Physicochemical Characterization and Assessment of Magnitude of Pollution to Contribute to Water Sustainability
Abstract
:1. Introduction
2. Material and Methods
2.1. Description of the Study Site
2.2. Choice of Stations to Study and Water Sampling
- -
- Station 1 (S1): 33°45′06.4″ N 06°11′06.3″ W, a bathing area where a stream emerges draining from a marshy depression located 1–2 km from the lake, depth 0–0.5 m, presence of macrophytes.
- -
- Station 2 (S2): 33°44′49.5″ N 06°10′52.6″ W, fed by a small stream coming from the SE, depth 0–0.5 m, the abundance of macrophytes.
- -
- Station 3 (S3): 33°44′38.0″ N 06°11′48.6″ W, located next to the Dar Eddaya hotel, abundance of macrophytes, depth 0–0.5 m.
- -
- Station 4 (S4): 33°44′45.2″ N 06°11′46.6″ W, the area where the Rho river emerges, depth 0–0.5 m, abundance of macrophytes.
- -
- Station 5 (S5): 33°45′07.5″ N 06°11′13.6″ W, campsite area, depth 0–0.5 m, presence of macrophytes.
- -
- Station 6 (S6): 33°44′48.9″ N 06°11′18.6″ W, the center of the lake, depth 1 m, no macrophytes.
- -
- Station 7 (S7): 33°44′45.38″ N 06°11′27.28″ W, the center of the lake, depth 5 m, no macrophytes.
- -
- Station 8 (S8): 33°44′50.28″ N 06°11′14.34″ W, the center of the lake, depth 9 m, no macrophytes.
2.3. Statistical Analysis of the Results
3. Results and Discussion
3.1. Physicochemical Characteristics of the Water in Lake Dayat Roumi
3.2. Correlations between Variables
3.3. Principal Component Analysis
3.4. Segmentation of Sampling Stations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholz, M.; Lee, B.H. Constructed wetlands: A review. Int. J. Environ. Stud. 2005, 62, 421–447. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A Typology for the Classification, Description and Valuation of Ecosystem Functions, Goods and Services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.L.; Zhao, Z.Y.; Zhan, W.; Zhao, S.S.; Dawson, R.W.; Tao, S. An ecosystem health index methodology (EHIM) for lake ecosystem health assessment. Ecol. Model. 2005, 188, 327–339. [Google Scholar] [CrossRef]
- Alcamo, J. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- MWO2. Mediterranean Wetlands Outlook 2: Solutions for Sustainable Mediterranean Wetlands; Tour du Valet: Arles, France, 2018. [Google Scholar]
- Han, Z.; Cui, B. Performance of macrophyte indicators to eutrophication pressure in ponds. Ecol. Eng. 2016, 96, 8–19. [Google Scholar] [CrossRef] [Green Version]
- MHUAE (Ministère de l’Habitat, de l’Urbanisme et de l’Aménagement de l’Espace). Etude du Plan d’aménagement Spécifique de Dayet Roumi, Phase II: Rapport D’analyse Diagnostic, Variantes D’aménagement; l’Agence Urbaine de Khémisset: Khémisset, Morocco, 2009. [Google Scholar]
- Khyri, M.; Chahlaoui, A. Contribution à L’étude Physico-Chimique et Bactériologique de L’écosystème Lacustre Dayet er Roumi (khemisset); ScienceLib Editions Mersenne: Khémisset, Morocco, 2013; p. 5. [Google Scholar]
- Et Touhami, M. Le Trias Evaporitique du Bassin de Khemisset (Maroc Central): Géométrie des Dépôts, Evolution Sédimentaire et Géochimie. Thèse de Doctorat, Université Claude Bernard, Lyon, France, 1992. [Google Scholar]
- El Wartiti, M. Les Terrains Permo-Carbonifères et leur Couverture dans la Zone de Tiddas-Souk Sebt. Bordure NW du Maroc Central. Thèse de Doctorat, Université Mohammed V, Rabat, Morocco, 1981. [Google Scholar]
- NMQE. Norme Marocaine Qualité des Eaux: Arrêté Conjoint du Ministre de L’équipement et du Ministre Chargé de L’aménagement du Territoire, de L’urbanisme, de L’habitat et de L’environnement n°1275, Grille de Qualité des eaux de Surface; Bulletin Officiel: Rabat, Morocco, 2002. [Google Scholar]
- Mishra, S.; Kumar, A.; Shukla, P. Study of water quality in Hindon River using pollution index and environmetrics, India. Desalination Water Treat. 2016, 57, 19121–19130. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, X.H.; Yang, Z.F.; Wang, F. Assessment of water quality in Baiyangdian Lake using multivariate statistical techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.R.; William, M. A Revised Classification of Lakes Based on Mixing. Can. J. Fish. Aquat. Sci. 1983, 40, 1779–1787. [Google Scholar] [CrossRef]
- Araoye, P.A. The seasonal variation of pH and dissolved oxygen (DO2) concentration in Asa lake Ilorin, Nigeri. Int. J. Phys. Sci. 2009, 4, 271–274. [Google Scholar]
- Lautz, L.K.; Hoke, G.D.; Lu, Z.; Siegel, D.I.; Christian, K.; Kessler, J.D.; Teale, N.G. Using Discriminant Analysis to Determine Sources of Salinity in Shallow Groundwater Prior to Hydraulic Fracturing. Environ. Sci. Technol. 2014, 48, 9061–9069. [Google Scholar] [CrossRef]
- Kelly, W.R.; Panno, S.V.; Hackley, K.C.; Hwang, H.; Martinsek, A.T.; Markusa, M. Using chloride and other ions to trace sewage and road salt in the Illinois Waterway. Appl. Geochem. 2010, 25, 661–673. [Google Scholar] [CrossRef]
- Lachavanne, J.B. Les manifestations de l’eutrophisation des eaux dans un grand lac profond: Le Léman (Suisse). Schweiz. Z. Hydrol. 1980, 42, 127–153. [Google Scholar] [CrossRef]
- Li, X.; Gan, Y.; Zhou, A.; Liu, Y. Relationship between water discharge and sulfate sources of the Yangtze River inferred from seasonal variations of sulfur and oxygen isotopic compositions. J. Geochem. Explor. 2015, 153, 30–39. [Google Scholar] [CrossRef]
- Kazi, T.G.; Arain, M.B.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Sarfraz, R.A.; Baig, J.A.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Utz, R.M.; Haq, S.; Gorman, J.; Grese, M. Freshwater salinization syndrome on a continental scale. Proc. Natl. Acad. Sci. USA 2018, 115, 574–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzinger, A.; Muller, B.; Niederhauser, P.; Schmid, M.; Wuest, A. Hypolimnetic oxygen consumption by sediment-based reduced substances in former eutrophic lakes. Limnol. Oceanogr. 2010, 55, 2073–2084. [Google Scholar] [CrossRef] [Green Version]
- Padedda, B.M.; Sechi, N.; Lai, G.G.; Mariani, M.A.; Pulina, S.; Sarria, M.; Satta, C.T.; Virdis, T.; Buscarinu, P.; Luglie, A. Consequences of Eutrophication in the Management of Water Resources in Mediterranean Reservoirs: A Case Study of Lake Cedrino (Sardinia, Italy). Glob. Ecol. Conserv. 2017, 12, 21–35. [Google Scholar] [CrossRef]
- Pinay, G.; Gascuel, C.; Ménesguen, A.; Souchon, Y.; le Moal, M.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P. L’eutrophisation: Manifestations, Causes, Conséquences et Prédictibilité. Synthèse de l’Expertise Scientifique Collective; CNRS-Ifremer-INRA-Irstea: France, 2017; 148p, Available online: https://hal.inrae.fr/hal-02791790 (accessed on 30 April 2022).
- Rezouki, S.; Allali, A.; Berady, K.; Habchaoui, J.; Eloutassi, N.; Fadli, M. The Impact of Physicochemical Parameters and Heavy Metals on the Biodiversity of Benthic Macrofauna in the Inaouene Wadi (Taza, North East Morocco). J. Ecol. Eng. 2021, 22, 231–241. [Google Scholar]
- Etebaai, I.; Damnati, B.; Raddad, H.; Benhardouz, H.; Benhardouz, O.; Miche, H.; Taieb, M. Impacts Climatiques et Anthropiques Sur Le Fonctionnement Hydrogéochimique Du Lac Ifrah (Moyen Atlas Marocain). Hydrol. Sci. J. 1992, 57, 547–561. [Google Scholar] [CrossRef] [Green Version]
- Parinet, B.; Lhote, A.; Legube, B.; Gbongue, M.A. Analytical and statistical study of a Iake System under various processes of eutrophication. Rev. Sci. Eau 2000, 13, 237–267. [Google Scholar]
- Shivanna, A.M.; Nagendrappa, G. Influence of Seasons on the Physico-chemical Water Quality Parameters of Halkurke Tank and Honnavalli (Hirekere) Tank Waters. Nat. Environ. Pollut. Technol. 2012, 11, 535–540. [Google Scholar]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. CATENA 2011, 92, 11–21. [Google Scholar] [CrossRef]
- Rahul, A.K.; Kushwaha, M.K.S.; Mathur, R.; Rahul, S.; Yadav, A. Assessment of Freshwater Quality of Angoori Reservoir, District Datia, Madhya Pradesh. Nat. Environ. Pollut. Technol. 2012, 11, 667–669. [Google Scholar]
- Bhat, S.A.; Meraj, G.; Yaseen, S.; Bhat, A.R.; Pandit, A.K. Assessing the impact of anthropogenic activities on spatio-temporal variation of water quality in Anchar lake, Kashmir Himalayas. Int. J. Environ. Sci. 2013, 3, 16. [Google Scholar]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 313, 77–89. [Google Scholar] [CrossRef]
- Benhamiche, N.; Sahi, L.; Tahar, S.; Bir, H.; Madani, K.; Laignel, B. Spatial and temporal variability of groundwater quality of an Algerian aquifer: The case of Soummam Wadi. Hydrol. Sci. J. 2014, 61, 775–792. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Jayaraman, P.R.; Devi, T.G.; Nayar, T.V. Water quality studies on Karamana river, Thiruvananthapuram district, South kerala, India. Pollut. Res. 2003, 22, 89–100. [Google Scholar]
- Malik, R.N.; Nadeem, M. Spatial and temporal characterization of trace elements and nutrients in the Rawal Lake Reservoir, Pakistan using multivariate analysis techniques. Environ. Geochem. Health 2011, 33, 525–541. [Google Scholar] [CrossRef]
Z | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | Guideline Value ∗ | |
---|---|---|---|---|---|---|---|---|---|---|
T (°C) | R M ± Sd. | 15.20–25.00 20.53 4.87 | 14.90–24.20 19.3 4.30 | 15.70–23.70 19.55 4.24 | 16.30–25.90 20.88 4.69 | 16.30–25.90 20.73 4.50 | 17.00–27.80 22.00 5.60 | 16.20–25.30 20.63 4.59 | 16.50–23.10 19.55 3.21 | 30 |
pH | R M ± Sd. | 8.41–8.85 8.68 0.20 | 8.25–8.74 8.59 0.23 | 8.41–9.20 8.83 0.35 | 8.05–8.83 8.51 0.34 | 8.40–8.78 8.62 0.16 | 8.43–8.91 8.72 | 8.27–8.75 8.46 0.20 | 7.86–8.38 8.10 0.25 | 6.5–9.2 |
EC (mS/cm) | R M ± Sd. | 2.95–3.08 3.00 0.06 | 3.00–3.06 3.03 0.03 | 2.95–3.05 3.00 0.04 | 2.94–3.03 3.00 0.04 | 2.97–3.01 3.00 0.02 | 2.94–3.02 2.96 0.04 | 2.83–3.03 2.94 0.09 | 2.72–3.04 2.89 0.13 | 2.7 |
TSS (mg/L) | R M ± Sd. | 2–100 27.5 48.37 | 2–123 55 51.17 | 2–196 66.25 91.45 | 6–186 58.25 85.52 | 2–10 6.5 3.42 | 2–5 3.5 1.29 | 4–30 12.5 11.93 | 2–10 6.25 3.5 | 1000 |
Cl− (mg/L) | R M ± Sd. | 829.53–914.61 885.36 39.30 | 875.62–921.70 902.20 19.74 | 850.80–911.07 886.25 25.40 | 836.62–900.43 877.39 29.30 | 831.30–886.25 869.85 25.86 | 825.99–889.80 872.07 30.77 | 836.62–886.25 871.18 23.22 | 786.99–889.80 862.32 50.25 | 750 |
SO42− (mg/L) | R M ± Sd. | 80.80–124.20 105.10 21.61 | 69.80–103.30 86.16 16.91 | 69.00–109.20 86.82 17.99 | 59.40–104.70 81.35 24.77 | 70.20–119.20 94.29 20.10 | 67.70–109.50 91.66 17.73 | 62.30–106.20 84.35 19.61 | 60.90–100.10 79.59 17.55 | 250 |
TA (mg/L) | R M ± Sd. | 10.00–25.00 20.00 7.07 | 0.00–25.00 13.75 11.09 | 10.00–25.00 16.25 7.50 | 10.00–20.00 16.88 4.73 | 10.00–20.00 17.50 5.00 | 10.00–20.00 16.25 4.79 | 10.00–17.50 13.13 3.75 | 0.00–15.00 6.25 7.50 | - |
CA (mg/L) | R M ± Sd. | 95.00–130.00 111.25 16.52 | 100.00–160.00 123.75 25.62 | 85.00–120.00 106.25 17.01 | 90.00–120.00 108.75 14.36 | 90.00–125.00 107.00 14.58 | 85.00–120.00 108.13 15.99 | 85.00–125.00 111.25 17.97 | 100.00–135.00 117.50 14.43 | - |
TH (mg/L) | R M ± Sd. | 250.00–480.00 380.00 95.57 | 250.00–440.00 382.50 90.32 | 270.00–420.00 362.50 66.52 | 290.00–440.00 380.00 66.83 | 250.00–440.00 375.00 89.63 | 250.00–440.00 375.00 89.63 | 180.00–440.00 352.50 118.71 | 240.00–440.00 365.00 90.00 | - |
CH (mg/L) | R M ± Sd. | 40.08–172.34 85.17 59.21 | 56.11–160.31 86.17 49.57 | 40.08–156.30 83.16 50.62 | 40.08–160.31 84.16 52.56 | 44.09–160.31 78.15 55.19 | 44.09–148.29 79.16 46.90 | 48.09–148.29 81.16 45.39 | 52.10–148.29 80.16 45.70 | - |
DO (mg/L) | R M ± Sd. | 7.42–10.41 8.63 1.30 | 2.32–11.25 7.17 3.69 | 2.60–9.88 7.34 3.26 | 2.76–11.60 7.55 3.70 | 2.50–11.88 7.64 3.89 | 6.98–11.40 8.72 1.89 | 5.65–9.20 7.56 1.47 | 4.83–8.02 6.52 1.68 | 3 |
NH4+ (mg/L) | R M ± Sd. | 0.01–0.06 0.020.02 | 0.01–0.08 0.030.03 | 0.01–0.08 0.020.03 | 0.01–0.04 0.010.01 | 0.01–0.06 0.020.02 | 0.01–0.051 0.020.02 | 0.01–0.13 0.070.04 | 0.01–0.163 0.060.07 | 2 |
NO2-N (mg/L) | R M ± Sd. | 0.01–0.01 0.010 | 0.01–0.04 0.01 0.01 | 0.01–0.01 0.010 | 0.01–0.01 0.010 | 0.01–0.01 0.010 | 0.01–0.01 0.010 | 0.01–0.01 0.010 | 0.01–0.01 0.010 | - |
NO3-N (mg/L) | R M ± Sd. | 0.4–0.55 0.430.07 | 0.4–0.66 0.460.13 | 0.4–1.16 0.590.38 | 0.4–0.7 0.470.15 | 0.4–0.4 0.40 | 0.4–0.4 0.40 | 0.4–0.4 0.40 | 0.4–0.4 0.40 | 11.3 |
TKN (mg/L) | R M ± Sd. | 0.1–5.29 2.182.54 | 0.1–5.07 2.432.04 | 0.1–6.04 2.312.83 | 0.1–7.17 2.77 3.39 | 0.1–6.86 2.533.2 | 0.1–0.1 0.10 | 0.1–7.69 2.413.6 | 0.1–12.07 4.145.49 | 3 |
TP-P (mg/L) | R M ± Sd. | 0.03–0.3 0.10.13 | 0.03–0.3 0.090.13 | 0.03–0.11 0.050.04 | 0.3–0.3 0.30 | 0.03–0.3 0.090.13 | 0.3–0.3 0.30 | 0.03–0.3 0.110.13 | 0.03–0.4 0.12 0.18 | 0.5 |
PO4-P (mg/L) | R M ± Sd. | 0.03–0.06 0.030.01 | 0.03–0.03 0.030 | 0.03–0.03 0.03 | 0.03–0.03 0.030 | 0.03–0.06 0.030.01 | 0.03–0.03 0.030 | 0.03–0.03 0.030 | 0.03–0.06 0.030.01 | 0.326 |
BOD (mg/L) | R M ± Sd. | 1–14 6.55.8 | 1–8 3.753.4 | 1–3 20.81 | 1–2 1.250.5 | 1–8 4.753.77 | 1–2 1.50.57 | 1–5 3 | 1–6 3.752.21 | 10 |
COD (mg/L) | R M ± Sd. | 4.9–19.5 13.476.14 | 14.6–98.9 40.27 | 10–24.5 16.47 | 13.4–24.5 20.25 | 4.9–24.5 14.6 | 9.8–21.9 145.71 | 9.8–19 12.8 | 14.5–19.4 17.52.37 | 40 |
- | PH | EC | DO | T | Cl− | SO42− | TH | CH | TA | CA | TSS | NO3−N | NH4+ | NO2−N | TKN | PO4−P | TP-P | COD | BOD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||||||||||
EC | 0.320 | 1 | |||||||||||||||||
DO | 0.609 ** | 0.074 | 1 | ||||||||||||||||
T | 0.035 | −0.107 | −0.399 * | 1 | |||||||||||||||
Cl− | 0.304 | 0.601 ** | 0.414 * | −0.426 * | 1 | ||||||||||||||
SO42− | 0.239 | −0.116 | 0.323 | −0.070 | 0.131 | 1 | |||||||||||||
TH | 0.164 | −0.179 | 0.198 | 0.392 * | 0.182 | 0.512 ** | 1 | ||||||||||||
CH | 0.024 | 0.406 * | 0.104 | −0.583 ** | 0.231 | −0.514 ** | −0.840 ** | 1 | |||||||||||
TA | 0.663 ** | 0.482 ** | 0.505 ** | −0.162 | 0.251 | −0.041 | −0.214 | 0.450 ** | 1 | ||||||||||
CA | −0.035 | 0.112 | 0.410 * | −0.419 * | 0.465 ** | −0.039 | 0.164 | 0.153 | 0.114 | 1 | |||||||||
TSS | 0.318 | 0.205 | 0.109 | −0.074 | 0.364 * | −0.152 | 0.066 | 0.053 | 0.005 | 0.039 | 1 | ||||||||
NO3−N | 0.349 | 0.144 | 0.035 | −0.112 | 0.223 | −0.181 | −0.123 | 0.200 | 0.135 | −0.089 | 0.876 ** | 1 | |||||||
NH4+ | −0.363 * | −0.083 | −0.131 | 0.304 | 0.014 | 0.150 | −0.124 | 0.025 | −0.167 | 0.202 | −0.144 | −0.134 | 1 | ||||||
NO2−N | −0.187 | 0.088 | −0.378 * | 0.049 | 0.260 | 0.089 | 0.065 | −0.106 | −0.382 * | −0.131 | 0.332 | 0.261 | 0.019 | 1 | |||||
TKN | 0.134 | −0.261 | 0.481 ** | −0.492 ** | 0.221 | 0.430 * | 0.176 | −0.029 | 0.004 | 0.211 | −0.013 | −0.041 | 0.412 * | −0.141 | 1 | ||||
PO4−P | −0.206 | −0.443 * | −0.302 | 0.264 | −0.669 ** | −0.039 | 0.007 | −0.268 | −0.152 | −0.235 | −0.145 | −0.100 | −0.080 | −0.058 | −0.227 | 1 | |||
TP-P | −0.273 | −0.582 ** | −0.457 ** | 0.333 | −0.599 ** | 0.034 | 0.036 | −0.359 * | −0.434 * | −0.380 * | −0.014 | −0.001 | −0.062 | 0.374 * | −0.110 | 0.771 ** | 1 | ||
COD | −0.067 | 0.130 | −0.278 | −0.023 | −0.109 | −0.226 | −0.236 | 0.235 | 0.142 | 0.377 * | −0.073 | −0.047 | 0.194 | 0.083 | −0.128 | 0.051 | 0.035 | 1 | |
BOD | −0.028 | 0.080 | −0.273 | 0.398 * | −0.149 | 0.056 | 0.140 | −0.254 | −0.044 | −0.243 | −0.064 | −0.037 | −0.088 | 0.278 | −0.273 | 0.534 ** | 0.503 ** | −0.020 | 1 |
Parameters | Component | ||
---|---|---|---|
1 | 2 | 3 | |
TP-P | 0.827 | −0.029 | 0.117 |
Cl− | 0.752 | 0.156 | 0.229 |
PO4-P | −0.718 | −0.073 | 0.017 |
DO | 0.667 | 0.506 | 0.017 |
T | −0.610 | 0.074 | 0.430 |
TA | 0.600 | −0.131 | 0.174 |
EC | 0.572 | −0.321 | 0.328 |
BOD | −0.494 | −0.035 | 0.364 |
CA | 0.484 | 0.118 | −0.329 |
TH | −0.163 | 0.814 | 0.276 |
SO42− | 0.000 | 0.784 | −0.003 |
CH | 0.558 | −0.715 | −0.207 |
TKN | 0.325 | 0.550 | −0.378 |
COD | 0.023 | −0.424 | −0.230 |
TSS | 0.276 | −0.106 | 0.668 |
NO3-N | 0.259 | −0.242 | 0.633 |
NH4+ | 0.035 | 0.049 | −0.580 |
pH | 0.496 | 0.260 | 0.551 |
NO2-N | −0.215 | −0.117 | 0.364 |
Eigen values | 4.62 | 2.85 | 2.56 |
Total variance (%) | 24.36 | 15.01 | 13.49 |
Cumulative variance (%) | 24.36 | 39.36 | 52.86 |
Stations | P OD | P Cl− | P SO42− | P TSS | P NO3-N | P NH4+ | P TKN | P PO4-P | P TP-P | P BOD | P COD | ΣPi | P | Quality Class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 SU | 0.00 | 1.106 | 0.372 | 0.006 | 0.035 | 0.015 | 0.033 | 0.2 | 0.600 | 1.40 | 0.49 | 4.26 | 0.387 | sub cleanness |
S1 AU | 0.30 | 1.182 | 0.323 | 0.002 | 0.035 | 0.005 | 0.033 | 0.1 | 0.060 | 0.30 | 0.38 | 2.71 | 0.246 | sub-cleanness |
S1 WI | 0.00 | 1.215 | 0.490 | 0.100 | 0.049 | 0.028 | 1.763 | 0.1 | 0.100 | 0.10 | 0.12 | 4.07 | 0.370 | sub cleanness |
S1 SP | 0.00 | 1.219 | 0.497 | 0.002 | 0.035 | 0.005 | 1.080 | 0.1 | 0.060 | 0.80 | 0.36 | 4.16 | 0.378 | sub cleanness |
S2 SU | 1.12 | 1.229 | 0.392 | 0.123 | 0.058 | 0.020 | 0.033 | 0.1 | 0.600 | 0.80 | 0.65 | 5.12 | 0.465 | slight pollution |
S2 AU | 0.36 | 1.167 | 0.294 | 0.002 | 0.035 | 0.038 | 0.673 | 0.1 | 0.060 | 0.10 | 2.47 | 5.31 | 0.483 | slight pollution |
S2 WI | 0.00 | 1.215 | 0.413 | 0.060 | 0.035 | 0.005 | 1.690 | 0.1 | 0.060 | 0.10 | 0.37 | 4.04 | 0.368 | sub cleanness |
S2 SP | 0.02 | 1.201 | 0.279 | 0.035 | 0.035 | 0.005 | 0.853 | 0.1 | 0.060 | 0.50 | 0.55 | 3.64 | 0.331 | sub-cleanness |
S3 SU | 1.08 | 1.134 | 0.372 | 0.002 | 0.035 | 0.040 | 0.033 | 0.1 | 0.220 | 0.20 | 0.61 | 3.83 | 0.348 | sub cleanness |
S3 AU | 0.09 | 1.186 | 0.276 | 0.196 | 0.103 | 0.005 | 1.003 | 0.1 | 0.060 | 0.20 | 0.36 | 3.58 | 0.325 | sub-cleanness |
S3 WI | 0.00 | 1.215 | 0.437 | 0.002 | 0.035 | 0.005 | 2.013 | 0.1 | 0.060 | 0.10 | 0.25 | 4.22 | 0.383 | sub cleanness |
S3 SP | 0.08 | 1.191 | 0.304 | 0.065 | 0.035 | 0.005 | 0.033 | 0.1 | 0.060 | 0.30 | 0.42 | 2.60 | 0.236 | sub-cleanness |
S4 SU | 1.05 | 1.115 | 0.403 | 0.006 | 0.035 | 0.020 | 0.033 | 0.1 | 0.060 | 0.10 | 0.61 | 3.53 | 0.321 | sub-cleanness |
S4 AU | 0.38 | 1.167 | 0.238 | 0.016 | 0.035 | 0.005 | 1.237 | 0.1 | 0.060 | 0.10 | 0.61 | 3.95 | 0.359 | sub cleanness |
S4 WI | 0.00 | 1.196 | 0.419 | 0.025 | 0.035 | 0.005 | 2.390 | 0.1 | 0.060 | 0.10 | 0.34 | 4.67 | 0.424 | slight pollution |
S4 SP | 0.00 | 1.201 | 0.242 | 0.186 | 0.062 | 0.005 | 0.033 | 0.1 | 0.060 | 0.20 | 0.47 | 2.55 | 0.232 | sub-cleanness |
S5 SU | 1.10 | 1.108 | 0.385 | 0.006 | 0.035 | 0.020 | 0.033 | 0.2 | 0.600 | 0.80 | 0.61 | 4.90 | 0.445 | slight pollution |
S5 AU | 0.31 | 1.177 | 0.281 | 0.008 | 0.035 | 0.005 | 1.023 | 0.1 | 0.060 | 0.20 | 0.36 | 3.56 | 0.324 | sub-cleanness |
S5 WI | 0.00 | 1.172 | 0.477 | 0.010 | 0.035 | 0.028 | 2.287 | 0.1 | 0.060 | 0.10 | 0.12 | 4.39 | 0.399 | sub cleanness |
S5 SP | 0.00 | 1.182 | 0.366 | 0.002 | 0.035 | 0.005 | 0.033 | 0.1 | 0.060 | 0.80 | 0.36 | 2.95 | 0.268 | sub-cleanness |
S6 SU | 0.00 | 1.101 | 0.395 | 0.003 | 0.035 | 0.005 | 0.033 | 0.1 | 0.060 | 0.20 | 0.36 | 2.30 | 0.209 | sub-cleanness |
S6 AU | 0.37 | 1.182 | 0.271 | 0.004 | 0.035 | 0.026 | 0.033 | 0.1 | 0.060 | 0.20 | 0.25 | 2.53 | 0.230 | sub-cleanness |
S6 WI | 0.00 | 1.186 | 0.438 | 0.005 | 0.035 | 0.005 | 0.033 | 0.1 | 0.060 | 0.10 | 0.25 | 2.21 | 0.200 | cleanness |
S6 SP | 0.00 | 1.182 | 0.363 | 0.002 | 0.035 | 0.005 | 0.033 | 0.1 | 0.060 | 0.10 | 0.55 | 2.43 | 0.221 | sub-cleanness |
S7 SU | 0.03 | 1.115 | 0.377 | 0.006 | 0.035 | 0.005 | 2.500 | 0.1 | 0.600 | 0.30 | 0.25 | 5.31 | 0.483 | slight pollution |
S7 AU | 0.23 | 1.177 | 0.249 | 0.004 | 0.035 | 0.040 | 0.033 | 0.1 | 0.060 | 0.30 | 0.25 | 2.47 | 0.225 | sub-cleanness |
S7 WI | 0.03 | 1.172 | 0.425 | 0.030 | 0.035 | 0.063 | 2.563 | 0.1 | 0.156 | 0.50 | 0.48 | 5.55 | 0.504 | slight pollution |
S7 SP | 0.48 | 1.182 | 0.299 | 0.010 | 0.035 | 0.036 | 0.033 | 0.1 | 0.060 | 0.10 | 0.32 | 2.65 | 0.241 | sub-cleanness |
S8 SU | 0.56 | 1.049 | 0.280 | 0.008 | 0.035 | 0.005 | 0.277 | 0.2 | 0.800 | 0.30 | 0.49 | 4.00 | 0.363 | sub cleanness |
S8 AU | 0.23 | 1.182 | 0.350 | 0.005 | 0.035 | 0.032 | 1.187 | 0.1 | 0.060 | 0.50 | 0.36 | 4.04 | 0.368 | sub cleanness |
S8 WI | 0.21 | 1.186 | 0.400 | 0.010 | 0.035 | 0.082 | 4.023 | 0.1 | 0.060 | 0.10 | 0.49 | 6.69 | 0.608 | slight pollution |
S8 SP | 0.67 | 1.182 | 0.244 | 0.002 | 0.035 | 0.005 | 0.033 | 0.1 | 0.060 | 0.60 | 0.42 | 3.35 | 0.305 | sub-cleanness |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ihsane, O.; Zahra, E.; Sanae, R.; Mohammed, E.; Bourhia, M.; Ali, G.A.M.; Ouahmane, L.; Salamatullah, A.M.; Aboul-Soud, M.A.M.; Giesy, J.P.; et al. Physicochemical Characterization and Assessment of Magnitude of Pollution to Contribute to Water Sustainability. Sustainability 2022, 14, 6689. https://doi.org/10.3390/su14116689
Ihsane O, Zahra E, Sanae R, Mohammed E, Bourhia M, Ali GAM, Ouahmane L, Salamatullah AM, Aboul-Soud MAM, Giesy JP, et al. Physicochemical Characterization and Assessment of Magnitude of Pollution to Contribute to Water Sustainability. Sustainability. 2022; 14(11):6689. https://doi.org/10.3390/su14116689
Chicago/Turabian StyleIhsane, Ougrad, Elassassi Zahra, Rezouki Sanae, Elbouch Mohammed, Mohammed Bourhia, Gomaa A. M. Ali, Lahcen Ouahmane, Ahmad M. Salamatullah, Mourad A. M. Aboul-Soud, John P. Giesy, and et al. 2022. "Physicochemical Characterization and Assessment of Magnitude of Pollution to Contribute to Water Sustainability" Sustainability 14, no. 11: 6689. https://doi.org/10.3390/su14116689
APA StyleIhsane, O., Zahra, E., Sanae, R., Mohammed, E., Bourhia, M., Ali, G. A. M., Ouahmane, L., Salamatullah, A. M., Aboul-Soud, M. A. M., Giesy, J. P., & Mohamed, F. (2022). Physicochemical Characterization and Assessment of Magnitude of Pollution to Contribute to Water Sustainability. Sustainability, 14(11), 6689. https://doi.org/10.3390/su14116689