Comprehensive Evaluation and Spatial-Temporal Pattern of Green Development in Hunan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Objects and Sources
2.3. Evaluation Index System Construction
2.4. Comprehensive Green Development Index
- Indicator data standardization:
- Index weight through principal component analysis:
- Index weight through analytic hierarchy process:
- Comprehensive green development index:
2.5. ArcGIS Spatial Analysis
- Global Moran’s I index:
- Local Moran’s I index
3. Results
3.1. Green Development Evaluation Results
3.1.1. Provincial Analysis
3.1.2. City Analysis
3.1.3. County Analysis
3.2. Spatial Autocorrelation
3.3. Spatial Heterogeneity Analysis
4. Discussion
5. Conclusions
- (1)
- According to the comprehensive judgment of the social, economic and environmental conditions in Hunan Province, investigate in-depth from multiple angles and levels to discover the restrictive factors of green development and implement ecological compensation or industrial transformation measures to reduce the restrictive effect.
- (2)
- The government could increase investment in energy conservation, emission reduction, and resource utilization; strengthen the control of pollutant discharge and resource waste; and encourage the development of emerging green industries.
- (3)
- Strengthen exchanges and cooperation between provinces and cities and introduce advanced management experience and technical means. Strengthen urban infrastructure construction, increase industrial production capacity, reduce pollution emissions, and ensure a balance between economic development and environmental protection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, C.; Wang, M.; Liu, G.C.; Huang, J.B. Green development performance and its influencing factors: A global perspective. J. Clean. Prod. 2017, 144, 323–333. [Google Scholar] [CrossRef]
- Liu, M.; Liu, C.; Pei, X.; Zhang, S.; Ge, X.; Zhang, H.; Li, Y. Sustainable Risk Assessment of Resource Industry at Provincial Level in China. Sustainability 2021, 13, 4191. [Google Scholar] [CrossRef]
- Zhang, R.; Lu, C.C.; Lee, J.H.; Feng, Y.; Chiu, Y.H. Dynamic Environmental Efficiency Assessment of Industrial Water Pollution. Sustainability 2019, 11, 3053. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Tsai, S.B.; Xue, X.; Ren, T.; Du, X.; Chen, Q.; Wang, J. An empirical study on green innovation efficiency in the green institutional environment. Sustainability 2018, 10, 724. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, Z.Q. Green development system innovation and policy simulation in Tianjin based on system dynamics model. Hum. Ecol. Risk Assess. 2020, 17, 773–789. [Google Scholar] [CrossRef]
- Chen, C.; Han, J.; Fan, P. Measuring the level of industrial green development and exploring its influencing factors: Empirical evidence from China’s 30 provinces. Sustainability 2016, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Tong, L.; Liu, D. An Empirical Study of the Measurement of Spatial-Temporal Patterns and Obstacles in the Green Development of Northeast China. Sustainability 2020, 12, 10190. [Google Scholar] [CrossRef]
- Yu, C.; Liu, W.; Khan, S.U.; Yu, C.; Jun, Z.; Yue, D.; Zhao, M. Regional differential decomposition and convergence of rural green development efficiency: Evidence from China. Environ. Sci. Pollut. Res. 2020, 27, 22364–22379. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, W.; Lu, W.; Zhao, M.; Li, L. Application of OECD LSE Framework to Assess Spatial Differences in Rural Green Development in the Arid Shaanxi Province, China. Int. J. Environ. Res. Public Health 2020, 17, 286. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Liu, Z.; Li, R.; Li, K. Sustainability Evaluation Based on a Three-Dimensional Ecological Footprint Model: A Case Study in Hunan, China. Sustainability 2018, 10, 4498. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.P.; Xue, B.; Lu, C.Y.; Wang, T.; Jiang, L.; Zhang, Z.L.; Ren, W.X. Sustainability investigation of resource-based cities in northeastern China. Sustainability 2016, 8, 1058. [Google Scholar] [CrossRef] [Green Version]
- Mori, K.; Yamashita, T. Methodological framework of sustainability assessment in City Sustainability Index (CSI): A concept of constraint and maximization indicators. Habitat Int. 2015, 45, 10–14. [Google Scholar] [CrossRef]
- Ali-Toudert, F.; Ji, L.M. Modeling and measuring urban sustainability in multi-criteria based systems—A challenging issue. Ecol. Indic. 2017, 73, 597–611. [Google Scholar] [CrossRef]
- Ding, L.; Shao, Z.; Zhang, H.; Xu, C.; Wu, D. A comprehensive evaluation of urban sustainable development in China based on the TOPSIS-Entropy method. Sustainability 2016, 8, 746. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Xu, H.; Wang, Y.; Yang, Y. Evaluation of water environmental carrying capacity of city in Huaihe River Basin based on the AHP method: A case in Huai’an City. Water Resour. Ind. 2017, 18, 71–77. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Sun, Y.; An, Y.; Dong, S.; Liu, G. Ecological security evaluation based on entropy matter-element model: A case study of Kunming city, southwest China. Ecol. Indic. 2019, 102, 469–478. [Google Scholar] [CrossRef]
- Wu, S.; Fu, Y.; Shen, H.; Liu, F. Using ranked weights and Shannon entropy to modify regional sustainable society index. Sustain. Cities Soc. 2018, 41, 443–448. [Google Scholar] [CrossRef]
- Xu, S.; Xu, D.; Liu, L. Construction of regional informatization ecological environment based on the entropy weight modified AHP hierarchy model. Sustain. Comput. Inform. Syst. 2019, 22, 26–31. [Google Scholar] [CrossRef]
- Ma, F.; He, J.; Ma, J.; Xia, S. Evaluation of urban green transportation planning based on central point triangle whiten weight function and entropy-AHP. Transp. Res. Procedia 2017, 25, 3634–3644. [Google Scholar] [CrossRef]
- Duan, Y.; Mu, H.; Li, N.; Li, L.; Xue, Z. Research on comprehensive evaluation of low carbon economy development level based on AHP-entropy method: A case study of Dalian. Energy Procedia 2016, 104, 468–474. [Google Scholar] [CrossRef]
- Rowe, G.; Wright, G. The Delphi technique as a forecasting tool: Issues and analysis. Int. J. Forecast. 1999, 15, 353–375. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Guo, Y.J. Comprehensive Evaluation Theory, Methods and Applications; Science Press: Beijing, China, 2007; pp. 44–47. [Google Scholar]
- Beijing Normal University, National Bureau of Statistics. 2016 China Green Development Index Report: Regional Comparison; Beijing Normal University Press: Beijing, China, 2016.
- Kim, S.E.; Kim, H.; Chae, Y. A new approach to measuring green growth: Application to the OECD and Korea. Future 2014, 63, 37–48. [Google Scholar] [CrossRef]
- Lyytimäki, J.; Antikainen, R.; Hokkanen, J.; Koskela, S.; Kurppa, S.; Känkänen, R.; Seppälä, J. Developing key indicators of green growth. Sustain. Dev. 2018, 26, 51–64. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Song, T. Calculation of the green development index. Soc. Sci. China 2014, 35, 69–95. [Google Scholar]
- Zhu, D. Research from global Sustainable Development Goals (SDGs) to sustainability science based on the object-subject-process framework. Chin. J. Popul. Resour. Environ. 2017, 15, 8–20. [Google Scholar] [CrossRef]
- Guo, H.W.; Yan, L.J. Application of urban development index and ecological footprint in the assessment of sustainable development of municipalities. J. Ecol. 2016, 36, 1–10. [Google Scholar]
- Xie, L.; Wang, J.J. Spatial differences in the performance of green development in rural China. China Popul. Resour. Environ. 2016, 26, 20–26. [Google Scholar]
- Lv, X.; Lu, X.; Fu, G.; Wu, C. A spatial-temporal approach to evaluate the dynamic evolution of green growth in China. Sustainability 2018, 10, 2341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chang, Y.; Zhang, L.; Li, D. Do technological innovations promote urban green development?—A spatial econometric analysis of 105 cities in China. J. Clean. Prod. 2018, 182, 395–403. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, X.; He, F.; Yuan, R. Regional green development level and its spatial relationship under the constraints of haze in China. J. Clean. Prod. 2019, 210, 376–387. [Google Scholar] [CrossRef]
- Rüstemoğlu, H. Factors affecting Germany’s green development over 1990–2015: A comprehensive environmental analysis. Environ. Sci. Pollut. Res. 2019, 26, 6636–6651. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, J.J.; Wang, Y.P.; Ren, J.L. Research on the spatio-temporal evolution trajectory and influence mechanism of green development in China. Geogr. Res. 2019, 38, 2745–2765. [Google Scholar]
- United Nations Environment Programme (UNEP). Green Economy: Cities Investing in Energy and Resource Efficiency; UNEP: Nairobi, Kenya, 2011. [Google Scholar]
- GGGI. The Global Green Economy Index-2014. Available online: http://www.indiaenvironmentportal.org.in/content/402430/the-global-green-economy-index-2014/ (accessed on 5 October 2014).
- Cassen, R.H. Our Common Future: Report of the World Commission on Environment and Development. Int. Aff. 1987, 64, 126. [Google Scholar] [CrossRef]
- The Organisation for Economic Co-operation and Development (OECD). Towards Green Growth: A Summary; OECD: Paris, France, 2011. [Google Scholar]
- Lipińska, D. Resource-efficcent growth in the EU’s sustainable development—A comparative analysis based on selected indicators. Comp. Econ. Res 2016, 19, 101–117. [Google Scholar]
- Luederitz, C.; Lang, D.J.; Wehrden, H.V. A systematic review of guiding principles for sustainable urban neighborhood development. Landsc. Urban Plan. 2013, 118, 40–52. [Google Scholar] [CrossRef]
- Xiao, S.; Xu, S.L.; Feng, L.; Yu, T. Comprehensive evaluation of sustainable development of cities of different sizes in China. J. Ecol. 2016, 36, 1–11. [Google Scholar]
- Xiao, L.Y.; Peng, L.; Min, J.C. Measuring the quality of urbanization development in Shaanxi Province based on sustainable development. Urban Dev. Res. 2013, 20, 52–56. [Google Scholar]
- Wang, X.; Sun, C.; Wang, S.; Zhang, Z.; Zou, W. Going green or going away? A spatial empirical examination of the relationship between environmental regulations, biased technological progress, and green total factor productivity. Int. J. Environ. Res. Public Health 2018, 15, 1917. [Google Scholar] [CrossRef] [Green Version]
- Stjepanović, S.; Tomić, D.; Škare, M.; Tvaronavičienė, M. A new approach to measuring green GDP: A cross-country analysis. Entrep. Sustain. Issues 2017, 4, 574–590. [Google Scholar] [CrossRef]
- Du, M.; Wang, B.; Wu, Y. Sources of China’s economic growth: An empirical analysis based on the BML index with green growth accounting. Sustainability 2014, 6, 5983–6004. [Google Scholar] [CrossRef] [Green Version]
- Na, J.H.; Choi, A.Y.; Ji, J.; Zhang, D. Environmental efficiency analysis of Chinese container ports with CO2, emissions: An inseparable input-output SBM model. J. Transp. Geogr. 2017, 65, 13–24. [Google Scholar] [CrossRef]
- Martin, J.; Henrichs, T.; Francis, C.; Hoogeveen, Y.; Kazmierczyk, P.; Pignatelli, R.; Speck, S. Environmental Indicator Report 2012: Ecosystem Resilience and Resource Efficiency in a Green Economy in Europe; European Environment Agency: Copenhagen, Denmark, 2012. [Google Scholar]
- Shi, B.; Yang, H.; Wang, J.; Zhao, J. City green economy evaluation: Empirical evidence from 15 sub-provincial cities in China. Sustainability 2016, 8, 551. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Yang, Y.; Hu, Y. Does foreign direct investment affect green growth? Evidence from China’s experience. Sustainability 2016, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.H. An empirical analysis of the level of green development and influencing factors in China’s rural areas. J. Shanxi Agric. Univ. Soc. Sci. Ed. 2019, 18, 46–53. [Google Scholar]
- Wang, J.J. Research on the Assessment of the Performance and Influencing Factors of Green Development in Rural China; Hunan University: Changsha, China, 2016. [Google Scholar]
- Wei, L.; Jin, C.; Lu, Y. Explorin resources and environmental carrying capacities at the county level: A case study of China’s Fengxian County. PLoS ONE 2019, 14, e0225683. [Google Scholar] [CrossRef] [Green Version]
- She, Y.; Shen, L.; Jiao, L.; Zuo, J.; Tam, V.W.; Yan, H. Constraints to achieve infrastructure sustainability for mountainous townships in China. Habitat Int. 2018, 73, 65–78. [Google Scholar] [CrossRef]
- Cheshmehzangi, A. Low carbon transition at the township level: Feasibility study of environmental pollutants and sustainable energy planning. Int. J. Sustain. Energy 2021, 40, 670–696. [Google Scholar] [CrossRef]
- Gang, Z.Y.; Heng, B. Evaluation and analysis of regional differences in the development of a green economy. Environ. Sci. 2014, 27, 1564–1570. [Google Scholar]
- Yin, X.; Zhang, X. Measurement and difference evaluation of greening in China. J. Environ. Manag. Coll. China 2017, 27, 23–27. [Google Scholar]
- Xu, J.L.; Tang, Z.H.; Shang, J.C.; Zhao, Y.H. Comprehensive Evaluation of Municipal Garbage Disposal in Changchun City by the Strategic Environmental Assessment. Environ. Sci. Pollut. Res. 2010, 17, 1090–1097. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.; Hu, D.; Wang, R.; Yang, W.; Li, D.; Zhao, D. Measurement indicators and an evaluation approach for assessing urban sustainable development: A case study for China’s Jining City. Landsc. Urban Plan. 2009, 90, 134–142. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W.; Yi, P.; Gong, C. Evaluation of city sustainability from the perspective of behavioral guidance. Sustainability 2019, 11, 6808. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Y.; Wen, H. Comprehensive Measurement and Regional Imbalance of China’s Green Development Performance. Sustainability 2021, 13, 1409. [Google Scholar] [CrossRef]
Target Layer | Criterion Layer | Index Layer | Unit | Index Types | Weight Value of Index Layer | |
---|---|---|---|---|---|---|
Hunan Province Green Development Evaluation Index System | Driving force (D) | D1 | GDP | CNY billion | Positive | 0.121 |
D2 | regional GDP | CNY 10 thousand | Positive | 0.139 | ||
D3 | household registrational population | Millions | Negative | 0.123 | ||
D4 | population density | millions/km2 | Negative | 0.115 | ||
D5 | total grain output. | tons | Positive | 0.132 | ||
D6 | DEM | Positive | 0.108 | |||
D7 | annual precipitation | L/m2 | Neutral | 0.138 | ||
D8 | mean annual temperature | °C | Neutral | 0.125 | ||
Pressure system (P) | P1 | industrial SO2 emissions | tons | Negative | 0.283 | |
P2 | PM2.5 | tons | Negative | 0.214 | ||
P3 | industrial soot emissions | tons | Negative | 0.255 | ||
P4 | industrial wastewater emissions | tons | Negative | 0.248 | ||
State system (S) | S1 | primary industry added value | CNY 10 thousand | Positive | 0.184 | |
S2 | second industry added value | CNY 10 thousand | Positive | 0.203 | ||
S3 | completed urban fixed assets investment | CNY 10 thousand | Positive | 0.206 | ||
S4 | road density | % | Positive | 0.198 | ||
S5 | water system density | % | Positive | 0.095 | ||
S6 | vegetation coverage | % | Positive | 0.114 | ||
Impact system (I) | I1 | number of beds in medical and health institutions | Positive | 0.304 | ||
I2 | number of industrial enterprises above scale | Positive | 0.299 | |||
I3 | road distance | m | Positive | 0.203 | ||
I4 | water distance | m | Positive | 0.193 | ||
Response system (R) | R1 | human disturbance index | % | Positive | 0.237 | |
R2 | comprehensive ecological service value | CNY | Positive | 0.381 | ||
R3 | land-use change rate | % | Positive | 0.381 |
GDI | 2005 (Year) | 2010 (Year) | 2015 (Year) | 2020 (Year) |
---|---|---|---|---|
Very fragile | 22.85% | 23.97% | 35.51% | 47.60% |
Extremely fragile | 28.31% | 26.24% | 51.23% | 34.18% |
Moderately vulnerable | 21.53% | 17.52% | 10.06% | 10.51% |
Relatively fragile | 11.45% | 15.02% | 2.25% | 4.04% |
Not fragile | 15.86% | 17.25% | 0.96% | 3.67% |
Ranking | 2005 | 2010 | 2015 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
City | Index | City | Index | City | Index | City | Index | |
1 | Loudi City | 0.038 | Yiyang City | 0.071 | Zhuzhou City | 0.689 | Loudi City | 0.422 |
2 | Zhuzhou City | 0.045 | Loudi City | 0.093 | Loudi City | 0.736 | Chenzhou City | 0.511 |
3 | Hengyang City | 0.234 | Xiangtan City | 0.164 | Yueyang City | 0.742 | Xiangxi Tujia and Miao Autonomous Prefecture | 0.681 |
4 | Xiangtan City | 0.315 | Yueyang City | 0.191 | Hengyang City | 0.795 | Yueyang City | 0.722 |
5 | Changde City | 0.369 | Hengyang City | 0.229 | Shaoyang City | 0.813 | Huaihua City | 0.786 |
6 | Yiyang City | 0.39 | Chenzhou City | 0.302 | Huaihua City | 0.865 | Zhuzhou City | 0.822 |
7 | Chenzhou City | 0.395 | Changde City | 0.33 | Xiangxi Tujia and Miao Autonomous Prefecture | 0.865 | Shaoyang City | 0.827 |
8 | Yueyang City | 0.415 | Zhuzhou City | 0.452 | Yongzhou City | 0.876 | Yongzhou City | 0.879 |
9 | Shaoyang City | 0.423 | Huaihua City | 0.579 | Chenzhou City | 0.902 | Hengyang City | 0.889 |
10 | Yongzhou City | 0.588 | Shaoyang City | 0.636 | Changsha City | 0.927 | Xiangtan City | 0.915 |
11 | Huaihua City | 0.732 | Yongzhou City | 0.751 | Yiyang City | 0.968 | Changde City | 0.999 |
12 | Xiangxi Tujia and Miao Autonomous Prefecture | 0.82 | Xiangxi Tujia and Miao Autonomous Prefecture | 0.773 | Changde City | 0.987 | Changsha City | 1 |
13 | Changsha City | 0.826 | Changsha City | 0.827 | Xiangtan City | 0.987 | Zhangjiajie City | 1 |
14 | Zhangjiajie City | 1 | Zhangjiajie City | 1 | Zhangjiajie City | 1 | Yiyang City | 1 |
City | Very Fragile | Extremely Fragile | Moderately Vulnerable | Relatively Fragile | Not Fragile |
---|---|---|---|---|---|
Changsha City | 0.674 | −0.500 | −0.145 | −0.025 | −0.004 |
Zhuzhou City | 0.509 | 0.252 | −0.064 | −0.105 | −0.592 |
Xiangtan City | 0.130 | 0.469 | −0.337 | −0.255 | −0.007 |
Hengyang City | 0.142 | 0.513 | −0.076 | −0.211 | −0.367 |
Shaoyang City | 0.313 | 0.091 | −0.292 | −0.069 | −0.043 |
Yueyang City | 0.072 | 0.234 | −0.168 | −0.071 | −0.066 |
Changde City | 0.678 | −0.047 | −0.233 | −0.327 | −0.070 |
Zhangjiajie City | −0.176 | 0.176 | 0.000 | 0.000 | 0.000 |
Yiyang City | 0.562 | 0.047 | −0.546 | −0.040 | −0.024 |
Chenzhou City | 0.081 | 0.035 | −0.150 | 0.009 | 0.024 |
Yongzhou City | 0.252 | 0.039 | −0.135 | 0.016 | −0.172 |
Huaihua City | 0.181 | −0.127 | 0.042 | −0.033 | −0.064 |
Loudi City | 0.010 | 0.375 | 0.498 | −0.054 | −0.828 |
Xiangxi Tujia and Miao Autonomous Prefecture | 0.000 | −0.139 | 0.045 | 0.008 | 0.086 |
County Name | 2005 | County Name | 2010 | County Name | 2015 | County Name | 2020 | Ranking |
---|---|---|---|---|---|---|---|---|
Shuangfeng County | 0.000 | Leiyang City | 0.017 | Guzhang County | 0.149 | Guzhang County | 0.138 | 1 |
Xinhua County | 0.000 | Xinhua County | 0.022 | Shuangpai County | 0.202 | Shuangpai County | 0.208 | 2 |
Lengshuijiang City | 0.000 | Anhua County | 0.038 | Yanling County | 0.274 | Guidong County | 0.253 | 3 |
Lianyuan City | 0.000 | Taojiang County | 0.043 | Yueyang County | 0.324 | Zixing City | 0.294 | 4 |
Zhuzhou County | 0.011 | Xiangyin County | 0.059 | Suining County | 0.337 | Luxi County | 0.303 | 5 |
Chaling County | 0.015 | Yuanjiang City | 0.059 | Zhuzhou County | 0.357 | Lengshuijiang City | 0.304 | 6 |
Hengyang County | 0.023 | Lianyuan City | 0.062 | Guidong County | 0.379 | Shuangfeng County | 0.330 | 7 |
Youxian County | 0.030 | Xiangxiang City | 0.064 | Hengshan County | 0.417 | Rucheng County | 0.331 | 8 |
Yanling County | 0.049 | Shuangfeng County | 0.071 | Hengdong County | 0.438 | Linwu County | 0.333 | 9 |
Hengnan County | 0.082 | Hanshou County | 0.083 | Tongdao Dong Autonomous County | 0.445 | Yongxing County | 0.334 | 10 |
Leiyang City | 0.111 | Hengyang County | 0.086 | Jingzhou Miao and Dong Autonomous County | 0.453 | Tongdao Dong Autonomous County | 0.347 | 11 |
Liling City | 0.114 | South County | 0.087 | Shuangfeng County | 0.467 | Chengbu Miao Autonomous County | 0.347 | 12 |
Qidong County | 0.135 | Yueyang County | 0.094 | Luxi County | 0.498 | Anren County | 0.355 | 13 |
Shuangpai County | 0.161 | Hengnan County | 0.109 | Lengshuijiang City | 0.517 | Baojing County | 0.356 | 14 |
Hengdong County | 0.165 | Hengdong County | 0.120 | Chengbu Miao Autonomous County | 0.526 | Suining County | 0.365 | 15 |
Taoyuan County | 0.178 | Qidong County | 0.125 | Jinshi City | 0.636 | Lianyuan City | 0.379 | 16 |
Hengshan County | 0.190 | Lixian County | 0.126 | Youxian County | 0.642 | Hongjiang City | 0.383 | 17 |
Lanshan County | 0.190 | Guzhang County | 0.132 | Jiangyong County | 0.685 | Fenghuang County | 0.391 | 18 |
Xiangtan County | 0.194 | Xiangtan County | 0.139 | Xiangyin County | 0.696 | Yanling County | 0.410 | 19 |
Hanshou County | 0.198 | Guiyang County | 0.157 | Linxiang City | 0.699 | Jingzhou Miao and Dong Autonomous County | 0.421 | 20 |
Guidong County | 0.228 | Hengshan County | 0.165 | Lianyuan City | 0.722 | Linxiang City | 0.435 | 21 |
Linwu County | 0.234 | Miluo City | 0.171 | Dongkou County | 0.724 | Yueyang County | 0.444 | 22 |
Anhua County | 0.253 | Pingjiang County | 0.178 | Dongan County | 0.748 | Xinhua County | 0.459 | 23 |
Chengbu Miao Autonomous County | 0.258 | Taoyuan County | 0.180 | Changsha County | 0.753 | Jiangyong County | 0.471 | 24 |
Zixing City | 0.275 | Zixing City | 0.187 | Wangcheng County | 0.763 | Huayuan County | 0.488 | 25 |
Jiangyong County | 0.281 | Shuangpai County | 0.191 | Zhijiang Dong Autonomous County | 0.790 | Hengshan County | 0.498 | 26 |
Anren County | 0.282 | Linwu County | 0.216 | Huitong County | 0.809 | Zhuzhou County | 0.513 | 27 |
Guiyang County | 0.282 | Lengshuijiang City | 0.221 | Hengnan County | 0.821 | Huitong County | 0.578 | 28 |
Suining County | 0.284 | Linxiang City | 0.236 | Huayuan County | 0.831 | Jinshi City | 0.636 | 29 |
Luxi County | 0.293 | Yanling County | 0.236 | Linwu County | 0.847 | Jiahe County | 0.652 | 30 |
Year | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|
Global Moran’s I index | 0.785 | 0.761 | 0.744 | 0.787 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zheng, K.; Zhong, Q. Comprehensive Evaluation and Spatial-Temporal Pattern of Green Development in Hunan Province, China. Sustainability 2022, 14, 6819. https://doi.org/10.3390/su14116819
Li Z, Zheng K, Zhong Q. Comprehensive Evaluation and Spatial-Temporal Pattern of Green Development in Hunan Province, China. Sustainability. 2022; 14(11):6819. https://doi.org/10.3390/su14116819
Chicago/Turabian StyleLi, Zhirong, Kaiheng Zheng, and Qikang Zhong. 2022. "Comprehensive Evaluation and Spatial-Temporal Pattern of Green Development in Hunan Province, China" Sustainability 14, no. 11: 6819. https://doi.org/10.3390/su14116819
APA StyleLi, Z., Zheng, K., & Zhong, Q. (2022). Comprehensive Evaluation and Spatial-Temporal Pattern of Green Development in Hunan Province, China. Sustainability, 14(11), 6819. https://doi.org/10.3390/su14116819