Climate-Changed Wheat: The Effect of Smaller Kernels on the Nutritional Value of Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Percent Bran Analysis
2.2. Percent Ash
2.3. Thousand-Kernel Weight
2.4. Test Baking
2.5. Protein Content Analysis
2.6. Statistical Analysis
3. Results
3.1. Percent Bran, TKW, and Ash (%) Analysis
3.2. Pup Loaf Test-Bake Analysis
3.3. Protein Content Analysis
3.4. Full-Size Loaf Test-Bake Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Ge, H.; Hao, C.; Dong, Y.; Zhang, X. Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS ONE 2012, 7, e29432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evers, A.D. Grain Size and Morphology: Implications for Quality. In Wheat Structure Biochemistry and Functionality; The Royal Society of Chemistry: Reading, UK, 1995; pp. 19–24. [Google Scholar]
- MacMasters, D.; Hinton, M.M.; Bradbury, J.J.C. Microscopic Structure and Composition of the Wheat Kernel. In Wheat Chemistry and Technology, 2nd ed.; Pomeranz, Y., Ed.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1978; pp. 51–113. [Google Scholar]
- Marshall, F.W.; Mares, D.R.; Moss, D.J.; Ellison, H.J. Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Aust. J. Agric. Res. 1986, 37, 331–342. [Google Scholar] [CrossRef]
- Evers, R.P.; Cox, A.D.; Shaheedullah, R.K.; Withey, M.Z. Predicting milling extraction rate by image analysis of wheat grains. Asp. Appl. Biol. 1990, 25, 417–426. Available online: http://www.cabdirect.org/abstracts/19910742779.html (accessed on 3 May 2022).
- Feldman, M. Origin of cultivated wheat. In The World Wheat Book: A History of Wheat Breeding; Bonjean, A.P., Angus, W.J., Eds.; Intercept: Andover, UK, 2001; pp. 3–56. [Google Scholar]
- Fuller, D.Q. Contrasting patterns in crop domestication and domestication rates: Recent archaeobotanical insights from the old world. Ann. Bot. 2007, 100, 903–924. [Google Scholar] [CrossRef]
- Gegas, V.C.; Nazari, A.; Griffiths, S.; Simmonds, J.; Fish, L.; Orford, S.; Snape, J.W. A Genetic Framework for Grain Size and Shape Variation in Wheat. Plant Cell 2010, 22, 1046–1056. [Google Scholar] [CrossRef] [Green Version]
- Asseng, S.; Martre, P.; Maiorano, A.; Rötter, R.P.; O’Leary, G.J.; Fitzgerald, G.J.; Ewert, F. Climate change impact and adaptation for wheat protein. Glob. Chang. Biol. 2019, 25, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, C.W.; Bekes, C.; Gras, F.; Barlow, P.W.; Wrigley, E.W.R. Identification of wheat genotypes tolerant to the effects of heat stress on grain quality. Cereal Chem. 1995, 72, 539–544. [Google Scholar]
- Iizumi, T.; Yokozawa, M.; Sakurai, G.; Travasso, M.I.; Romanenkov, V.; Oettli, P.; Furuya, J. Historical changes in global yields: Major cereal and legume crops from 1982 to 2006. Glob. Ecol. Biogeogr. 2014, 23, 346–357. [Google Scholar] [CrossRef]
- Langridge, P.; Reynolds, M. Breeding for drought and heat tolerance in wheat. Theor. Appl. Genet. 2021, 134, 1753–1769. [Google Scholar] [CrossRef]
- Lobell, D.B.; Field, C.B. Global scale climate—Crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2007, 2, 014002. [Google Scholar] [CrossRef]
- Tack, J.; Barkley, A.; Lanier, L. Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. USA 2015, 112, 6931–6936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampieri, A.; Ceglar, M.; Dentener, A.; Toreti, F. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 2017, 12, 064008. [Google Scholar] [CrossRef]
- U.S. Wheat Associates. Wheat Grade Factors. 2013. Available online: https://www.uswheat.org/working-with-buyers/wheat-grade-factors/ (accessed on 4 January 2022).
- Bitter Harvest for Indian Farmers after Wheat Export Ban. The Economic Times, 2022. Available online: https://economictimes.indiatimes.com/news/economy/agriculture/bitter-harvest-for-indian-farmers-after-wheat-export-ban/articleshow/91718820.cms(accessed on 23 May 2022).
- Wheat Marketing Center. 2021 Pacific Northwest Crop Quality Report, Portland, OR, USA. 2021. Available online: https://www.wmcinc.org/wp-content/uploads/2021/09/Week8Final_WebReport.pdf (accessed on 29 January 2022).
- NOAA National Centers for Environmental Information. State of the Climate: National Climate Report for September 2021. 2021. Available online: https://www.ncdc.noaa.gov/sotc/national/202109 (accessed on 4 January 2022).
- Williams, A.P.; Cook, B.I.; Smerdon, J.E. Rapid intensification of the emerging southwestern North American megadrought in 2021. Nat. Clim. Chang. 2022, 12, 232–234. [Google Scholar] [CrossRef]
- Turner, N. Droughts Continue in the Pacific Northwest Despite Early Snow and Rain. The Seattle Times, 2022. Available online: https://www.seattletimes.com/seattle-news/environment/droughts-continue-in-the-pacific-northwest-despite-early-snow-and-rain/(accessed on 7 March 2022).
- National Integrated Drought Information System. Washington Drought.gov. 2022. Available online: https://www.drought.gov/states/washington (accessed on 7 March 2022).
- Magaña, D.Z. What Russia’s war in Ukraine means for Washington’s wheat market. The Seattle Times, 15 March 2022. [Google Scholar]
- Stevenson, L.E.O.; Phillips, F.; Sullivan, K.O.; Walton, J. Wheat bran: Its composition and benefits to health, a European perspective. Int. J. Food Sci. Nutr. 2012, 63, 1001–1013. [Google Scholar] [CrossRef] [Green Version]
- Poutanen, K. Past and future of cereal grains as food for health. Trends Food Sci. Technol. 2012, 25, 58–62. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, Y.; Fan, M.; Li, Y.; Wang, L.; Qian, H. Wheat bran, as the resource of dietary fiber: A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 1–28. [Google Scholar] [CrossRef]
- Allai, F.M.; Azad, Z.R.A.A.; Gul, K.; Dar, B.N. Wholegrains: A review on the amino acid profile, mineral content, physicochemical, bioactive composition and health benefits. Int. J. Food Sci. Technol. 2021, 57, 1849–1865. [Google Scholar] [CrossRef]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fibre in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Guo, H.; Wu, H.; Sajid, A.; Li, Z. Whole grain cereals: The potential roles of functional components in human health. Crit. Rev. Food Sci. Nutr. 2021, 61, 1–16. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Zhang, C. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018, 359, 1151–1156. Available online: http://science.sciencemag.org/ (accessed on 3 May 2022). [CrossRef] [Green Version]
- Anderson, J.W.; Hanna, T.J.; Peng, X.; Kryscio, R.J. Whole Grain Foods and Heart Disease Risk. J. Am. Coll. Nutr. 2000, 19, 291S–299S. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.; Bofetta, P.; Greenwood, D.; Tonstad, S.; Vatten, L.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnenburg, E.D.; Sonnenburg, J.L. Starving our microbial self: The deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014, 20, 779–786. [Google Scholar] [CrossRef] [Green Version]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, 36–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasquez-Manoff, M. The Peace keepers Amid the trillions of microbes that live in the intestines, scientists have found a few species that seem to play a key role in keeping us healthy. Nature 2015, 518, S4–S11. [Google Scholar]
- Chatenoud, L.; Tavani, A.; La Vecchia, C.; Jacobs, D.R., Jr.; Negri, E.; Levi, F.; Franceschi, S. Whole Grain Food Intake and Cancer Risk. Int. J. Cancer 1998, 77, 24–28. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [Green Version]
- Koh, A.; de Vadder, F.; Kovatcheva-Datchary, P.; Bäckhed, F. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; 2020; p. 101. Available online: https://www.DietaryGuidelines.gov/ (accessed on 2 February 2022).
- O’Keefe, S.J.; Li, J.V.; Lahti, L.; Ou, J.; Carbonero, F.; Mohammed, K.; Zoetendal, E.G. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 2015, 6, 6342. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, C.; Lefevre, S.; Peters, V.; Patterson, M.; Ghatei, M.A.; Morgan, L.M.; Frost, G.S. Gut hormone release and appetite regulation in healthy non-obese participants following oligofructose intake. A dose-escalation study. Appetite 2013, 66, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Kendall, C.W.; Popovich, D.G.; Vidgen, E.; Mehling, C.C.; Vuksan, V.; Connelly, P.W. Effect of a very-high-fiber vegetable, fruit, and nut diet on serum lipids and colonic function. Metabolism 2001, 50, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Gross, L.S.; Li, L.; Ford, E.S.; Liu, S. Increased Consumption of Refined Carbohydrates and the Epidemic of Type 2 Diabetes in the United States: An Ecologic Assessment 1–3. 2004. Available online: https://academic.oup.com/ajcn/article-abstract/79/5/774/4690186 (accessed on 3 May 2022).
- Deehan, E.C.; Walter, J. The Fiber Gap and the Disappearing Gut Microbiome: Implications for Human Nutrition. Trends Endocrinol. Metab. 2016, 27, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gidley, M.J.; Dhital, S. High-Amylose Starches to Bridge the ‘Fiber Gap’: Development, Structure, and Nutritional Functionality. In Comprehensive Reviews in Food Science and Food Safety; Blackwell Publishing Inc.: Hoboken, NJ, USA, 2019; Volume 18, pp. 362–379. [Google Scholar] [CrossRef] [Green Version]
- Quagliani, D.; Felt-Gunderson, P. Closing America’s Fiber Intake Gap: Communication Strategies From a Food and Fiber Summit. In American Journal of Lifestyle Medicine; SAGE Publications: Thousand Oaks, CA, USA, 2017; Volume 11, pp. 80–85. [Google Scholar] [CrossRef]
- Afshin, A.; John Sur, P.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Galileo, G. Two New Sciences Including Centers of Gravity & Force of Percussion, 1st ed.; Translated by Drake; The University of Wisconsin Press: Madison, WI, USA, 1974. [Google Scholar]
- Peterson, M.A. Galileo’s discovery of scaling laws Galileo’s discovery of scaling laws. Am. J. Phys. 2004, 70, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Yankellow, J. The Approachable Loaf. WSU Breadlab, 2018. Available online: https://breadlab.wsu.edu/the-approachable-loaf-and-the-breadlab-collective/(accessed on 3 January 2022).
- Nierenberg, A. The Whole-Grain Grail: A Sandwich Bread With Mass Appeal. The New York Times, 2020. Available online: https://www.nytimes.com/2020/02/18/dining/bread-affordable-whole-grain.html(accessed on 3 January 2022).
- Anderson, P.J.; Rosas-Anderson, C. Leafscan. 2017. Available online: https://itunes.apple.com/app/id1254892230 (accessed on 5 November 2021).
- Balandrán-Quintana, R.R.; Mercado-Ruiz, J.N.; Mendoza-Wilson, A.M. Wheat Bran Proteins: A Review of Their Uses and Potential. Food Rev. Int. 2015, 31, 279–293. [Google Scholar] [CrossRef]
- Murphy, K.M.; Reeves, P.G.; Jones, S.S. Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 2008, 163, 381–390. [Google Scholar] [CrossRef]
- Ross, A.S.; Bettge, A.D. Chaper 20: Passing the Test on Wheat End-Use Quality. In Wheat: Science and Trade; Carver, B.F., Ed.; U.S. Department of Agriculture: Washington, DC, USA, 2009; pp. 455–494. [Google Scholar]
- U.S. Department of Agriculture (USDA). Wheat bran, crude. In National Nutrient Database for Standard Reference; 2018. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169722/nutrients (accessed on 17 February 2022).
- Food and Drug Administration Department of Health and Human Services. Code of Federal Regulations Title 21—Food and Drugs. 2020. Available online: https://www.govinfo.gov/content/pkg/CFR-2020-title21-vol2/xml/CFR-2020-title21-vol2-sec137-165.xml (accessed on 17 February 2022).
- Franz. Big Premium White. 2022. Available online: https://franzbakery.com/HTML/productView#category=breads.classic&id=breads.classic.big (accessed on 5 April 2022).
- Franz. 100% Whole Wheat. 2022. Available online: https://franzbakery.com/HTML/productView#category=breads.classic&id=breads.classic.100ww (accessed on 5 April 2022).
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R., Jr.; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. Soc. Clin. Nutr. 2000, 71, 921–930. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Morenga, L.T. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Barrett, E.M.; Foster, S.I.; Beck, E.J. Whole grain and high- fibre grain foods: How do knowledge, perceptions and attitudes affect food choice? Appetite 2020, 149, 104630. [Google Scholar] [CrossRef]
- Bisanz, K.J.; Stanek-Krogstrand, K.L. Consumption & Attitudes about Whole Grain Foods of UNL Students Who Dine in a Campus Cafeteria. Rural. Rev. Undergrad. Res. Agric. Life Sci. 2007, 2, 1–16. [Google Scholar]
- Meynier, A.; Riou, E. Main Factors Influencing Whole Grain Consumption in Children and Adults—A Narrative Review. Nutrients 2020, 12, 2217. [Google Scholar] [CrossRef] [PubMed]
- Wongprawmas, R.; Sogari, G.; Menozzi, D.; Pellegrini, N.; Lefebvre, M.; Gómez, M.I.; Mora, C. Determinants of us university students’ willingness to include whole grain pasta in their diet. Int. J. Environ. Res. Public Health 2021, 18, 3173. [Google Scholar] [CrossRef] [PubMed]
- Ross, A. A Shifting Climate for Grains and Flour. Cereal Foods World 2019, 64, 1–10. [Google Scholar] [CrossRef]
- Ray, J. Wheat Nerds and Scientists Join Forces to Build a Better Bread. Wired, 2017. Available online: https://www.wired.com/story/grain-gathering-better-bread/(accessed on 15 March 2019).
- Greenwood, V. Science Makes Bread Taste Better:Renegade Bakers and Geneticists Develop Whole Wheat Loaves You’ll Want to Eat. The Boston Globe, 2018. Available online: https://apps.bostonglobe.com/ideas/graphics/2018/11/the-next-bite/the-seeds/(accessed on 10 March 2019).
- Patience, J.F.; Rossoni-Serão, M.C.; Gutiérrez, N.A. A review of feed efficiency in swine: Biology and application. J. Anim. Sci. Biotechnol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Macdiarmid, J.I.; Kyle, J.; Horgan, G.W.; Loe, J.; Fyfe, C.; Johnstone, A.; McNeill, G. Sustainable diets for the future: Can we contribute to reducing greenhouse gas emissions by eating a healthy diet? Am. J. Clin. Nutr. 2012, 97, 449, Erratum in Am. J. Clin. Nutr. 2012, 96, 632–639. [Google Scholar] [CrossRef]
Variety | Location | Year Grown |
---|---|---|
Le Sourd | Mount Vernon, WA, USA (NWREC) | 2019–2020 |
Red Russian | Mount Vernon, WA, USA (NWREC) | 2019–2020 |
Salish Blue | Mount Vernon, WA, USA (NWREC) | 2018–2019 |
Mount Vernon, WA, USA (Roozen Fields) | 2020–2021 | |
Eileen | Mount Vernon, WA, USA (Viva Farms) | 2020, 2021 |
Chimacum, WA, USA (Finnriver Grain) | 2020, 2021 | |
Edison | Mount Vernon, WA, USA (NWREC) | 2018, 2019, 2020 |
Mount Vernon, WA, USA (Viva Farms) | 2021 | |
Expresso | Chimacum, WA, USA (Finnriver Grain) | 2020 |
FVCC Wheat | Kalispell, MT, USA (FVCC Campus Farm) | 2020 |
Ruth | Mount Vernon, WA, USA (NWREC) | 2019, 2020 |
Mount Vernon, WA, USA (Viva Farms) | 2021 | |
Very Blue | Mount Vernon, WA, USA (NWREC) | 2020 |
Variety, Year, and Location | Bran per 100 g | TKW (g) | Ash (%) | Slice Height (mm) | Slice Surface Area (cm2) | ||
---|---|---|---|---|---|---|---|
Le Sourd | 2020 MV | Bigs Smalls | 23.92 ± 0.56 (0.32) *** 27.26 ± 0.32 (0.19) | 39.23 ± 0.84 (0.48) *** 24.04 ± 0.02 (0.01) | 1.62 ± 0.03 (0.02) ** 1.75 ± 0.01 (0.00) | 52.59 ± 0.49 (0.28) ns 51.57 ± 1.45 (0.83) | 28.46 ± 0.36 (0.21) ns 28.15 ± 1.02 (0.59) |
Red Russian | 2020 MV | Bigs Smalls | 22.92 ± 1.30 (0.75) ** 27.75 ± 1.05 (0.61) | 41.23 ± 1.87 (1.08) *** 21.77 ± 0.86 (0.50) | 1.67 ± 0.07 (0.04) ** 1.99 ± 0.01 (0.01) | 54.90 ± 1.52 (0.88) * 51.50 ± 0.97 (0.56) | 31.45 ± 1.31 (0.76) ns 29.74 ± 0.92 (0.53) |
Eileen | 2020 MV | Bigs Smalls | 25.31 ± 0.21 (0.12) ** 29.02 ± 1.09 (0.63) | 42.74 ± 0.89 (0.52) *** 24.54 ± 0.28 (0.16) | 1.75 ± 0.00 (0.00) *** 1.93 ± 0.04 (0.02) | 50.53 ± 0.72 (0.42) ns 49.78 ± 0.47 (0.27) | 26.04 ± 0.83 (0.48) ns 25.86 ± 0.87 (0.50) |
2021 BL | Bigs Smalls | 25.01 ± 0.39 (0.23) ** 27.58 ± 0.53 (0.31) | 44.75 ± 1.10 (0.64) *** 23.26 ± 0.34 (0.19) | 1.76 ± 0.04 (0.02) ** 1.93 ± 0.04 (0.02) | 53.04 ± 0.97 (0.56) * 50.95 ± 0.93 (0.54) | 29.57 ± 1.99 (1.15) ns 28.04 ± 1.40 (0.81) | |
2020 CM | Bigs Smalls | 29.57 ± 0.63 (0.36) *** 34.26 ± 0.88 (0.51) | 40.79 ± 1.61 (0.93) *** 20.99 ± 0.80 (0.46) | 1.75 ± 0.09 (0.05) * 2.00 ± 0.01 (0.00) | 51.02 ± 0.98 (0.57) * 48.99 ± 1.11 (0.64) | 27.09 ± 0.67 (0.39) ns 26.65 ± 0.98 (0.56) | |
2021 CM | Bigs Smalls | 24.83 ± 1.11 (0.64) ** 28.81 ± 0.22 (0.13) | 44.66 ± 0.73 (0.42) *** 20.98 ± 0.79 (0.46) | 1.50 ± 0.02 (0.01) *** 1.75 ± 0.02 (0.01) | 52.68 ± 0.95 (0.55) ** 49.69 ± 0.19 (0.11) | 29.94 ± 1.38 (0.80) ns 27.60 ± 0.68 (0.39) | |
Edison | 2018 MV | Bigs Smalls | 21.61 ± 0.61 (0.35) ** 24.28 ± 0.59 (0.34) | 46.60 ± 1.03 (0.60) *** 26.20 ± 0.51 (0.29) | 1.65 ± 0.00 (0.00) ** 1.75 ± 0.04 (0.02) | 53.84 ± 1.69 (0.98) ** 49.35 ± 0.79 (0.46) | 29.88 ± 1.15 (0.66) * 26.59 ± 0.13 (0.08) |
2019 MV | Bigs Smalls | 22.05 ± 0.36 (0.21) *** 26.94 ± 0.20 (0.12) | 43.48 ± 2.23 (1.29) *** 22.60 ± 0.89 (0.51) | 1.35 ± 0.01 (0.00) *** 1.46 ± 0.00 (0.00) | 52.31 ± 1.86 (1.07) ns 50.40 ± 0.46 (0.26) | 28.19 ± 1.58 (0.91) ns 28.14 ± 0.80 (0.46) | |
2020 MV | Bigs Smalls | 22.65 ± 0.59 (0.34) *** 26.31 ± 0.58 (0.34) | 47.10 ± 3.16 (1.82) ** 20.70 ± 0.23 (0.13) | 1.39 ± 0.04 (0.02) *** 1.70 ± 0.02 (0.01) | 53.04 ± 2.13 (1.23) ns 50.49 ± 2.32 (1.34) | 30.08 ± 0.86 (0.50) * 26.51 ± 1.77 (1.02) | |
2021 BL | Bigs Smalls | 22.55 ± 0.73 (0.42) ** 25.45 ± 0.56 (0.32) | 41.51 ± 1.20 (0.69) *** 22.53 ± 0.71 (0.41) | 1.73 ± 0.06 (0.00) *** 1.94 ± 0.04 (0.02) | 52.88 ± 2.08 (1.20) ns 52.06 ± 1.45 (0.84) | 28.70 ± 0.79 (0.46) ns 27.72 ± 0.63 (0.36) | |
Ruth | 2019 MV | Bigs Smalls | 23.85 ± 0.62 (0.36) ** 26.96 ± 0.77 (0.44) | 45.13 ± 1.01 (0.58) *** 23.48 ± 0.41 (0.24) | 1.54 ± 0.06 (0.04) ** 1.70 ± 0.03 (0.02) | 52.09 ± 0.38 (0.22) ns 50.88 ± 1.03 (0.59) | 28.22 ± 0.41 (0.24) ns 27.42 ± 1.11 (0.64) |
2020 MV | Bigs Smalls | 21.89 ± 0.28 (0.16) *** 28.60 ± 0.21 (0.12) | 44.48 ± 0.66 (0.38) *** 22.08 ± 0.23 (0.13) | 1.49 ± 0.02 (0.01) *** 1.74 ± 0.02 (0.01) | 53.56 ± 0.94 (0.54) ns 51.35 ± 2.02 (1.17) | 29.16 ± 1.71 (0.99) ns 28.42 ± 1.61 (0.93) | |
2021 BL | Bigs Smalls | 21.85 ± 0.66 (0.38) *** 25.32 ± 0.30 (0.18) | 45.13 ± 1.01 (0.58) *** 24.08 ± 0.70 (0.41) | 1.49 ± 0.02 (0.01) *** 1.73 ± 0.02 (0.01) | 55.18 ± 1.18 (0.68) * 53.05 ± 1.12 (0.64) | 29.68 ± 1.69 (0.97) ns 28.49 ± 0.40 (0.23) | |
Very Blue | 2020 MV | Bigs Smalls | 24.86 ± 0.54 (0.31) ** 27.23 ± 0.21 (0.12) | 43.87 ± 1.26 (0.73) *** 22.30 ± 0.95 (0.55) | 1.54 ± 0.04 (0.02) *** 1.76 ± 0.02 (0.01) | 53.13 ± 1.52 (0.88) * 50.40 ± 0.95 (0.55) | 29.05 ± 0.54 (0.31) ns 27.83 ± 1.10 (0.64) |
FVCC Wheat | 2020 KL | Bigs Smalls | 23.37 ± 0.56 (0.32) * 24.85 ± 0.73 (0.42) | 29.55 ± 0.85 (0.49) *** 19.35 ± 0.54 (0.31) | 1.93 ± 0.02 (0.01) ** 2.05 ± 0.02 (0.01) | 50.40 ± 0.95 (0.55) ns 50.14 ± 0.95 (0.14) | 27.15 ± 1.12 (0.65) ns 26.49 ± 1.03 (0.59) |
Salish Blue | 2019 MV | Bigs Smalls | 27.73 ± 0.53 (0.30) ** 33.92 ± 1.72 (1.01) | 31.75 ± 3.56 (2.06) ** 21.49 ± 0.99 (0.57) | 1.96 ± 0.02 (0.01) *** 2.16 ± 0.04 (0.02) | 51.61 ± 1.01 (0.58) *** 46.52 ± 0.68 (0.39) | 27.06 ± 0.86 (0.50) ** 24.33 ± 0.17 (0.10) |
2021 MV2 | Bigs Smalls | 25.12 ± 0.36 (0.21) *** 29.03 ± 0.36 (0.21) | 41.52 ± 0.88 (0.51) ** 25.43 ± 3.43 (1.98) | 1.69 ± 0.00 (0.00) E 1.82 ± 0.00 (0.00) | 53.57 ± 0.95 (0.55) ** 50.39 ± 0.96 (0.55) | 29.72 ± 0.88 (0.51) ** 26.97 ± 0.79 (0.45) | |
Expresso | 2020 CM | Bigs Smalls | 24.53 ± 0.79 (0.45) *** 28.82 ± 0.40 (0.23) | 37.17 ± 0.31 (0.18) *** 20.96 ± 0.96 (0.55) | 1.59 ± 0.04 (0.02) *** 1.68 ± 0.01 (0.00) | 53.49 ± 1.02 (0.59) ns 52.00 ± 1.30 (0.75) | 29.79 ± 0.74 (0.43) ** 26.82 ± 0.25 (0.15) |
Seed Kernel Size | Bran per 100 g | TKW (g) | Ash (%) | Slice Height (mm) | Slice Surface Area (cm2) |
---|---|---|---|---|---|
Bigs | 24.09 ± 2.12 (0.29) *** | 41.71 ± 4.85 (0.66) *** | 1.63 ± 0.17 (0.02) *** | 52.66 ± 1.74 (0.23) *** | 28.69 ± 1.65 (0.22) *** |
Smalls | 27.91 ± 2.69 (0.37) | 22.60 ± 1.95 (0.27) | 1.82 ± 0.17 (0.02) | 50.47 ± 1.75 (0.23) | 27.27 ± 1.44 (0.19) |
Effect size (Cohen’s d) | 1.576 | 5.166 | 1.154 | 1.322 | 1.549 |
Mean ± SD | Range | |
---|---|---|
Skagit 1109 Control Bread Slice Height (mm) | 55.94 ± 1.54 (0.26) | 52.51–58.90 |
Skagit 1109 Control Bread Slice Surface Area (cm2) | 31.57 ± 1.42(0.24) | 29.12–36.09 |
Seed Kernel Size | Protein (%) | Range |
---|---|---|
Bigs | 9.56 ± 1.28 (0.30) ** | 7.12–11.86 |
Smalls | 10.78 ± 1.29 (0.30) | 8.86–13.35 |
Effect size (Cohen’s d) | 0.946 |
Mean ± SD | Range | |
---|---|---|
Mill-Reject Bread Slice Height (mm) | 100.43 ± 4.16 (1.20) | 92.31–106.32 |
Mill-Reject Bread Slice Surface Area (cm2) | 103.61 ± 6.22 (1.80) | 94.14–107.78 |
Skagit 1109 Control Bread Slice Height (mm) | 99.48 ± 1.93 (0.97) | 97.63–102.19 |
Skagit 1109 Control Bread Slice Surface Area (cm2) | 103.48 ± 3.58 (1.79) | 99.20–107.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metcalfe, M.C.; Estrada, H.E.; Jones, S.S. Climate-Changed Wheat: The Effect of Smaller Kernels on the Nutritional Value of Wheat. Sustainability 2022, 14, 6546. https://doi.org/10.3390/su14116546
Metcalfe MC, Estrada HE, Jones SS. Climate-Changed Wheat: The Effect of Smaller Kernels on the Nutritional Value of Wheat. Sustainability. 2022; 14(11):6546. https://doi.org/10.3390/su14116546
Chicago/Turabian StyleMetcalfe, Merri C., Heather E. Estrada, and Stephen S. Jones. 2022. "Climate-Changed Wheat: The Effect of Smaller Kernels on the Nutritional Value of Wheat" Sustainability 14, no. 11: 6546. https://doi.org/10.3390/su14116546
APA StyleMetcalfe, M. C., Estrada, H. E., & Jones, S. S. (2022). Climate-Changed Wheat: The Effect of Smaller Kernels on the Nutritional Value of Wheat. Sustainability, 14(11), 6546. https://doi.org/10.3390/su14116546