The Spatial-Temporal Evolution of China’s Carbon Emission Intensity and the Analysis of Regional Emission Reduction Potential under the Carbon Emissions Trading Mechanism
Abstract
:1. Introduction
2. Research Methods
2.1. Total Carbon Emissions and Carbon Intensity Accounting
2.2. Measurement of Regional Differences in Carbon Emissions in China
2.3. Identification of Factors Affecting Carbon Emissions
2.3.1. Economic Development Level
2.3.2. Energy Consumption
2.3.3. Environmental Regulation
2.3.4. Industrial Structure
2.3.5. Low-Carbon Technology Innovation
2.3.6. Carbon Emissions Trading Mechanism
2.4. Spatial-Temporal Correlation Analysis of Regional Carbon Emissions in China
2.4.1. Global Spatial Autocorrelation Analysis
2.4.2. Geographically Weighted Regression Model
3. Results and Analysis
3.1. Measurement Results of Carbon Emissions
3.1.1. Provincial Carbon Emissions and Intensity
3.1.2. Regional Difference Analysis of Carbon Emissions in China
3.1.3. Emission Reduction Analysis of Carbon Emissions Trading Markets
3.2. Identification Results of Carbon Emissions’ Influencing Factors
3.3. Analysis of the Spatial-Temporal Correlation Results of China’s Regional Carbon Emissions
3.3.1. Global Spatial Autocorrelation Analysis
3.3.2. Geographically Weighted Regression Analysis
4. Discussion
4.1. Evaluation of Carbon Emission Reduction Effectiveness of Carbon Emissions Trading Mechanisms
4.1.1. Measurement of Relative Emission Reduction Rates
4.1.2. Assessment of Total Carbon Emissions Quota Slack
4.1.3. Construction of Emission Reduction Effectiveness Evaluation Criteria of Carbon Emissions Trading Mechanisms
4.1.4. Evaluation Process
4.1.5. Evaluation Results
4.2. Analysis of Carbon Emission Reduction Potential in China’s Provinces
4.2.1. Establishment of Carbon Emission Environment Learning Curve
4.2.2. Analysis of Carbon Emission Reduction Potential Based on the Environmental Learning Curve
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Zhang, Y.; Qin, Y.C.; Jiang, X.Y. The Spatial-Temporal Differentiation of the Influence Factors of Carbon Emissions and the Regulation in China. Econ. Geogr. 2016, 8, 158–165. [Google Scholar]
- Liu, X.; Yang, X.; Guo, R. Regional Differences in Fossil Energy-Related Carbon Emissions in China’s Eight Economic Regions: Based on the Theil Index and PLS-VIP Method. Sustainability 2020, 12, 2576. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Xia, H.; Zhang, X.; Yuan, S. What matters for carbon emissions in regional sectors? A China study of extended STIRPAT model. J. Clean. Prod. 2018, 180, 595–602. [Google Scholar] [CrossRef]
- Wu, J.; Cui, C.; Guo, X. Impacts of the West–East Gas Pipeline Project on energy conservation and emission reduction:empirical evidence from Hubei province in Central China. Environ. Sci. Pollut. Res. 2022, 29, 28149–28165. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, S.; Shao, X.; He, Y. Policy spillover effect and action mechanism for environmental rights trading on green innovation: Evidence from China’s carbon emissions trading policy. Renew. Sustain. Energy Rev. 2022, 153, 111779. [Google Scholar] [CrossRef]
- Cui, J.; Wang, M.Z. Study on carbon emission trading status at home and abroad and suggestions for enterprises participating in carbon trading activities. Energy Conserv. 2014, 4, 4–6. [Google Scholar]
- Xuan, D.; Ma, X.; Shang, Y. Can China’s policy of carbon emission trading promote carbon emission reduction? J. Clean. Prod. 2020, 270, 122383. [Google Scholar] [CrossRef]
- Xia, Q.; Li, L.; Dong, J.; Zhang, B. Reduction Effect and Mechanism Analysis of Carbon Trading Policy on Carbon Emissions from Land Use. Sustainability 2021, 13, 9558. [Google Scholar] [CrossRef]
- Aihua, L.; Miglietta, P.P.; Toma, P. Did carbon emission trading system reduce emissions in China? An integrated approach to support policy modeling and implementation. Energy Syst. 2021, 13, 437–459. [Google Scholar] [CrossRef]
- He, S.; Chen, H.; Yu, J.; Chen, G.H.; Cui, J.S.; Xu, C.M. Estimation Methods for VOCs Emission from Refinery and Petrochemical Wastewater. Environ. Prot. Chem. Ind. 2015, 6, 620–624. [Google Scholar]
- Premathilake, R. Relationship of environmental changes in central Sri Lanka to possible prehistoric land-use and climate changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 240, 468–496. [Google Scholar] [CrossRef]
- Büntgen, U.; Egli, S.; Schneider, L.; Von Arx, G.; Rigling, A.; Camarero, J.J.; Sangüesa-Barred, G.; Fischer, C.R.; Oliach, D.; Bonet, J.A.; et al. Long-term irrigation effects on Spanish holm oak growth and its black truffle symbiont. Agriculture. Ecosyst. Environ. 2015, 202, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Wu, Z.; Zheng, H.; Li, M.; Tan, T. How urban agglomeration improve the emission efficiency ? A spatial econometric analysis of the Yangtze River Delta urban agglomeration in China. J. Environ. Manag. 2020, 260, 110061.1–110061.8. [Google Scholar] [CrossRef]
- Pruell, R.J.; Taplin, B.K.; Karr, J.D. Spatial and temporal trends in stable carbon and oxygen isotope ratios of juvenile winter flounder otoliths. Environ. Biol. Fishes 2012, 93, 61–71. [Google Scholar] [CrossRef]
- Ye, B.; Jiang, J.; Miao, L.; Xie, D. Interprovincial allocation of China’s national carbon emission allowance: An uncertainty analysis based on Monte-Carlo simulations. Clim. Policy 2017, 17, 401–422. [Google Scholar] [CrossRef]
- Chang, K.; Chang, H. Cutting CO2 intensity targets of interprovincial emissions trading in China. Appl. Energy 2016, 163, 211–221. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ji, Q. Regional differences and driving factors analysis of carbon emission intensity from transport sector in China. Energy 2021, 224, 120178. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Z.; Zhang, J. Research on carbon emission differences decomposition and spatial heterogeneity pattern of China’s eight economic regions. Environ. Sci. Pollut. Res. 2022, 29, 29976–29992. [Google Scholar] [CrossRef]
- Du, Y.; Liu, Y.; Hossain, M.A.; Chen, S. The decoupling relationship between China’s economic growth and carbon emissions from the perspective of industrial structure. Popul. Resour. Environ. China Engl. Version 2022, 20, 10. [Google Scholar] [CrossRef]
- Du, L.; Zhao, H.; Tang, H.; Jiang, P.; Ma, W. Analysis of the synergistic effects of air pollutant emission reduction and carbon emissions at coal-fired power plants in China. Environ. Prog. Sustain. Energy 2021, 40, e13630. [Google Scholar] [CrossRef]
- An, Y.; Zhou, D.; Yu, J.; Shi, X.; Wang, Q. Carbon emission reduction characteristics for China’s manufacturing firms:Implications for formulating carbon policies. J. Environ. Manag. 2021, 284, 112055. [Google Scholar] [CrossRef] [PubMed]
- Rigby, D.; Young, T. European Environmental Regulations to Reduce Water Pollution: An Analysis of Their Impact on UK Dairy Farms. Eur. Rev. Agric. Econ. 2000, 23, 59–78. [Google Scholar] [CrossRef]
- Lenz, R.T. Environment, strategy, organization structure and performance: Patterns in one industry. Strateg. Manag. J. 2010, 1, 209–226. [Google Scholar] [CrossRef]
- Yang, H.; Chen, W. Spatio-temporal pattern of urban vegetation carbon sink and driving mechanisms of human activities in Huaibei, China. Environ. Sci. Pollut. Res. 2022, 29, 31957–31971. [Google Scholar] [CrossRef]
- Roy, S.; Lam, Y.F.; Hossain, M.U.; Chan, J.C.L. Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam. Renew. Sustain. Energy Rev. 2022, 157, 112009. [Google Scholar] [CrossRef]
- Wang, W.; Wang, D.; Ni, W.; Zhang, C. The impact of carbon emissions trading on the directed technical change in China. J. Clean. Prod. 2020, 272, 122891. [Google Scholar] [CrossRef]
- Fotheringhamas, B.C. Geographi-Callyweightedregression; Wiley: New York, NY, USA, 2002. [Google Scholar]
- Zheng, W. The Setting of Initial Allocation Approaches of Carbon Emission Permits. Sci. Technol. Ind. 2011, 10, 105–107. [Google Scholar]
- Cai, W.; Lai, K.H.; Liu, C.; Wei, F.; Ma, M.; Jia, S.; Jiang, Z.; Lv, L. Promoting sustainability of manufacturing industry through the lean energy-saving and emission-reduction strategy. Sci. Total Environ. 2019, 665, 23. [Google Scholar] [CrossRef]
- Pérez-Suárez, R.; López-Menéndez, A.J. Growing green? Forecasting CO2 emissions with Environmental Kuznets Curves and Logistic Growth Models. Environ. Sci. Policy 2015, 54, 428–437. [Google Scholar] [CrossRef]
- Zhang, L.X.; Wang, C.B.; Song, B. Carbon emission reduction potential of a typical household biogas system in rural China. J. Clean. Prod. 2013, 47, 415–421. [Google Scholar] [CrossRef]
- Feng, X.; Nan, X.; Yan, J.; Chen, L.; Nijkamp, P.; Higano, Y. Dynamic simulation of China’s carbon emission reduction potential by 2020. Lett. Spat. Resour. Sci. 2015, 8, 15–27. [Google Scholar]
- Lin, B.; Ouyang, X. Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry. Energy 2014, 68, 688–697. [Google Scholar] [CrossRef]
Type of Energy | Standard Coal Coefficient (kgcc/kg) | Carbon Emission Coefficient (kg × c/kg) |
---|---|---|
Raw coal | 0.8989 | 0.5183 |
Coke | 1.3530 | 0.7801 |
Crude oil | 1.4286 | 0.8237 |
Gasoline | 1.4997 | 0.8647 |
kerosene | 1.3835 | 0.7977 |
Diesel fuel | 1.4276 | 0.8231 |
Fuel oil | 1.4643 | 0.8443 |
Natural gas | 1.4669 | 0.8458 |
Region | Total Carbon Emissions (10,000 tons) | Carbon Intensity (10,000 tons/10,000 yuan) |
---|---|---|
National | 1,197,270.39 | 1.178 |
East | 543,870.47 | 1.130 |
Central | 423,242.11 | 1.909 |
West | 230,157.81 | 2.082 |
Whole T | Inter-Regional TBR | Intra-Regional TWR | |||||||
---|---|---|---|---|---|---|---|---|---|
East | Middle | West | |||||||
Year | Value | Value | Rate | Value | Rate | Value | Rate | Value | Rate |
2010 | 0.1665 | 0.0196 | 11.77% | 0.0485 | 29.13% | 0.0547 | 32.85% | 0.0437 | 26.25% |
2011 | 0.1637 | 0.0183 | 11.18% | 0.0553 | 33.78% | 0.0379 | 23.15% | 0.0522 | 31.89% |
2012 | 0.1612 | 0.0268 | 16.63% | 0.0682 | 42.31% | 0.0343 | 21.28% | 0.0319 | 19.79% |
2013 | 0.1648 | 0.0355 | 21.54% | 0.0468 | 28.40% | 0.0511 | 31.01% | 0.0314 | 19.05% |
2014 | 0.1761 | 0.0297 | 16.87% | 0.0637 | 36.17% | 0.0396 | 22.49% | 0.0431 | 24.47% |
2015 | 0.1625 | 0.0314 | 19.32% | 0.0369 | 22.71% | 0.0465 | 28.62% | 0.0477 | 29.35% |
2016 | 0.1602 | 0.0376 | 23.47% | 0.0695 | 43.38% | 0.0336 | 20.97% | 0.0195 | 12.17% |
2017 | 0.1683 | 0.0458 | 27.21% | 0.0815 | 48.43% | 0.0218 | 12.95% | 0.0192 | 11.41% |
2018 | 0.1656 | 0.0523 | 31.58% | 0.1047 | 39.07% | 0.0325 | 19.63% | 0.0161 | 9.72% |
2019 | 0.1621 | 0.0435 | 26.84% | 0.1013 | 43.99% | 0.0294 | 18.14% | 0.0179 | 11.04% |
2020 | 0.1623 | 0.0436 | 26.86% | 0.0835 | 51.45% | 0.0216 | 13.31% | 0.0136 | 8.38% |
Region | Energy Consumption | Industrial Added Value | ||||||
---|---|---|---|---|---|---|---|---|
Control Period | Experimental Period | Control Period | Experimental Period | |||||
2001 | 2010 | 2011 | 2020 | 2001 | 2010 | 2011 | 2020 | |
Shenzhen | 2967 | 3206 | 3341 | 3568 | 2235.23 | 4233.22 | 5228.78 | 7199.47 |
Beijing | 5522 | 6954 | 6995 | 11,928 | 1707.04 | 2763.99 | 3048.79 | 3710.88 |
Shanghai | 8225 | 11,201 | 11,270 | 13,356 | 4036.85 | 6536.21 | 7208.59 | 7162.33 |
Guangdong | 17,921 | 26,908 | 28,480 | 37,090 | 10,489.73 | 21,462.72 | 24,649.6 | 30,259.49 |
Tianjin | 4085 | 6818 | 7598 | 11,928 | 1957.95 | 4410.85 | 5430.84 | 6982.66 |
Hubei | 10,082 | 15,138 | 15,138 | 38,173 | 2478.66 | 6726.53 | 8538.04 | 11,532.37 |
Chongqing | 4943 | 7856 | 8792 | 15,763 | 1293.81 | 3697.83 | 4690.46 | 5557.52 |
Variable | No Fixed Effect | Space Fixed Effect | Time Fixed Effect | Double Fixed Effect |
---|---|---|---|---|
lnGDP | 0.0318 | 0.0627 | 0.427 ** | 0.0638 |
(0.0725) | (0.0497) | (1.9287) | (0.2488) | |
lnEC | 0.4042 * | 0.9034 * | 1.5354 *** | 0.8109 * |
(56.2478) | (5.1472) | (3.1497) | (2.3856) | |
lnER | −0.1238 * | −0.0737 | −0.1016 ** | −0.0835 |
(−3.8794) | (−1.306) | (−1.6476) | (−1.1864) | |
lnINOV | −0.0517 | −0.2488 | −0.3118 ** | −0.2587 |
(−1.4258) | (−1.3831) | (−2.4924) | (−1.2379) | |
lnIS | −0.0235 * | −0.0727 | −0.5862 * | −0.1489 |
(−1.0268) | (−1.2388) | (−2.3871) | (−0.0735) | |
lnETS | −0.0186 | −0.0194 | −0.0281 ** | −0.0194 |
(−1.1835) | (−1.3527) | (−1.3946) | (−1.2784) | |
W × dep.var. | 0.0574 * | −0.0797 | 0.0827 | −0.1163 |
(2.8248) | (−1.2821) | (4.2086) | (−1.3185) | |
0.0237 | 0.0164 | 0.0298 | 0.0148 | |
R2 | 0.9413 | 0.9289 | 0.9352 | 0.9296 |
logl | 195.18 | 162.31 | 179.18 | 171.38 |
Year | Moran’s I | p Value | Z Value | Year | Moran’s I | p Value | Z Value |
---|---|---|---|---|---|---|---|
2011 | 0.2163 | 0.0096 | 2.6943 | 2016 | 0.2647 | 0.0072 | 2.4573 |
2012 | 0.2025 | 0.0153 | 2.2593 | 2017 | 0.2183 | 0.0163 | 2.5216 |
2013 | 0.2537 | 0.0082 | 2.7631 | 2018 | 0.1947 | 0.0051 | 2.6011 |
2014 | 0.2354 | 0.0125 | 2.5327 | 2019 | 0.2235 | 0.0172 | 2.3259 |
2015 | 0.2265 | 0.0192 | 2.2864 | — | — | — | — |
Year | R2 | Adjusted R2 | Residual Sum of Squares | Bandwidth | AICc |
---|---|---|---|---|---|
2011 | 0.918 | 0.912 | 7.347 | 1,336,542.574 | 64.695 |
2015 | 0.925 | 0.919 | 6.873 | 1,479,866.374 | 61.629 |
2019 | 0.909 | 0.907 | 5.994 | 1,358,497.464 | 54.793 |
Rj(*) ≥ Rj > Ri | Rj(*) > Ri ≥ Rj | Rj ≥ Rj(*) > Ri | Ri ≥ Rj(*) > Rj | Ri ≥ Rj > Rj(*) | |
---|---|---|---|---|---|
C ≥ 1 | (+,+)+ | (+,+)+ | (+,+)+ | (+,—)+ | —— |
C < 1 | —— | (—,+)+ | (—,+)+ | (—,—)— | (—,—)— |
Rj | Ri | Rj(*) | P | C | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Shenzhen | 0.365 | 0.386 | 0.388 | 0.327 | 0.351 | 1.099 | 1.188 | 1.039 | 45.838 | 1.063 |
Beijing | 0.165 | 0.159 | 0.159 | 0.12 | 0.139 | 1.144 | 1.326 | 1.079 | 63.388 | 0.964 |
Shanghai | 0.192 | 0.2 | 0.232 | 0.157 | 0.178 | 1.126 | 1.288 | 1.079 | 36.8 | 1.208 |
Guangdong | 0.237 | 0.249 | 0.25 | 0.182 | 0.215 | 1.156 | 1.378 | 1.099 | 69.925 | 1.055 |
Tianjin | 0.238 | 0.244 | 0.215 | 0.208 | 0.221 | 1.101 | 1.181 | 1.028 | 29.788 | 0.903 |
Hubei | 0.328 | 0.355 | 0.357 | 0.312 | 0.325 | 1.093 | 1.146 | 1.009 | 24.988 | 1.088 |
Chongqing | 0.147 | 0.145 | 0.148 | 0.128 | 0.134 | 1.099 | 1.154 | 1.007 | 22.088 | 1.007 |
Region | Curve Equation | R2 | Region | Curve Equation | R2 |
---|---|---|---|---|---|
Beijing | 0.913 | Hubei | 0.894 | ||
Tianjin | 0.947 | Hunan | 0.933 | ||
Hebei | 0.961 | Chongqing | 0.964 | ||
Liaoning | 0.864 | Sichuan | 0.945 | ||
Shanghai | 0.922 | Guizhou | 0.919 | ||
Jiangsu | 0.816 | Yunnan | 0.984 | ||
Zhejiang | 0.947 | Shaanxi | 0.937 | ||
Fujian | 0.849 | Gansu | 0.841 | ||
Shandong | 0.915 | Qinghai | 0.936 | ||
Guangdong | 0.893 | Ningxia | 0.802 | ||
Hainan | 0.932 | Xinjiang | 0.828 | ||
Shanxi | 0.913 | Guangxi | 0.790 | ||
Jilin | 0.817 | Inner mongolia | 0.769 | ||
Heilongjiang | 0.983 | East | 0.958 | ||
Anhui | 0.875 | Middle | 0.962 | ||
Jiangxi | 0.877 | West | 0.924 | ||
Henan | 0.951 | National | 0.935 |
Region | ELC Predicted Value | Actual Value | Region | ELC Predicted Value | Actual Value |
---|---|---|---|---|---|
Beijing | 0.265 | 0.238 | Jiangxi | 1.026 | 0.998 |
Tianjin | 1.241 | 1.296 | Henan | 0.876 | 0.813 |
Hebei | 2.707 | 3.151 | Hubei | 0.929 | 0.879 |
Liaoning | 2.144 | 2.439 | Hunan | 0.835 | 0.762 |
Shanghai | 0.635 | 0.528 | Chongqing | 0.728 | 0.637 |
Jiangsu | 0.936 | 0.909 | Sichuan | 0.645 | 0.651 |
Zhejiang | 0.669 | 0.571 | Guizhou | 1.482 | 1.561 |
Fujian | 0.744 | 0.667 | Yunnan | 0.973 | 0.933 |
Shandong | 1.347 | 1.43 | Shaanxi | 1.204 | 1.218 |
Guangdong | 0.622 | 0.512 | Gansu | 1.747 | 1.888 |
Hainan | 0.759 | 0.685 | Qinghai | 1.564 | 1.662 |
Shanxi | 3.073 | 3.615 | Ningxia | 5.275 | 6.244 |
Jilin | 1.752 | 1.943 | Xinjiang | 3.418 | 3.951 |
Heilongjiang | 2.109 | 2.394 | Guangxi | 1.194 | 1.205 |
Anhui | 1.078 | 1.089 | Inner mongolia | 4.583 | 5.389 |
Region | Carbon Emission Intensity under Per Capita GDP (t/104 · yuan) | Carbon Emission Reduction Potential under per Capita GDP Baseline | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 4 | 8 | 12 | Emission Intensity | 1~4 | 4~8 | 8~12 | Reduction Potential | |
Beijing | 2.622 | 0.495 | 0.226 | 0.144 | Low | 81.13% | 54.30% | 36.38% | High |
Tianjin | 2.265 | 0.961 | 0.626 | 0.487 | Low | 57.57% | 34.87% | 22.18% | Rather high |
Hebei | 2.860 | 1.717 | 1.331 | 1.147 | Rather high | 39.94% | 22.50% | 13.85% | Rather high |
Liaoning | 2.459 | 1.315 | 0.976 | 0.822 | Rather low | 46.52% | 25.74% | 15.83% | Rather high |
Shanghai | 3.065 | 1.856 | 1.452 | 1.211 | Rather high | 42.07% | 20.15% | 15.14% | High |
Jiangsu | 1.433 | 0.771 | 0.566 | 0.472 | Low | 46.17% | 26.63% | 16.57% | Rather high |
Zhejiang | 1.385 | 0.732 | 0.532 | 0.442 | Low | 47.12% | 27.28% | 17.00% | Rather high |
Fujian | 0.704 | 0.519 | 0.451 | 0.416 | Low | 26.26% | 13.17% | 7.81% | Low |
Shandong | 2.194 | 1.250 | 0.944 | 0.800 | Rather low | 43.03% | 24.52% | 15.17% | Rather low |
Guangdong | 0.768 | 0.509 | 0.414 | 0.367 | Low | 33.76% | 18.61% | 11.35% | Rather low |
Hainan | 0.904 | 0.561 | 0.449 | 0.401 | Low | 37.92% | 20.05% | 10.67% | Rather low |
Shanxi | 5.861 | 2.744 | 1.877 | 1.503 | High | 53.19% | 31.58% | 19.91% | Rather high |
Jilin | 1.934 | 1.273 | 1.033 | 0.914 | Rather low | 34.18% | 18.87% | 11.51% | Rather low |
Heilongjiang | 1.529 | 0.894 | 0.684 | 0.584 | Low | 41.54% | 23.54% | 14.53% | Rather low |
Anhui | 1.368 | 0.910 | 0.742 | 0.658 | Low | 33.50% | 18.45% | 11.25% | Rather low |
Jiangxi | 1.082 | 0.565 | 0.408 | 0.337 | Low | 47.80% | 27.75% | 17.31% | Rather high |
Henan | 1.939 | 0.954 | 0.683 | 0.563 | Low | 50.78% | 28.41% | 17.57% | Rather high |
Hubei | 1.268 | 0.826 | 0.666 | 0.588 | Low | 34.91% | 19.32% | 11.80% | Rather low |
Hunan | 1.687 | 0.759 | 0.509 | 0.403 | Low | 55.03% | 32.94% | 20.84% | Rather high |
Chongqing | 1.394 | 0.700 | 0.496 | 0.406 | Low | 49.76% | 29.12% | 18.24% | Rather high |
Sichuan | 1.089 | 0.571 | 0.414 | 0.342 | Low | 47.57% | 27.59% | 17.21% | Rather high |
Guizhou | 3.866 | 2.677 | 1.660 | 1.274 | High | 48.46% | 28.21% | 17.62% | Rather high |
Yunnan | 1.709 | 0.781 | 0.528 | 0.420 | Low | 54.29% | 32.39% | 20.46% | Rather high |
Shaanxi | 2.318 | 1.194 | 0.884 | 0.743 | Rather low | 48.51% | 25.98% | 15.85% | Rather high |
Gansu | 2.169 | 1.438 | 1.171 | 1.038 | Rather low | 33.69% | 18.57% | 11.32% | Rather high |
Qinghai | 2.038 | 0.890 | 0.588 | 0.462 | Low | 56.31% | 33.90% | 21.51% | Rather high |
Ningxia | 2.530 | 1.606 | 0.957 | 0.800 | Rather high | 48.39% | 26.70% | 16.42% | Rather high |
Xinjiang | 1.084 | 0.858 | 0.763 | 0.713 | Low | 20.85% | 11.04% | 6.61% | Low |
Guangxi | 0.953 | 0.581 | 0.453 | 0.392 | Low | 39.08% | 21.95% | 13.49% | Rather low |
Inner mongolia | 3.506 | 2.131 | 1.719 | 1.521 | High | 39.22% | 19.32% | 11.50% | Rather low |
Carbon Emission Intensity | ||||
---|---|---|---|---|
High-Carbon ≥2.0 | Rather High-Carbon 1.5–2.0 | Rather Low-Carbon 1.0–1.5 | Low-Carbon ≤1.0 | |
High-efficient (≥35%) | Shanghai, Shanxi, Jiangxi, Guizhou | Inner mongol | Beijing | |
Rather high-efficient (25%–35%) | Hebei, Ningxia | Tianjin, Jiangsu, Zhejiang, Henan, Hunan, Chongqing, Sichuan, Yunnan, Qinghai | ||
Rather low-efficient (15%–15%) | Liaoning, Shaanxi, Gansu | Shandong, Jilin | Guangdong, Hainan, Heilongjiang, Anhui, Hubei, Guangxi | |
Low-efficient (≤15%) | Fujian, Xinjiang |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Fan, D. The Spatial-Temporal Evolution of China’s Carbon Emission Intensity and the Analysis of Regional Emission Reduction Potential under the Carbon Emissions Trading Mechanism. Sustainability 2022, 14, 7442. https://doi.org/10.3390/su14127442
Zhang X, Fan D. The Spatial-Temporal Evolution of China’s Carbon Emission Intensity and the Analysis of Regional Emission Reduction Potential under the Carbon Emissions Trading Mechanism. Sustainability. 2022; 14(12):7442. https://doi.org/10.3390/su14127442
Chicago/Turabian StyleZhang, Xiufan, and Decheng Fan. 2022. "The Spatial-Temporal Evolution of China’s Carbon Emission Intensity and the Analysis of Regional Emission Reduction Potential under the Carbon Emissions Trading Mechanism" Sustainability 14, no. 12: 7442. https://doi.org/10.3390/su14127442
APA StyleZhang, X., & Fan, D. (2022). The Spatial-Temporal Evolution of China’s Carbon Emission Intensity and the Analysis of Regional Emission Reduction Potential under the Carbon Emissions Trading Mechanism. Sustainability, 14(12), 7442. https://doi.org/10.3390/su14127442