Biogas Potential from Slums as a Sustainable and Resilient Route for Renewable Energy Diffusion in Urban Areas and Organic Waste Management in Vulnerable Communities in São Paulo
Abstract
:1. Introduction
1.1. Waste Management in the Municipality of São Paulo
1.2. Electricity Consumption, Social Impact, and Biogas Relevance in the Context
2. Materials and Methods
2.1. Research Design
2.2. Study Area and Estimation of the Population Living in Slums
2.3. Organic Waste Generation and Environmental Impact
2.4. Bioelectricity Potential Assessment
3. Results and Discussion
3.1. Population in Slums, Organic Waste Generation, and Carbon Emissions
3.2. Bioelectricity Potential in Slums and Its Integration into the Local Energy Matrix
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- HabitaSAMPA. HabitaSampa. Available online: http://www.habitasampa.inf.br/ (accessed on 18 June 2021).
- United Nations. Sustainable Development Goals. 2021. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 7 March 2021).
- World Bank. Brazil: How do the Peri-Urban Poor Meet Their Energy Needs: A Case Study of Caju Shantytown, Rio de Janeiro; World Bank: Washington, DC, USA, 2006. [Google Scholar]
- Eneh, O.C. Abuja slums: Development, causes, waste-related health challenges, government response and way-forward. Environ. Dev. Sustain. 2020, 23, 9379–9396. [Google Scholar] [CrossRef]
- Ramachandra, T.; Bharath, H.; Kulkarni, G.; Han, S.S. Municipal solid waste: Generation, composition and GHG emissions in Bangalore, India. Renew. Sustain. Energy Rev. 2018, 82, 1122–1136. [Google Scholar] [CrossRef]
- Kothari, R.; Tyagi, V.; Pathak, A. Waste-to-energy: A way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev. 2010, 14, 3164–3170. [Google Scholar] [CrossRef]
- Fernando, R.L.S. Solid waste management of local governments in the Western Province of Sri Lanka: An implementation analysis. Waste Manag. 2018, 84, 194–203. [Google Scholar] [CrossRef]
- Anyaoku, C.C.; Baroutian, S. Decentralized anaerobic digestion systems for increased utilization of biogas from municipal solid waste. Renew. Sustain. Energy Rev. 2018, 90, 982–991. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Varghese, S. Exploring possibilities of achieving sustainability in solid waste management—PubMed. Indian J. Environ. Health 2003, 45, 255–264. Available online: https://pubmed.ncbi.nlm.nih.gov/15527017/ (accessed on 3 April 2021).
- Joshi, P.; Visvanathan, C. Sustainable management practices of food waste in Asia: Technological and policy drivers. J. Environ. Manag. 2019, 247, 538–550. [Google Scholar] [CrossRef]
- Amado, N.B.; Del, E.; Pelegia, B. Capacity Value from Wind and Solar Sources in Systems with Variable Dispatchable Capacity —An Application in the Brazilian Hydrothermal System. Energies 2021, 14, 2021. [Google Scholar] [CrossRef]
- IEA Bioenergy. Integration of Biogas Systems into the Energy System: Technical Aspects of Flexible Plant Operation; IEA Bioenergy: Paris, France, 2020. [Google Scholar]
- Jacobi, P.R.; Besen, G.R. Gestão de resíduos sólidos em São Paulo: Desafios da sustentabilidade. Estud. Av. 2011, 25, 135–158. [Google Scholar] [CrossRef] [Green Version]
- Comitê Intersecretarial para a Política Municipal de Resíduos Sólidos. Plano de Gestão Integrada de Resíduos Sólidos da Cidade de São Paulo; Comitê Intersecretarial para a Política Municipal de Resíduos Sólidos: São Paulo, Brazil, 2017.
- Liikanen, M.; Havukainen, J.; Viana, E.; Horttanainen, M. Steps towards more environmentally sustainable municipal solid waste management—A life cycle assessment study of São Paulo, Brazil. J. Clean. Prod. 2018, 196, 150–162. [Google Scholar] [CrossRef]
- Rodrigues, E.; Mondelli, G. Assessment of integrated MSW management using multicriteria analysis in São Paulo City. Int. J. Environ. Sci. Technol. 2021, 1–12. [Google Scholar] [CrossRef]
- Löfquist, L. Is there a universal human right to electricity? Int. J. Hum. Rights 2019, 24, 711–723. [Google Scholar] [CrossRef]
- Frigo, G.; Baumann, M.; Hillerbrand, R. Energy and the Good Life: Capabilities as the Foundation of the Right to Access Energy Services. J. Hum. Dev. Capab. 2021, 22, 218–248. [Google Scholar] [CrossRef]
- Von Wirth, T.; Gislason, L.; Seidl, R. Distributed energy systems on a neighborhood scale: Reviewing drivers of and barriers to social acceptance. Renew. Sustain. Energy Rev. 2018, 82, 2618–2628. [Google Scholar] [CrossRef]
- Hajiaghasi, S.; Salemnia, A.; Hamzeh, M. Hybrid energy storage system for microgrids applications: A review. J. Energy Storage 2020, 21, 543–570. [Google Scholar] [CrossRef]
- Pérez-Navarro, A.; Alfonso, D.; Ariza, H.; Cárcel, J.; Correcher, A.; Escrivá-Escrivá, G.; Hurtado, E.; Ibáñez, F.; Peñalvo, E.; Roig, R.; et al. Experimental verification of hybrid renewable systems as feasible energy sources. Renew. Energy 2015, 86, 384–391. [Google Scholar] [CrossRef]
- Wegener, M.; Schneider, J.V.; Malmquist, A.; Isalgue, A.; Martin, A.; Martin, V. Techno-economic optimization model for polygeneration hybrid energy storage systems using biogas and batteries. Energy 2020, 218, 119544. [Google Scholar] [CrossRef]
- Wu, T.; Bu, S.; Wei, X.; Wang, G.; Zhou, B. Multitasking multi-objective operation optimization of integrated energy system considering biogas-solar-wind renewables. Energy Convers. Manag. 2021, 229, 113736. [Google Scholar] [CrossRef]
- Navigant Netherland, B.V. Gas for Climate: A Path to 2050; Navigant Netherland B.V: Utrecht, The Netherland, 2019; Available online: https://www.gasforclimate2050.eu (accessed on 28 January 2022).
- Kelly-Pitou, K.M.; Ostroski, A.; Contino, B.; Grainger, B.; Kwasinski, A.; Reed, G. Microgrids and resilience: Using a systems approach to achieve climate adaptation and mitigation goals. Electr. J. 2017, 30, 23–31. [Google Scholar] [CrossRef]
- D’Aquino, C.A.; Santos, S.C.; Sauer, I.L. Biogas as an alternative source of decentralized bioelectricity for large waste producers: An assessment framework at the University of São Paulo. Energy 2022, 239, 122326. [Google Scholar] [CrossRef]
- IBGE. Gross Domestic Product of Municipalities. 2020. Available online: https://www.ibge.gov.br/en/statistics/economic/national-accounts/19567-gross-domestic-product-of-municipalities.html?=&t=o-que-e (accessed on 18 June 2021).
- GlobalData. Tokyo Tops GlobalData’s List of Top 25 Cities by GDP in 2018. 2019. Available online: https://www.globaldata.com/tokyo-tops-globaldatas-list-of-top-25-cities-by-gdp-in-2018/ (accessed on 18 June 2021).
- Rede Nossa São Paulo. Mapa da Desigualdade; Rede Nossa São Paulo: São Paulo, Brazil, 2020. [Google Scholar]
- Santos, M.M.; Romanel, C.; van Elk, A.G.H.P. Análise da eficiência de modelos de decaimento de primeira ordem na previsão da emissão de gás de efeito estufa em aterros sanitários brasileiros. Eng. Sanit. Ambient. 2017, 22, 1151–1162. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. 2013. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 3 April 2021).
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). População. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao.html (accessed on 18 June 2021).
- Jia, X.; Wang, S.; Li, Z.; Wang, F.; Tan, R.R.; Qian, Y. Pinch analysis of GHG mitigation strategies for municipal solid waste management: A case study on Qingdao City. J. Clean. Prod. 2018, 174, 933–944. [Google Scholar] [CrossRef]
- Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais (ABRELPE). Panorama dos Resíduos Sólidos no Brasil 2020. 2020. Available online: https://abrelpe.org.br/panorama-2020/ (accessed on 3 April 2021).
- IBGE. Population Projection. 2019. Available online: https://www.ibge.gov.br/en/statistics/social/population/18176-population-projection.html?=&t=resultados (accessed on 24 February 2021).
- Banks, C.J.; Heaven, S. Optimisation of biogas yields from anaerobic digestion by feedstock type. In The Biogas Handbook: Science, Production and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 131–165. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Q.; Gul, E.; Shi, M.; Li, J.; Yang, M.; Yang, H.; Chen, B.; Zhao, H.; Yan, Y.; et al. Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis. Renew. Energy 2021, 176, 565–578. [Google Scholar] [CrossRef]
- Collaço, F.M.D.A.; Simoes, S.G.; Dias, L.P.; Duic, N.; Seixas, J.; Bermann, C. The dawn of urban energy planning—Synergies between energy and urban planning for São Paulo (Brazil) megacity. J. Clean. Prod. 2019, 215, 458–479. [Google Scholar] [CrossRef]
- São Paulo. Consumo de Energia no Estado de São Paulo, Ranking Paulista de Energia. 2019. Available online: http://dadosenergeticos.energia.sp.gov.br/Portalcev2/Municipios/ranking/index.html (accessed on 18 June 2019).
- Köhler, J.; Geels, F.W.; Kern, F.; Markard, J.; Onsongo, E.; Wieczorek, A.; Alkemade, F.; Avelino, F.; Bergek, A.; Boons, F.; et al. An agenda for sustainability transitions research: State of the art and future directions. Environ. Innov. Soc. Transit. 2019, 31, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Patinvoh, R.; Taherzadeh, M.J. Challenges of biogas implementation in developing countries. Curr. Opin. Environ. Sci. Health 2019, 12, 30–37. [Google Scholar] [CrossRef]
- Hettiarachchi, H.; Meegoda, J.N.; Ryu, S. Organic Waste Buyback as a Viable Method to Enhance Sustainable Municipal Solid Waste Management in Developing Countries. Int. J. Environ. Res. Public Health 2018, 15, 2483. [Google Scholar] [CrossRef] [Green Version]
- Koszel, M.; Lorencowicz, E. Agricultural use of biogas digestate as a replacement fertilizers. Agric. Agric. Sci. Procedia 2015, 7, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Resources: An Introduction; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. [Google Scholar] [CrossRef]
- Artmann, M.; Sartison, K. The Role of Urban Agriculture as a Nature-Based Solution: A Review for Developing a Systemic Assessment Framework. Sustainability 2018, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Warneryd, M.; Håkansson, M.; Karltorp, K. Unpacking the complexity of community microgrids: A review of institutions’ roles for development of microgrids. Renew. Sustain. Energy Rev. 2020, 121, 109690. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Moreira, M.T. The environmental effect of substituting energy crops for food waste as feedstock for biogas production. Energy 2017, 137, 1130–1143. [Google Scholar] [CrossRef]
- Skovsgaard, L.; Jacobsen, H.K. Economies of scale in biogas production and the significance of flexible regulation. Energy Policy 2017, 101, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Piñas, J.A.V.; Venturini, O.J.; Lora, E.E.S.; del Olmo, O.A.; Roalcaba, O.D.C. An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems. Renew. Energy 2019, 139, 40–51. [Google Scholar] [CrossRef]
Parameter | 11 Districts >20% Inhabitants in Slums | 10 Districts with no Inhabitants in Slums | Slums Total | City Total |
---|---|---|---|---|
Total population | 2,354,117 | 683,891 | 1,430,764 | 11,869,350 |
Population in Slums | 799,245 | 0 | ||
Total OFMSW generation (t/y) | 715,757 | 207,933.6 | 435,016 | 3,608,816.5 |
OFMSW generation in slums (t/y) | 243,006 | 0 | 435,016.6 | |
Mismanaged OFMSW (t/y) | 361,882 | 39,479 | 222,959 | 1,738,238 |
Mismanaged OFMSW in slums (t/y) | 125,807 | 0 | 222,959 | |
Average waste collection rate (t/inhabitant.y) | 0.30 | 0.53 | - | 0.35 |
Total CO2eq emissions from mismanaged OFMSW (Gg/y) | 574.4 | 47.96 | 1012.8 | 2111.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Aquino, C.A.; Pereira, B.A.; Sawatani, T.F.; de Moura, S.C.; Tagima, A.; Ferrarese, J.C.B.B.; Santos, S.C.; Sauer, I.L. Biogas Potential from Slums as a Sustainable and Resilient Route for Renewable Energy Diffusion in Urban Areas and Organic Waste Management in Vulnerable Communities in São Paulo. Sustainability 2022, 14, 7016. https://doi.org/10.3390/su14127016
D’Aquino CA, Pereira BA, Sawatani TF, de Moura SC, Tagima A, Ferrarese JCBB, Santos SC, Sauer IL. Biogas Potential from Slums as a Sustainable and Resilient Route for Renewable Energy Diffusion in Urban Areas and Organic Waste Management in Vulnerable Communities in São Paulo. Sustainability. 2022; 14(12):7016. https://doi.org/10.3390/su14127016
Chicago/Turabian StyleD’Aquino, Camila Agner, Bruno Alves Pereira, Tulio Ferreira Sawatani, Samantha Coelho de Moura, Alice Tagima, Júlia Carolina Bevervanso Borba Ferrarese, Samantha Christine Santos, and Ildo Luis Sauer. 2022. "Biogas Potential from Slums as a Sustainable and Resilient Route for Renewable Energy Diffusion in Urban Areas and Organic Waste Management in Vulnerable Communities in São Paulo" Sustainability 14, no. 12: 7016. https://doi.org/10.3390/su14127016
APA StyleD’Aquino, C. A., Pereira, B. A., Sawatani, T. F., de Moura, S. C., Tagima, A., Ferrarese, J. C. B. B., Santos, S. C., & Sauer, I. L. (2022). Biogas Potential from Slums as a Sustainable and Resilient Route for Renewable Energy Diffusion in Urban Areas and Organic Waste Management in Vulnerable Communities in São Paulo. Sustainability, 14(12), 7016. https://doi.org/10.3390/su14127016