Estimating Pruning-Caused Loss on Ecosystem Services of Air Pollution Removal and Runoff Avoidance
Abstract
:1. Introduction
2. Material and Method
2.1. Assembling Tree Inventories for Assessment of Street Tree Community Structure
2.2. Quantification of ES and ES Values
2.3. Effect of Pruning Intensity on ES and ES Values
2.4. Visualization for Decision Making
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Berry, B.J.L. Urbanization. In Urban Ecology: An International Perspective on the Interaction between Humans and Nature; Marzluff, J.M., Shulenberger, E., Endlicher, W., Alberti, M., Bradley, G., Ryan, C., ZumBrunnen, C., Simon, U., Eds.; Springer: Boston, MA, USA, 2008; pp. 25–48. [Google Scholar]
- Goulder, L.H.; Schein, A.R. Carbon taxes versus cap and trade: A critical review. Clim. Change Econ. 2013, 4, 13500010. [Google Scholar] [CrossRef]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. (Eds.) Nature-based solutions to climate change adaptation in urban areas. In Theory and Practice of Urban Sustainability Transitions; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Alberti, M.; Marzluff, J.M. Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban Ecosyst. 2004, 7, 241–265. [Google Scholar] [CrossRef]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef] [Green Version]
- Livesley, S.J.; Mcpherson, E.G.; Calfapietra, C. The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Alves, P.L.; Formiga, K.T.M.; Traldi, M.A.B. Rainfall interception capacity of tree species used in urban afforestation. Urban Ecosyst. 2018, 21, 697–706. [Google Scholar] [CrossRef]
- Nytch, C.J.; Meléndez-Ackerman, E.J.; Pérez, M.-E.; Ortiz-Zayas, J.R. Rainfall interception by six urban trees in San Juan, Puerto Rico. Urban Ecosyst. 2019, 22, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J. Atmospheric carbon dioxide reduction by Chicago’s urban forest. In Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project; General Technical Report NE-186; McPherson, E.G., Nowak, D.J., Rowntree, R.A., Eds.; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Radnor, PA, USA, 1994; pp. 83–94. Available online: https://www.nrs.fs.fed.us/pubs/gtr/gtr_ne186.pdf (accessed on 1 December 2020).
- Grote, R.; Samson, R.; Alonso, R.; Amorim, J.H.; Cariñanos, P.; Churkina, G.; Fares, S.; Thiec, D.L.; Niinemets, Ü.; Mikkelsen, T.N.; et al. Functional traits of urban trees: Air pollution mitigation potential. Front. Ecol. Environ. 2016, 14, 543–550. [Google Scholar] [CrossRef]
- Baraldi, R.; Neri, L.; Costa, F.; Facini, O.; Rapparini, F.; Carriero, G. Ecophysiological and micromorphological characterization of green roof vegetation for urban mitigation. Urban For. Urban Green. 2019, 37, 24–32. [Google Scholar] [CrossRef]
- Clark, J.; Matheny, N. The research foundation to tree pruning: A review of the literature. Arboric. Urban For. 2010, 36, 110–120. [Google Scholar] [CrossRef]
- Ryder, C.M.; Moore, G.M. The arboricultural and economic benefits of formative pruning street trees. Arboric. Urban For. 2013, 39, 17–24. [Google Scholar] [CrossRef]
- Fini, A.; Frangi, P.; Faoro, M.; Piatti, R.; Amoroso, G.; Ferrini, F. Effects of different pruning methods on an urban tree species: A four-year-experiment scaling down from the whole tree to the chloroplasts. Urban For. Urban Green. 2015, 14, 664–674. [Google Scholar] [CrossRef]
- Reed, J.; van Vianen, J.; Foli, S.; Clendenning, J.; Yang, K.; MacDonald, M.; Petrokofsky, F.; Padoch, C.; Sunderland, T. Trees for life: The ecosystem service contribution of trees to food production and livelihoods in the tropics. For. Policy Econ. 2017, 84, 62–71. [Google Scholar] [CrossRef]
- USDA Forest Service. i-Tree Eco User’s Manual v 6.0; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Washington, DC, USA, 2016; p. 93.
- Nowak, D.J. Understanding i-Tree: Summary of Programs and Methods; General Technical Report NRS-200; U.S. Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2020; p. 100, [Plus 14 Appendixes]. [Google Scholar] [CrossRef]
- Lohbeck, M.; Bongers, F.; Martinez-Ramos, M.; Poorter, L. The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 2016, 97, 2772–2779. [Google Scholar] [CrossRef]
- Cottam, G.; Curtis, J.T. The use of distance measures in phytosociological sampling. Ecology 1956, 37, 451–460. [Google Scholar] [CrossRef]
- Curtis, J.T.; Mcintosh, R.P. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 1950, 31, 434–455. [Google Scholar] [CrossRef]
- McPherson, E.G.; Peper, P.J. Urban tree growth modeling. Arboric. Urban For. 2012, 38, 175–183. [Google Scholar] [CrossRef]
- Peper, P.J.; McPherson, E.G.; Mori, S.M. Equations for predicting diameter, height, crown width, and leaf area of San Joaquin Valley street trees. J. Arboric. 2001, 27, 306–317. Available online: https://www.fs.fed.us/psw/topics/urban_forestry/products/cufr_94_PP01_39.pdf (accessed on 1 December 2020). [CrossRef]
- Wang, X.; Yao, J.; Yu, S.; Miao, C.; Chen, W.; He, X. Street trees in a Chinese forest city: Structure, benefits and costs. Sustainability 2018, 10, 674. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A ground-based method of assessing urban forest structure and ecosystem services. Arboric. Urban For. 2008, 34, 347–358. [Google Scholar] [CrossRef]
- Wang, J.; Endreny, T.A.; Nowak, D.J. Mechanistic simulation of tree effects in an urban water balance model. J. Am. Water Resour. Assoc. 2008, 44, 75–85. [Google Scholar] [CrossRef]
- Hirabayashi, S. i-Tree Eco Precipitation Interception Model Descriptions v. 1.3; U.S. Department of Agriculture, Forest Service: Washington, DC, USA; Davey Tree Expert Co., and Other Cooperators: Kent, OH, USA, 2013; p. 21. Available online: https://www.itreetools.org/documents/61/iTree_Eco_Precipitation_Interception_Model_Descriptions.pdf (accessed on 10 May 2022).
- Hirabayashi, S. Air Pollutant Removals, Biogenic Emissions and Hydrologic. Estimates for i-Tree Applications v. 1.1; U.S. Department of Agriculture, Forest Service: Washington, DC, USA; Davey Tree Expert Co., and Other Cooperators: Kent, OH, USA, 2016; p. 57. Available online: https://www.itreetools.org/documents/112/Air_Pollutant_Removals_Biogenic_Emissions_and_Hydrologic_Estimates_for_iTree_v6_Applications.pdf (accessed on 10 May 2022).
- McPherson, E.G. Energy-Conserving Site Design; Landscape Architecture Foundation: Washington, DC, USA, 1984; p. 325. [Google Scholar]
- Nowak, D.J. Estimating leaf area and leaf biomass of open-grown deciduous urban trees. For. Sci. 1996, 42, 504–507. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Ibarra, M. Brooklyn’s Urban Forest; General Technical Report NE-290; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Newtown Square, PA, USA, 2002; p. 107. [Google Scholar]
- McPherson, E.G.; Xiao, Q.; van Doorn, N.S.; Johnson, N.; Albers, S.; Peper, P.J. Shade factors for 149 taxa of in-leaf urban trees in the USA. Urban For. Urban Green. 2018, 31, 204–211. [Google Scholar] [CrossRef]
- Killus, J.P.; Meyer, J.P.; Durran, D.R.; Anderson, G.E.; Jerskey, T.N.; Reynolds, S.D.; Ames, J. Continued Research in Mesoscale Air Pollution Simulation Modeling, Volume V: Refinements in Numerical Analysis, Transport, Chemistry, and Pollutant Removal; EPA-600/384-095a; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1984. [Google Scholar]
- Pederson, J.R.; Massman, W.J.; Mahrt, L.; Delany, A.; Oncley, S.; Hartog, G.D.; Neumann, H.H.; Mickle, R.E.; Shaw, R.H.; Paw U, K.T.; et al. California ozone deposition experiment: Methods, results, and opportunities. Atmos. Environ. 1995, 29, 3115–3132. [Google Scholar] [CrossRef]
- Nowak, D.J.; McHale, P.J.; Ibarra, M.; Crane, D.; Stevens, J.; Luley, C. Modeling the effects of urban vegetation on air pollution. In Air Pollution Modeling and Its Application, XII; Gryning, S.E., Chaumerliac, N., Eds.; Plenum Press: New York, NY, USA, 1998; pp. 399–407. [Google Scholar]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Hicks, B.B.; Camara, P. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos. Environ. 1987, 21, 91–101. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. The Urban Forest Effects UFORE model: Quantifying urban forest structure and functions. In Integrated Tools for Natural Resources Inventories in the 21st Century; General Technical Report, NC-212; Hansen, M., Burk, T., Eds.; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: St. Paul, MN, USA, 2000; pp. 714–720. Available online: https://www.nrs.fs.fed.us/pubs/gtr/gtr_nc212/gtr_nc212_714.pdf (accessed on 1 December 2020).
- Schomaker, M.E.; Zarnoch, S.J.; Bechtold, W.A.; Latelle, D.J.; Burkman, W.G.; Cox, S.M. Crown-Condition Classification: A Guide to Data Collection and Analysis; General Technical Report SRS-102; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2007; p. 78. Available online: https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs102.pdf (accessed on 1 December 2020).
- Mcpherson, E.G.; van Doorn, N.; de Goede, J. Structure, function and value of street trees in California, USA. Urban For. Urban Green. 2016, 17, 104–115. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Hirabayashi, S.; Shibata, S. Estimation of ecosystem services provided by street trees in Kyoto, Japan. Forests 2021, 12, 311. [Google Scholar] [CrossRef]
- Mcpherson, E.G.; Rowntree, R.A. Using structural measures to compare twenty-two U.S. street tree populations. Landsc. J. 1989, 8, 13–23. [Google Scholar] [CrossRef]
- Mcpherson, E.G.; Kotow, L. A municipal forest report card: Results for California, USA. Urban For. Urban Green. 2013, 12, 134–143. [Google Scholar] [CrossRef]
- Pincetl, S.; Gillespie, T.; Pataki, D.E.; Saatchi, S.; Saphores, J.D. Urban tree planting programs, function or fashion? Los Angeles and urban tree planting campaigns. GeoJournal 2013, 78, 475–493. [Google Scholar] [CrossRef]
- Santamour, F.S., Jr. Trees for urban planting: Diversity, uniformity, and common sense. In Proceedings of the Seventh Conference of the Metropolitan Tree Improvement Alliance (METRIA), Mills River, NC, USA, 11–12 June 1990; Volume 7, pp. 57–65. [Google Scholar]
- Pandey, R.K.; Kumar, H. Tree species diversity and composition in urban green spaces of Allahabad City (UP). Plant Arch. 2018, 18, 2687–2692. Available online: http://www.plantarchives.org/18-02/2687-2692%20(4426).pdf (accessed on 1 December 2020).
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Groffman, P.M.; Band, L.E.; Boone, C.G.; Burch, W.R.; Crimmond, C.S.B.; Hom, J.; Jenkins, J.C.; et al. Beyond urban legends: An emerging framework of urban ecology, as illustrated by the Baltimore Ecosystem Study. BioScience 2008, 58, 139–150. [Google Scholar] [CrossRef]
- Millward, A.A.; Sabir, S. Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- Vogt, J.M.; Hauer, R.J.; Fischer, B.C. The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboric. Urban For. 2015, 41, 293–323. [Google Scholar] [CrossRef]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef] [Green Version]
- American National Standard Institute [ANSI]. ANSI A300, Part 1–Tree, Shrub and Other Woody Plant Management–Standard Practice Pruning; Tree Care Industry Association: Londonderry, NH, USA, 2008. [Google Scholar]
Species | N | IV | Range of Shading Coefficient (S) | g/m2 | ||||
---|---|---|---|---|---|---|---|---|
Young | Maturing | Mature | Old | |||||
Ficus microcarpa | 12,985 | 37.0 | 0.006679 | 0.62–0.79 | 0.79–0.88 | 0.83–0.87 | 0.87–0.98 | 82.62 |
Bischofia jabanica | 9522 | 21.0 | 0.031487 | 0.58–0.75 | 0.75–0.88 | 0.79–0.84 | 0.84–0.91 | 178.57 |
Cinnamomum camphora | 8629 | 23.6 | 0.017635 | 0.63–0.80 | 0.80–0.93 | 0.84–0.89 | 0.89–0.92 | 67.57 |
Liquidamber formosana | 6785 | 13.6 | 0.021253 | 0.64–0.80 | 0.80–0.94 | 0.85–0.89 | 0.89–0.92 | 45.91 |
Koelreuteria elegans | 6669 | 16.4 | 0.016586 | 0.60–0.77 | 0.77–0.90 | 0.81–0.85 | 0.85–0.86 | 80.81 |
Melaleuca leucadendra | 4917 | 14.3 | 0.045497 | 0.57–0.62 | 0.74–0.87 | 0.78–0.82 | 0.82–0.87 | 130.34 |
Alstonia scholaris | 4227 | 8.1 | 0.00558 | 0.62–0.79 | 0.79–0.92 | 0.83–0.87 | 0.87–0.92 | 148.70 |
Terminalia mantaly | 2542 | 4.9 | 0.064823 | 0.55–0.72 | 0.72–0.85 | 0.76–0.80 | 0.80–0.81 | 130.34 |
Lagerstroemia speciosa | 2098 | 3.4 | 0.045215 | 0.57–0.74 | 0.74–0.87 | 0.78–0.82 | NA | 130.34 |
Millettia pinnata | 2008 | 4.0 | 0.030310 | 0.58–0.75 | 0.75–0.89 | 0.79–0.84 | 0.84–0.84 | 152.36 |
ES | Magnitude | Monetary Value | ||
---|---|---|---|---|
Total | Average | Total | Average | |
Annual Air Pollution Removal | 19.8 t/y | 227.3 g/tree/y | $0.20 million USD/y | $2.31 USD/tree/y |
(CO: 769.1 kg/y; | (CO: 8.8 g/tree/y; | |||
NO2: 4828.2 kg/y; | NO2: 55.5 g/tree/y | |||
O3: 13047.5 kg/y; | O3: 149.9 g/tree/y; | |||
PM2.5: 1141.5 kg/y) | PM2.5: 13.1 g/tree/y) | |||
Annual Runoff Avoidance | 68950.5 m3/y | 0.8 m3 /tree/y | $0.16 million USD/y | $1.87 USD/tree/y |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, S.; Cheng, S.-T. Estimating Pruning-Caused Loss on Ecosystem Services of Air Pollution Removal and Runoff Avoidance. Sustainability 2022, 14, 6637. https://doi.org/10.3390/su14116637
Wei S, Cheng S-T. Estimating Pruning-Caused Loss on Ecosystem Services of Air Pollution Removal and Runoff Avoidance. Sustainability. 2022; 14(11):6637. https://doi.org/10.3390/su14116637
Chicago/Turabian StyleWei, Shuo, and Su-Ting Cheng. 2022. "Estimating Pruning-Caused Loss on Ecosystem Services of Air Pollution Removal and Runoff Avoidance" Sustainability 14, no. 11: 6637. https://doi.org/10.3390/su14116637
APA StyleWei, S., & Cheng, S.-T. (2022). Estimating Pruning-Caused Loss on Ecosystem Services of Air Pollution Removal and Runoff Avoidance. Sustainability, 14(11), 6637. https://doi.org/10.3390/su14116637