 × 103 kg CO2 eq/ha), followed by the MD_BIO system (229 × 103 kg CO2 eq/ha);
- For organic farming, the SHD_BIO system is the one with the lowest CF (200 × 103 kg CO2 eq/ha) compared to LD_BIO and MD_BIO;
- The SHD_INT system has the smallest environmental impact (132 × 103 kg CO2 eq/ha)
3.2. GWP100 per Ton of Olives
3.3. GWP of Agricultural Practices in Different Olive-Growing Systems
- The operation of pest and weed control has a slightly higher environmental load in organic farming and in the SHD system;
- Fertilizer management has a greater impact on organic farming;
- Pruning has a greater impact on the GWP in the LD and MD systems, while in the SHD system, mechanical pruning has a small impact;
- The olive harvest operation contributes 42% to the GWP of the SHD_INT system.
3.4. Scenarios for the End-of-Life Biomass of Olive Trees
4. Discussion
- In farms with the same farming method (especially INT or BIO), the greater environmental impact is that of the LD, followed by the MD and the SHD;
- Considering 1 ha as a functional unit, it can be seen that organic farms have a higher GWP100 compared to integrated farms; particularly, among the TD cropping systems, the BIO farming shows + 57,45% of GHG emissions compared to the INT farming; in the same way, the MD_BIO shows + 57,54% of emissions compared to MD_INT; and SHD_BIO shows + 60,24 % of emissions when compared to SHD_INT, in accordance with the study by Clark S. [58].
- How to design a more efficient and environmentally friendly olive orchard;
- How to use LCA analysis as a method to underline hot-spots in the orchard management.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Møller, A.P. Environmental Indicators of Climate Change: Phenological Aspects. In Environmental Indicators; Armon, R.H., Hänninen, O., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 39–49. [Google Scholar]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Romanello, M.; McGushin, A.; Napoli, C.D.; Drummond, P.; Hughes, N.; Jamart, L.; Kennard, H.; Lampard, P.; Rodriguez, B.S.; Arnell, N.; et al. The 2021 report of the Lancet Countdown on health and climate change: Code red for a healthy future. Lancet 2021, 398, 1619–1662. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.A.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, O.; et al. Climate Change 2014 Mitigation of Climate Change: Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Timma, L.; Dace, E.; Knudsen, M.T. Temporal Aspects in Emission Accounting—Case Study of Agriculture Sector. Energies 2020, 13, 800. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, G.; Ingrao, C.; Camposeo, S.; Tricase, C.; Contò, F.; Huisingh, D. Application of water footprint to olive growing systems in the Apulia region: A comparative assessment. J. Clean. Prod. 2016, 112, 2407–2418. [Google Scholar] [CrossRef]
- Ponti, L.; Gutierrez, A.P.; Ruti, P.M.; Dell’Aquila, A. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc. Natl. Acad. Sci. USA 2014, 111, 5598–5603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Fiksel, J. Sustainability and resilience: Toward a systems approach. Sustain. Sci. Pract. Policy 2006, 2, 14–21. [Google Scholar] [CrossRef]
- Boskou, D.; Camposeo, S.; Clodoveo, M.L. Table Olives as Sources of Bioactive Compounds; AOCS Press: Urbana, IL, USA, 2015. [Google Scholar]
- Sala, S.; Ciuffo, B.; Nijkamp, P. A systemic framework for sustainability assessment. Ecol. Econ. 2015, 119, 314–325. [Google Scholar] [CrossRef]
- Baum, R.; Bieńkowski, J. Eco-Efficiency in Measuring the Sustainable Production of Agricultural Crops. Sustainability 2020, 12, 1418. [Google Scholar] [CrossRef] [Green Version]
- ISO. ISO 14040:2006. Environmental Management—Life Cycle Assessment—Principles and Framework. 2006. Available online: https://www.iso.org/standard/37456.html (accessed on 10 February 2022).
- Eggleston, H.S. Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme, and Chikyu Kankyo Senryaku Kenkyu Kikan. In 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006; Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm (accessed on 3 March 2022).
- Salomone, R.; Ioppolo, G. Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). J. Clean. Prod. 2012, 28, 88–100. [Google Scholar] [CrossRef]
- EPA. Inventory of U.S. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2019 (accessed on 18 January 2022).
- Loumou, A.; Giourga, C. Olive groves: “The life and identity of the Mediterranean”. Agric. Hum. Values 2003, 20, 87–95. [Google Scholar] [CrossRef]
- Clodoveo, M.; Camposeo, S.; Gennaro, B.D.; Pascuzzi, S.; Roselli, L. In the ancient world, virgin olive oil was called “liquid gold” by Homer and “the great healer” by Hippocrates. Why has this mythic image been forgotten? Food Res. Int. 2014, 62, 1062–1068. [Google Scholar] [CrossRef]
- ISTAT. Italian Institute of Statics (ISTAT) “Superfici e Produzioni”. 2022. Available online: https://www.istat.it/it/ (accessed on 8 February 2022).
- Mairech, H.; López-Bernal, Á.; Moriondo, M.; Dibari, C.; Regni, L.; Proietti, P.; Villalobos, F.J.; Testi, L. Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan. Agric. Syst. 2020, 181, 102816. [Google Scholar] [CrossRef]
- Pellegrini, G.; Sala, P.L.; Camposeo, S.; Contò, F. Economic sustainability of the olive oil high and super-high density cropping systems in Italy. Glob. Bus. Econ. Rev. 2017, 19, 553. [Google Scholar] [CrossRef]
- Vivaldi, G.A.; Strippoli, G.; Pascuzzi, S.; Stellacci, A.M.; Camposeo, S. Olive genotypes cultivated in an adult high-density orchard respond differently to canopy restraining by mechanical and manual pruning. Sci. Hortic. 2015, 192, 391–399. [Google Scholar] [CrossRef]
- Vilar, J.; Barreal, J.; del Mar Velasco, M.; Puentes-Poyatos, R. La expansión internacional de la olivicultura. Singularización como estrategia competitiva para el olivar tradicional. In Economía y Comercialización de los Aceites de Oliva. Factores y Perspectivas para el Liderazgo Español del Mercado Global; Cajamar Caja Rural: Barcelona, Spain; Universidad de Jaén: Jaén, Spain, 2017. [Google Scholar]
- Godini, A.; Vivaldi, G.A.; Camposeo, S. Olive cultivars field-tested in super-high-density system in Southern Italy. Calif. Agric. 2011, 65, 39–40. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Casado, J.; Carpio, A.J.; Tortosa, F.S.; Villanueva, A.J. Environmental challenges of intensive woody crops: The case of super high-density olive groves. Sci. Total Environ. 2021, 798, 149212. [Google Scholar] [CrossRef]
- Anifantis, A.S.; Camposeo, S.; Vivaldi, G.A.; Santoro, F.; Pascuzzi, S. Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard. Agriculture 2019, 9, 233. [Google Scholar] [CrossRef] [Green Version]
- Moretti, M.; Passel, S.V.; Camposeo, S.; Pedrero, F.; Dogot, T.; Lebailly, P.; Vivaldi, G.A. Modelling environmental impacts of treated municipal wastewater reuse for tree crops irrigation in the Mediterranean coastal region. Sci. Total Environ. 2019, 660, 1513–1521. [Google Scholar] [CrossRef]
- Carone, M.T.; Pantaleo, A.; Pellerano, A. Influence of process parameters and biomass characteristics on the durability of pellets from the pruning residues of Olea europaea L. Biomass Bioenergy 2011, 35, 402–410. [Google Scholar] [CrossRef]
- De Gennaro, B.; Notarnicola, B.; Roselli, L.; Tassielli, G. Innovative olive-growing models: An environmental and economic assessment. J. Clean. Prod. 2012, 28, 70–80. [Google Scholar] [CrossRef]
- Pergola, M.; Favia, M.; Palese, A.M.; Perretti, B.; Xiloyannis, C.; Celano, G. Alternative management for olive orchards grown in semi-arid environments: An energy, economic and environmental analysis. Sci. Hortic. 2013, 162, 380–386. [Google Scholar] [CrossRef]
- Mohamad, R.S.; Verrastro, V.; Cardone, G.; Bteich, M.R.; Favia, M.; Moretti, M.; Roma, R. Optimization of organic and conventional olive agricultural practices from a Life Cycle Assessment and Life Cycle Costing perspectives. J. Clean. Prod. 2014, 70, 78–89. [Google Scholar] [CrossRef]
- Rinaldi, S.; Barbanera, M.; Lascaro, E. Assessment of carbon footprint and energy performance of the extra virgin olive oil chain in Umbria, Italy. Sci. Total Environ. 2014, 482–483, 71–79. [Google Scholar] [CrossRef]
- Russo, G.; Vivaldi, G.A.; Gennaro, B.D.; Camposeo, S. Environmental sustainability of different soil management techniques in a high-density olive orchard. J. Clean. Prod. 2015, 107, 498–508. [Google Scholar] [CrossRef]
- Guzmán, G.I.; Alonso, A.M. A comparison of energy use in conventional and organic olive oil production in Spain. Agric. Syst. 2008, 98, 167–176. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Castro-Rodríguez, J.; Suárez-Rey, E.M. Optimization of olive growing practices in Spain from a life cycle assessment perspective. J. Clean. Prod. 2017, 149, 25–37. [Google Scholar] [CrossRef]
- Gómez-Limón, J.A.; Arriaza, M.; Guerrero-Baena, M.D. Building a composite indicator to measure environmental sustainability using alternative weighting methods. Sustainability 2020, 12, 4398. [Google Scholar] [CrossRef]
- Avraamides, M.; Fatta, D. Resource consumption and emissions from olive oil production: A life cycle inventory case study in Cyprus. J. Clean. Prod. 2008, 16, 809–821. [Google Scholar] [CrossRef]
- Proietti, S.; Sdringola, P.; Desideri, U.; Zepparelli, F.; Brunori, A.; Ilarioni, L.; Nasini, L.; Regni, L.; Proietti, P. Carbon footprint of an olive tree grove. Appl. Energy 2014, 127, 115–124. [Google Scholar] [CrossRef]
- Proietti, P.; Sdringola, P.; Brunori, A.; Ilarioni, L.; Nasini, L.; Regni, L.; Pelleri, F.; Desideri, U.; Proietti, S. Assessment of carbon balance in intensive and extensive tree cultivation systems for oak, olive, poplar and walnut plantation. J. Clean. Prod. 2016, 112, 2613–2624. [Google Scholar] [CrossRef]
- de Luca, A.I.; Falcone, G.; Stillitano, T.; Iofrida, N.; Strano, A.; Gulisano, G. Evaluation of sustainable innovations in olive growing systems: A Life Cycle Sustainability Assessment case study in southern Italy. J. Clean. Prod. 2018, 171, 1187–1202. [Google Scholar] [CrossRef]
- Maffia, A.; Pergola, M.; Palese, A.M.; Celano, G. Environmental Impact Assessment of Organic vs. Integrated Olive-Oil Systems in Mediterranean Context. Agronomy 2020, 10, 416. [Google Scholar] [CrossRef] [Green Version]
- Rajaeifar, M.A.; Akram, A.; Ghobadian, B.; Rafiee, S.; Heidari, M.D. Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy 2014, 66, 139–149. [Google Scholar] [CrossRef]
- el Hanandeh, A.; Gharaibeh, M.A. Environmental efficiency of olive oil production by small and micro-scale farmers in northern Jordan: Life cycle assessment. Agric. Syst. 2016, 148, 169–177. [Google Scholar] [CrossRef]
- Guermazi, Z.; Gharsallaoui, M.; Perri, E.; Gabsi, S.; Benincasa, C. Integrated approach for the eco design of a new process through the life cycle analysis of olive oil: Total use of olive by-products. Eur. J. Lipid Sci. Technol. 2017, 119, 1700009. [Google Scholar] [CrossRef]
- Cappellaro, F.; Scalbi, S. La Rete Italiana LCA: Prospettive e Sviluppi del Life Cycle Assessment in Italia; ENEA: Rome, Italy, 2011; Available online: https://www.enea.it/it/seguici/pubblicazioni/pdf-volumi/v2011-06-lca.pdf (accessed on 2 February 2022).
- Godini, A. Apulian traditional olive training systems. Acta Hortic. 2002, 586, 311–315. [Google Scholar] [CrossRef]
- Caruso, T.; Campisi, G.; Marra, F.P.; Camposeo, S.; Vivaldi, G.A.; Proietti, P.; Nasini, L. Growth and yields of “arbequina” high-density planting systems in three different olive growing areas in Italy. Acta Hortic. 2014, 1057, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Famiani, F.; Farinelli, D.; Rollo, S.; Camposeo, S.; Vaio, C.D.; Inglese, P. Evaluation of different mechanical fruit harvesting systems and oil quality in very large size olive trees. Span. J. Agric. Res. 2014, 12, 960–972. [Google Scholar] [CrossRef] [Green Version]
- Anthony, B.M.; Minas, I.S. Optimizing Peach Tree Canopy Architecture for Efficient Light Use, Increased Productivity and Improved Fruit Quality. Agronomy 2021, 11, 1961. [Google Scholar] [CrossRef]
- Maldera, F.; Vivaldi, G.A.; Iglesias-Castellarnau, I.; Camposeo, S. Two Almond Cultivars Trained in a Super-High Density Orchard Show Different Growth, Yield Efficiencies and Damages by Mechanical Harvesting. Agronomy 2021, 11, 1406. [Google Scholar] [CrossRef]
- Musacchi, S.; Iglesias, I.; Neri, D. Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review. Agronomy 2021, 11, 1765. [Google Scholar] [CrossRef]
- Camposeo, S.; Vivaldi, G.A.; Montemurro, C.; Fanelli, V.; Cunill Canal, M. Lecciana, a New Low-Vigour Olive Cultivar Suitable for Super High Density Orchards and for Nutraceutical EVOO Production. Agronomy 2021, 11, 2154. [Google Scholar] [CrossRef]
- Avadí, A. Screening LCA of French organic amendments and fertilisers. Int. J. Life Cycle Assess. 2020, 25, 698–718. [Google Scholar] [CrossRef]
- EU. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Label-ling of Organic Products and Repealing Council Regulation (EC) No 834/2007. 2018. Available online: http://data.europa.eu/eli/reg/2018/848/oj (accessed on 21 March 2022).
- Camposeo, S.; Vivaldi, G.A. Yield, harvesting efficiency and oil chemical quality of cultivars “Arbequina” and “Arbosana” harvested by straddle machine in two Apulian growing areas. Acta Hortic. 2018, 1199, 397–402. [Google Scholar] [CrossRef]
- ISPRA. Greenhouse Gas Inventory 1990–2017. National Inventory Report 2019. 2019. Available online: www.isprambiente.gov.it (accessed on 20 March 2022).
- Guinee, J.B. Handbook on life cycle assessment operational guide to the ISO standards. Int. J. Life Cycle Assess. 2002, 7, 311. [Google Scholar] [CrossRef]
- Clark, S. Organic Farming and Climate Change: The Need for Innovation. Sustainability 2020, 12, 7012. [Google Scholar] [CrossRef]
- Bungau, S.; Behl, T.; Aleya, L.; Bourgeade, P.; Aloui-Sossé, B.; Purza, A.L.; Abid, A.; Samuel, A.D. Expatiating the impact of anthropogenic aspects and climatic factors on long-term soil monitoring and management. Environ. Sci. Pollut. Res. 2021, 28, 30528–30550. [Google Scholar] [CrossRef]
- Samuel, A.D.; Bungau, S.; Tit, D.M.; Melinte, C.E.; Purza, L.; Badea, G.E. Effects of Long Term Application of Organic and Mineral Fertilizers on Soil Enzymes. Rev. Chim. 2018, 69, 2608–2612. [Google Scholar] [CrossRef]
- Buckwell, A.; Nordang Uhre, A.; Williams, A.; Polakova, J.; Blum, W.; Schiefer, J.; Lair, G.; Heissenhuber, A.; Schieβl, P.; Krämer, C.; et al. Sustainable Intensification of European Agriculture; Rise Foundation: Memphis, TN, USA, 2014; Available online: https://ieep.eu/uploads/articles/attachments/a39b547e-8abe-49d8-94ec-77f751378e34/111120_BROCH_SUST_INTENS_DEF.pdf?v=63664509854 (accessed on 10 April 2022).
- Liang, L.; Ridoutt, B.G.; Wang, L.; Xie, B.; Li, M.; Li, Z. China’s Tea Industry: Net Greenhouse Gas Emissions and Mitigation Potential. Agriculture 2021, 11, 363. [Google Scholar] [CrossRef]
Orchard Characteristics | LD INT | LD BIO | MD INT | MD BIO | SHD INT | SHD BIO |
---|---|---|---|---|---|---|
Cultivars | Cellina di Nardò, Ogliarola barese, Ogliarola salentina | Coratina, Leccino, Peranzana | Arbequina, Arbosana, Koroneiki, Lecciana ®, Oliana® | |||
Training form | Vase or globe | Vase | Central leader or Smartree ® | |||
Lifetime (years) | >100 | 60 | 20 | |||
Tree spacing (m × m) | 10 × 8 | 10 × 10 | 6 × 6 | 7 × 6 | 4 × 1.5 | 4 × 1.5 |
Planting density (trees/ha) | 100 | 60 | 278 | 238 | 1666 | 1666 |
Average annual productivity (t/ha) | 10 | 7 | 10 | 7 | 10 | 7 |
Total productivity in 60 years (t/ha/60 yr) | 600 | 420 | 570 | 399 | 540 | 378 |
Pruning method | Electric telescopic shears + elevator platform | Telescopic pneumatic scissors | Pruning machines | |||
Pruning biomass management | Shredded and used as soil mulching | Shredded and used as soil mulching | Shredded and used as soil mulching | |||
Harvesting method | Manual facilitated by electric/pneumatic comb or hook | Mechanical by trunk shaker with reverse umbrella | Mechanical by continuous straddle harvester |
Authors | Software | F.U. | Unit | Quantity | Notes |
---|---|---|---|---|---|
De Gennaro et al. (2012) [29] | SimaPro | 1 ton | kg CO2 eq/t | 542.2 (MD) 707.1 (SHD) | Lifetime 48 years MD: 400 trees/ha; 11 t/ha SHD: 1667 trees/ha; 9 t/ha Drip irrigation Integrated management |
Salomone and Ioppolo (2012) [15] | SimaPro 7.2 | 1 ton | kg CO2 eq/t | 481 (conventional dry farming) 614 (organic irrigated farming) | Organic and conventional irrigated and dry farming 4 t/ha |
Proietti S. et al. (2014) [38] | SimaPro 7.1 | 1 ha | t CO2 eq/ha /year | 1.507 (×60y = 0.90 × 105) | cv Leccino: 5.5 × 5.5 m Carbon stock Lifetime 11 years Integrated management |
Proietti P. et al. (2016) [39] | SimaPro 8.0.3.14 | 1 ha | t CO2 eq/ha /year | 1.837 (×60y = 1.1 × 105) | Lifetime 14 years MD olive-growing system Net CO2 sequestration cv Leccino: 5.5 × 5.5 m; 330 trees/ha Integrated management |
Romero-Gamez et al. (2017) [35] | SimaPro 8.0.4.30 | 1 ton | kg CO2 eq/t | 178 (LD, organic) 216 (LD, integrated) 309 (MD, integrated) 308 (SHD, integrated) | Irrigated olive growing LD: 100 trees/ha; 6 t/ha MD: 250 trees/ha; 10 t/ha SHD: 1900 trees/ha; 12 t/ha |
De Luca et al. (2018) [40] | SimaPro | 1 ha | kg CO2 eq /ha/50 yr | 3.65 × 105 (LD, conventional) 3.60 × 105 (No-tillage, low chemical) 3.82 × 105 (Zero chemical) | Lifetime 50 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camposeo, S.; Vivaldi, G.A.; Russo, G.; Melucci, F.M. Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming. Sustainability 2022, 14, 6389. https://doi.org/10.3390/su14116389
Camposeo S, Vivaldi GA, Russo G, Melucci FM. Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming. Sustainability. 2022; 14(11):6389. https://doi.org/10.3390/su14116389
Chicago/Turabian StyleCamposeo, Salvatore, Gaetano Alessandro Vivaldi, Giovanni Russo, and Francesca Maria Melucci. 2022. "Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming" Sustainability 14, no. 11: 6389. https://doi.org/10.3390/su14116389
APA StyleCamposeo, S., Vivaldi, G. A., Russo, G., & Melucci, F. M. (2022). Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming. Sustainability, 14(11), 6389. https://doi.org/10.3390/su14116389