From Waste to Potential Reuse: Mixtures of Polypropylene/Recycled Copolymer Polypropylene from Industrial Containers: Seeking Sustainable Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Blend Processing
2.4. Thermo-Oxidation Aging
2.5. Characterization
3. Results and Discussion
3.1. Processing Aspects
3.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.3. Contact Angle
3.4. Scanning Electron Microscopy
3.5. Melt Flow Index (MFI)
3.6. Differential Scanning Calorimetry
3.7. Impact Strength
3.8. Tensile Experiments
3.9. Stress versus Strain Analysis
3.10. Heat Deflection Temperature (HDT)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mbarek, S.; Baccouch, Z.; Eterradossi, O.; Perrin, D.; Monasse, B.; Garay, H.; Quantin, J.C. Effect of recycling and injection parameters on gloss properties of smooth colored polypropylene parts: Contribution of surface and skin layer. Polym. Eng. Sci. 2019, 59, 1288–1299. [Google Scholar] [CrossRef]
- Alves, A.M.; Cavalcanti, S.N.; Arimatéia, R.R.; Agrawal, P.; Freitas, N.L.; Mélo, T.J.A. Influência do processamento e da alumina sintetizada em laboratório nas propriedades do polipropileno. Rev. Eletrônica Mater. Processos 2016, 11, 155–163. [Google Scholar]
- Luna, C.B.B.; Siqueira, D.D.; Araújo, E.M.; Wellen, R.M.R. Tailoring PS/PPrecycled blends compatibilized with SEBS. Evaluation of rheological, mechanical, thermomechanical and morphological character. Mater. Res. Express 2019, 6, 075316. [Google Scholar] [CrossRef]
- Grigorescu, R.M.; Ghioca, P.; Lancu, L.; David, M.E.; Andrei, E.R.; Filipescu, M.L.; Lon, R.M.; Vuluga, Z.; Anghel, L.; Sofran, L.E.; et al. Development of thermoplastic composites based on recycled polypropylene and waste printed circuit boards. Waste Manag. 2020, 118, 391–401. [Google Scholar] [CrossRef]
- Aumnate, C.; Rudolph, N.; Sarmadi, M. Recycling of polypropylene/polyethylene blends: Effect of chain structure on the crystallization behaviors. Polymers 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Galve, J.E.; Elduque, D.; Pina, C.; Clavería, I.; Acero, R.; Fernández, A.; Javierre, C. Dimensional Stability and Process Capability of an Industrial Component Injected with Recycled Polypropylene. Polymers 2019, 11, 1063. [Google Scholar] [CrossRef] [Green Version]
- Matias, A.A.; Lima, M.S.; Pereira, J.; Pereira, P.; Barros, R.; Coelho, J.F.J.; Serra, A.C. Use of recycled polypropylene/poly(ethylene terephthalate) blends to manufacture water pipes: An industrial scale study. Waste Manag. 2020, 101, 250–258. [Google Scholar] [CrossRef]
- Camargo, R.V.; Saron, C. Mechanical–chemical recycling of low-density polyethylene waste with polypropylene. J. Polym. Environ. 2019, 28, 794–802. [Google Scholar] [CrossRef]
- Beltrán, F.R.; Barrio, L.; Lorenzo, V.; Río, D.; Urreaga, J.M.; Orden, M.U. Valorization of poly(lactic acid) wastes via mechanical recycling: Improvement of the properties of the recycled polymer. Waste Manag. Res. 2018, 37, 135–141. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Siqueira, D.D.; Ferreira, E.S.B.; Silva, W.A.; Nogueira, J.A.S.; Araújo, E.M. From Disposal to Technological Potential: Reuse of Polypropylene Waste from Industrial Containers as a Polystyrene Impact Modifier. Sustainability 2020, 12, 5272. [Google Scholar] [CrossRef]
- Taghavi, S.K.; Shahrajabian, H.; Hosseini, H.M. Detailed comparison of compatibilizers MAPE and SEBS-g-MA on the mechanical/thermal properties, and morphology in ternary blend of recycled PET/HDPE/MAPE and recycled PET/HDPE/SEBS-g-MA. J. Elastomers Plast. 2017, 50, 13–35. [Google Scholar] [CrossRef]
- Rajasekaran, D.; Maji, P.K. Recycling of Quaternary Household Plastic Wastes by Utilizing Poly(Ethylene-co-Methacrylic acid) Copolymer Sodium Ion: Compatibility and Re-processability Assessments. J. Polym. Environ. 2019, 28, 471–482. [Google Scholar] [CrossRef]
- Overcash, M.R.; Ewell, J.H.; Griffing, E.M. Life cycle energy comparison of different polymer recycling processes. J. Adv. Manuf. Process. 2020, 2, e10034. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of Polymer-Based Multilayer Packaging: A Review. Recycling 2018, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Araújo, L.M.G.; Morales, A.R. Compatibilization of recycled polypropylene and recycled poly (ethylene terephthalate) blends with SEBS-g-MA. Polímeros Ciência Tecnol. 2018, 28, 84–91. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Silva, D.F.; Araújo, E.M. Estudo do comportamento de blendas de polimiada 6/resíduos de borracha da indústria de calçados. Rev. Univap 2014, 20, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Adam, A.P.; Gonçalves, J.V.R.V.; Robinson, L.C.; Da Rosa, L.C.; Schneider, E.L. Recycling and Mechanical Characterization of Polymer Blends Present in Printers. Mater. Res. 2017, 20, 202–208. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.G. Recycling of waste mixed plastics blends (PE/PP). J. Eng. Sci. Technol. Rev. 2019, 12, 87–92. [Google Scholar] [CrossRef]
- Santos, L.S.; Silva, A.H.M.F.T.; Pacheco, E.B.A.V.; Silva, A.L.N. Study of the effect of recycled PP on the mechanical and flow properties of PP/EPDM blends. Polímeros Ciência Tecnol. 2013, 23, 389–394. [Google Scholar] [CrossRef]
- Ferreira, E.S.B.; Pereira, C.H.O.; Araújo, E.M.; Bezerra, E.B.; Siqueira, D.D.; Wellen, R.M.R. Properties and morphology of polypropylene/big bags compounds. Mater. Res. 2019, 22, 1–8. [Google Scholar] [CrossRef]
- Fernandes, B.L.; Domingues, A.J. Mechanical characterization of recycled polypropylene for automotive industry. Polímeros Ciência Tecnol. 2007, 17, 85–87. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, L.G.; Piaia, M.; Ceni, G.H. Analysis of impact and tensile properties of recycled polypropylene. Int. J. Mater. Eng. 2017, 7, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Alcântara, R.L.; Carvalho, L.H.; Ramos, S.M.L.S. Propriedades mecânicas de resíduos plásticos urbanos da região nordeste. 1- Influência das condições de processamento. Polímeros 1995, 5, 42–47. [Google Scholar]
- Solis, M.; Silveira, S. Technologies for chemical recycling of household plastics—A technical review and TRL assessment. Waste Manag. 2020, 105, 128–138. [Google Scholar] [CrossRef]
- Callister, W.D. Ciência e Engenharia de Materiais: Uma Introdução; LTC: Rio de Janeiro, Brazil, 2011; Volume 7, p. 572. [Google Scholar]
- Gijsman, P.; Kroon, M.; Oorschot, M. The role of peroxides in the thermooxidative degradation of polypropylene. Polym. Degrad. Stab. 1996, 51, 3–13. [Google Scholar] [CrossRef]
- Hamida, H.M.A. Effect of electron beam irradiation on polypropylene films—Dielectric and FT-IR studies. Solid State Electron. 2005, 49, 1163–1167. [Google Scholar] [CrossRef]
- Nogueira, L.M.; Dutra, R.C.L.; Diniz, M.F.; Pires, M.; Evangelista, M.; Santana, F.A.; Tomasi, L.; Santos, P.; Nonemacher, R. Evaluation of MIC/FT-IR/DSC techniques for multilayer films characterization. Polímeros Ciência E Tecnol. 2007, 17, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wu, P. Two-dimensional ATR−FTIR spectroscopic investigation on water diffusion in polypropylene film: Water bending vibration. J. Phys. Chem. B 2003, 107, 4224–4226. [Google Scholar] [CrossRef]
- Paoli, M.A. Degradation and Stabilization of Polymers; Artliber Editora: São Paulo, Brazil, 2008. [Google Scholar]
- Xiang, Q.; Xanthos, M.; Patel, S.H.; Mitra, S. Comparison of volatile emissions and structural changes of melt reprocessed polypropylene resins. Adv. Polym. Technol. 2002, 21, 235–242. [Google Scholar] [CrossRef]
- Brito, R.S.F.; Silva, S.M.L.; Rabello, M.S. Controle da fotodegradação de PP pigmentado pelo uso de fotoestabilizantes. Rev. Eletrônica Mater. Processos 2016, 11, 73–80. [Google Scholar]
- Xiang, Q.; Xanthos, M.; Mitra, S.; Patel, S.H.; Guo, J. Effects of melt reprocessing on volatile emissions and structural/rheological changes of unstabilized polypropylene. Polym. Degrad. Stab. 2002, 77, 93–102. [Google Scholar] [CrossRef]
- Rabello, M.S. Polymers Additives; Artliber Editora: São Paulo, Brazil, 2000. [Google Scholar]
- Gugumus, F. Thermooxidative degradation of polyolefins in the solid state—Kinetics of thermal oxidation of polypropylene. Polym. Degrad. Stab. 1998, 62, 235–243. [Google Scholar] [CrossRef]
- Cavalcanti, R.S.F.B.; Rabello, M.S. The effect of red pigment and photo stabilizers on the photo degradation of polypropylene films. Mater. Res. 2019, 22, 1–8. [Google Scholar] [CrossRef]
- Khabbaz, F.; Albertsson, A.C. Rapid test methods for analyzing degradable polyolefins with a pro-oxidant system. J. Appl. Polym. Sci. 2001, 79, 2309–2316. [Google Scholar] [CrossRef]
- Hjertberg, T.; Palmlof, M.; Sultan, B.A. Chemical reactions in crosslinking of copolymers of ethylene and vinyltrimethoxy silane. J. Appl. Polym. Sci. 1991, 42, 1185–1192. [Google Scholar] [CrossRef]
- Sen, A.K.; Mukherjee, B.; Bhattacharyya, A.S.; De, P.P.; Bhowmick, A.K. Kinetics of silane grafting and moisture crosslinking of polyethylene and ethylene propylene rubber. J. Appl. Polym. Sci. 1992, 44, 1153–1164. [Google Scholar] [CrossRef]
- Fechine, G.J.M.; Santos, J.A.B.; Rabello, M.S. The evaluation of polyolefin photodegradation with natural and artificial exposure. Química Nova 2006, 29, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Ol’khov, A.A.; Shibryaeva, L.S.; Tertyshnaya, Y.V.; Kovaleva, A.N.; Kucherenko, E.L.; Zhul’kina, A.L.; Iordanskii, A.L. Resistance to thermal oxidation of ethylene-propylene rubber and polyhydroxybutyrate blends. Int. Polym. Sci. Technol. 2017, 44, 11–14. [Google Scholar] [CrossRef]
- Tochacek, J.; Jancar, J.; Kalfus, J.; Zborilova, P.; Burán, Z. Degradation of polypropylene impact-copolymer during processing. Polym. Degrad. Stab. 2008, 93, 770–775. [Google Scholar] [CrossRef]
- Severini, F. Environmental Degradation of Polypropylene. Polym. Degrad. Stab. 1988, 22, 185–194. [Google Scholar] [CrossRef]
- Pandey, J.K.; Ahamda, A.; Singh, R.P. Ecofriendly behavior of host matrix in composites prepared from agro-waste and polypropylene. J. Appl. Polym. Sci. 2003, 90, 1009–1017. [Google Scholar] [CrossRef]
- Waldman, W.R.; Paoli, M.A. Photodegradation of polypropylene/polystyrene blends: Styrene–butadiene–styrene compatibilisation effect. Polym. Degrad. Stab. 2008, 93, 273–280. [Google Scholar] [CrossRef]
- Nasir, A.; Yasin, T.; Islam, A. Thermo-oxidative degradation behavior of recycled polypropylene. J. Appl. Polym. Sci. 2011, 119, 3315–3320. [Google Scholar] [CrossRef]
- Hebbar, R.S.; Isloor, A.M.; Ismail, A.F. Contact angle measurements. Membr. Charact. 2017, 1, 219–255. [Google Scholar]
- Luna, C.B.B.; Siqueira, D.D.; Ferreira, E.S.B.; Araújo, E.M.; Wellen, R.M.R. Reactive compatibilization as a proper tool to improve PA6 toughness. Mater. Res. Express 2019, 6, 125367. [Google Scholar] [CrossRef]
- Matsunage, M.; Whitney, P.J. Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonization. Polym. Degrad. Stab. 2000, 70, 325–332. [Google Scholar] [CrossRef]
- Gensler, R.; Plummer, C.J.G.; Kausch, H.H.; Kramer, E.; Pauquet, J.R.; Zweifel, H. Thermo-oxidative degradation of isotactic polypropylene at high temperatures: Phenolic antioxidants versus HAS. Polym. Degrad. Stab. 2000, 67, 195–2081. [Google Scholar] [CrossRef]
- Ribeiro, V.F.; Júnior, N.S.D.; Riegel, I.C. Recovering properties of recycled HIPS through incorporation of SBS triblock copolymer. Polímeros Ciência Tecnol. 2012, 22, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Lotti, C.; Correa, C.A.; Canevarolo, S.V. Mechanical and morphological characterization of polypropylene toughened with olefinic elastomer. Mater. Res. 2000, 3, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Martuscelli, E. Structure and properties of polypropylene elastomer blends. In Polypropylene Structure, Blends and Composites; Karger-Kocsis, J., Ed.; Springer: Dordrecht, The Netherlands, 1995; pp. 95–140. [Google Scholar]
- Bedia, E.L.; Astrini, N.; Sudarisman, A.; Sumera, F.; Kashiro, Y. Characterization of polypropylene and ethylene–propylene copolymer blends for industrial applications. J. Appl. Polym. Sci. 2000, 78, 1200–1208. [Google Scholar] [CrossRef]
- Cáceres, C.A.; Canevarolo, S.V. Polypropylene degradation during extrusion and the formation of volatile organic compounds. Polímeros Ciência Tecnol. 2009, 19, 79–84. [Google Scholar] [CrossRef] [Green Version]
- González, V.A.G.; Velázquez, G.N.; Sánchez, J.L.A. Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym. Degrad. Stab. 1998, 60, 33–42. [Google Scholar] [CrossRef]
- Fechine, G.J.M.; Demarquette, N.R. Cracking formation on the surface of extruded photodegraded polypropylene plates. Polym. Eng. Sci. 2008, 48, 365–372. [Google Scholar] [CrossRef]
- Rabello, M.S.; White, J.R. The role of physical structure and morphology in the photodegradation behavior of polypropylene. Polym. Degrad. Stab. 1997, 56, 55–73. [Google Scholar] [CrossRef]
- Makhlis, F.A. Radiation Physics and Chemistry of Polymers; John Wiley & Sons: Jerusalem, Israel, 1975. [Google Scholar]
- Geuskens, G. New aspects of the photo-oxidation and photo-stalization os polymers. Macromol. Symp. 1989, 27, 85–96. [Google Scholar] [CrossRef]
- Men, R.; Lei, Z.; Song, J.; Li, Y.; Lin, L.; Tian, M. Effect of thermal ageing on space charge in ethylene propylene rubber at DC voltage. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 792–800. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Ferreira, E.S.B.; Siqueira, D.D.; Silva, W.A.; Araújo, E.M.; Wellen, R.M.R. Tailoring performance of PP/HIPS/SEBS through blending design. Mater. Res. Express 2019, 6, 115321. [Google Scholar] [CrossRef]
- Aurrekoetxea, J.; Sarrionandia, M.A.; Urrutibeascoa, I.; Maspoch, M.L. Effects of recycling on the microstructure and the mechanical properties of isotactic polypropylene. J. Mater. Sci. 2001, 36, 2607–2613. [Google Scholar] [CrossRef]
- Belkouicem, K.; Benarab, A.; Krache, R.; Benavente, R.; Pérez, E.; Cerrada, M.L. Effect of thermal treatment on the mechanical and viscoelastic response of polypropylenes incorporating a β nucleating agent. J. Elastomers Plast. 2018, 51, 562–579. [Google Scholar] [CrossRef]
- Billmeyer, F.W. Textbook of Polymer Science; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Martins, M.H.; Paoli, M.A. Polypropylene compounding with post-consumer material: II. Reprocessing. Polym. Degrad. Stab. 2002, 78, 491–495. [Google Scholar] [CrossRef]
- Martins, M.H.; De Paoli, M.A. Polypropylene compounding with recycled material I. Statistical response surface analysis. Polym. Degrad. Stab. 2001, 71, 293–298. [Google Scholar] [CrossRef]
- Saron, C.; Sanchez, E.M.S.; Isabel Felisberti, M. Thermal and photochemical degradation of PPO/HIPS blends. J. Appl. Polym. Sci. 2007, 104, 3269–3276. [Google Scholar] [CrossRef]
- Jansson, A.; Moller, K.; Gevert, T. Degradation of post-consumer polypropylene materials exposed to simulated recycling—Mechanical properties. Polym. Degrad. Stab. 2003, 82, 37–46. [Google Scholar] [CrossRef]
- Fernandes, L.L.; Freitas, C.A.; Demarquette, N.R.; Fechine, G.J.M. Photodegradation of thermodegraded polypropylene/high-impact polystyrene blends: Mechanical properties. J. Appl. Polym. Sci. 2011, 120, 770–779. [Google Scholar] [CrossRef]
- Pacheco, E.B.; Hemais, C.A. Market for PET/HDPE/Ionomer recycled products. Polímeros 1999, 9, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Bahlouli, N.; Pessey, D.; Raveyre, C.; Guillet, J.; Ahzi, S.; Dahoun, A.; Hiver, J.M. Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites. Mater. Des. 2012, 33, 451–458. [Google Scholar] [CrossRef]
- Fernandes, L.L.; Freitas, C.A.; Demarquette, N.R.; Fechine, G.J.M. Estudo do efeito do tipo de polipropileno na fotodegradação da blenda polipropileno/poliestireno de alto impacto. Polímeros 2012, 22, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Rabello, M.S.; White, J.R. Fotodegradação do polipropileno. Um Processo essencialmente heterogêneo. Polímeros 1997, 7, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Takemori, M.T. Towards an understanding of the heat distortion temperature of thermoplastics. Polym. Eng. Sci. 1979, 19, 1104–1109. [Google Scholar] [CrossRef]
- Luna, C.B.B.; Silva, D.F.; Araújo, E.M. Efeito dos agentes de compatibilização SBS e SEBS-MA no desempenho de misturas de poliestireno/resíduo de borracha de SBR. Matéria 2016, 21, 632–646. [Google Scholar] [CrossRef] [Green Version]
Parameters | |
---|---|
Injection pressure (bar) | 1000 |
Temperature profile (°C) | 170; 170; 170; 180; 180; 180; 190 |
Mold temperature (°C) | 20 |
Cooling time inside the mold (s) | 30 |
Holding pressure (bar) | 500 |
PPc | 0 Days | 30 Days | 60 Days | PPcr | 0 Days | 30 Days | 60 Days |
---|---|---|---|---|---|---|---|
Tm (°C) | 165.0 | 169.4 | 170.2 | Tm (°C) | 167.7 | 168.0 | 167.9 |
ΔHm (J/g) | 71.4 | 55.1 | 45.6 | ΔHf (J/g) | 75.2 | 74.6 | 73.8 |
TC (°C) | 122.9 | 121.2 | 120.1 | TC (°C) | 121.6 | 122.0 | 121.9 |
Xc (%) | 34.5 | 26.6 | 22.0 | Xc (%) | 36.3 | 36.0 | 36.1 |
PP/PPcr (20%) | 0 days | 30 days | 60 days | PP/PPcr (40%) | 0 days | 30 days | 60 days |
Tm (°C) | 166.0 | 168.0 | 169.0 | Tm (°C) | 165.5 | 169.6 | 167.9 |
ΔHm (J/g) | 75.9 | 59.0 | 48.9 | ΔHf (J/g) | 78.1 | 58.9 | 51.6 |
TC (°C) | 123.0 | 122.8 | 122.3 | TC (°C) | 122.8 | 120.2 | 121.1 |
Xc (%) | 36.7 | 28.5 | 23.6 | Xc (%) | 37.7 | 28.4 | 24.9 |
PP/PPcr (60%) | 0 days | 30 days | 60 days | ||||
Tm (°C) | 165.3 | 169.8 | 168.7 | ||||
ΔHm (J/g) | 75.5 | 54.7 | 62.1 | ||||
TC (°C) | 122.9 | 120.2 | 121.3 | ||||
Xc (%) | 36.5 | 26.4 | 30.0 |
Compounds | Toughness (J) | ||
---|---|---|---|
0 Days | 30 Days | 60 Days | |
PPC | 1241.0 | 1061.2 | 941.3 |
PPcR | 343.1 | 284.3 | 235.4 |
PPC/PPcR (20%) | 726.5 | 692.6 | 551.6 |
PPC/PPcR (40%) | 712.6 | 699.2 | 607.5 |
PPC/PPcR (60%) | 682.8 | 629.1 | 570.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna, C.B.B.; da Silva, W.A.; Araújo, E.M.; da Silva, L.J.M.D.; de Melo, J.B.d.C.A.; Wellen, R.M.R. From Waste to Potential Reuse: Mixtures of Polypropylene/Recycled Copolymer Polypropylene from Industrial Containers: Seeking Sustainable Materials. Sustainability 2022, 14, 6509. https://doi.org/10.3390/su14116509
Luna CBB, da Silva WA, Araújo EM, da Silva LJMD, de Melo JBdCA, Wellen RMR. From Waste to Potential Reuse: Mixtures of Polypropylene/Recycled Copolymer Polypropylene from Industrial Containers: Seeking Sustainable Materials. Sustainability. 2022; 14(11):6509. https://doi.org/10.3390/su14116509
Chicago/Turabian StyleLuna, Carlos Bruno Barreto, Wallisson Alves da Silva, Edcleide Maria Araújo, Lara Júlia Medeiros Dantas da Silva, João Baptista da Costa Agra de Melo, and Renate Maria Ramos Wellen. 2022. "From Waste to Potential Reuse: Mixtures of Polypropylene/Recycled Copolymer Polypropylene from Industrial Containers: Seeking Sustainable Materials" Sustainability 14, no. 11: 6509. https://doi.org/10.3390/su14116509
APA StyleLuna, C. B. B., da Silva, W. A., Araújo, E. M., da Silva, L. J. M. D., de Melo, J. B. d. C. A., & Wellen, R. M. R. (2022). From Waste to Potential Reuse: Mixtures of Polypropylene/Recycled Copolymer Polypropylene from Industrial Containers: Seeking Sustainable Materials. Sustainability, 14(11), 6509. https://doi.org/10.3390/su14116509