Analysis of the Spatial Differentiation and Development Optimization of Towns’ Livable Quality in Aksu, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Index System Construction and Methodology
2.3.1. The Construction of Index System
- (1)
- Index system of natural livable quality
- (2)
- Index system of humanistic livable quality
2.3.2. Determination of Weight
2.3.3. Minimum Cumulative Resistance Model (MCR)
2.3.4. TOPSIS Model
2.3.5. Gravity Model
3. Results Analysis
3.1. Overall Analysis of Prefecture
3.1.1. Natural Livable Quality
3.1.2. Humanistic Livable Quality
3.2. Analysis of Townships
3.2.1. Natural Livable Quality of Townships
3.2.2. Humanistic Livable Quality of Townships
3.2.3. Livable Quality
4. Discussion
4.1. Interactive Analysis of Research Results and Field Investigation
4.2. Spatial Connection Strength of Livable Quality among Towns
4.3. Improvement and Optimization Suggestions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doxiadis, C.A. Action for Human Settlements. Ekistics 1975, 40, 405–448. [Google Scholar]
- Doxiadis, C.A. An Introduction to the Science of Human Settlements; Oxford University Press: Oxford, UK, 1968. [Google Scholar]
- Geddes, P.; LeGates, R.; Stout, F. Cities in Evolution; Routledge: London, UK, 2021; ISBN 978-1-00-310107-9. [Google Scholar]
- United Nations. United Nations Conference on Human Settlements: Habitat I. Available online: https://www.un.org/en/conferences/habitat/vancouver1976 (accessed on 28 March 2022).
- Wu, L. Introduction to Sciences of Human Settlements; China Architecture and Building Press: Beijing, China, 2001. [Google Scholar]
- Global Forum on Human Settlements (GFHS). Available online: https://gfhsforum.org/2021Outcome (accessed on 24 May 2022).
- Ouyang, W.; Wang, B.; Tian, L.; Niu, X. Spatial Deprivation of Urban Public Services in Migrant Enclaves under the Context of a Rapidly Urbanizing China: An Evaluation Based on Suburban Shanghai. Cities 2017, 60, 436–445. [Google Scholar] [CrossRef]
- Kyttä, M.; Broberg, A.; Haybatollahi, M.; Schmidt-Thomé, K. Urban Happiness: Context-Sensitive Study of the Social Sustainability of Urban Settings. Environ. Plan. B Plan. Des. 2016, 43, 34–57. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Liu, J. Does Urbanization Affect the Gap between Urban and Rural Areas? Evidence from China. Socio-Econ. Plan. Sci. 2022, 82, 101271. [Google Scholar] [CrossRef]
- Tang, L.; Ruth, M.; He, Q.; Mirzaee, S. Comprehensive Evaluation of Trends in Human Settlements Quality Changes and Spatial Differentiation Characteristics of 35 Chinese Major Cities. Habitat Int. 2017, 70, 81–90. [Google Scholar] [CrossRef]
- Yi, X.; Jue, W.; Huan, H. Does Economic Development Bring More Livability? Evidence from Jiangsu Province, China. J. Clean. Prod. 2021, 293, 126187. [Google Scholar] [CrossRef]
- Zanella, A.; Camanho, A.S.; Dias, T.G. The Assessment of Cities’ Livability Integrating Human Wellbeing and Environmental Impact. Ann. Oper. Res. 2015, 226, 695–726. [Google Scholar] [CrossRef]
- Wu, L. High-Quality Development of Human Settlements and Modernization of Urban and Rural Governance. Hum. Habitat 2019, 4, 3–5. [Google Scholar]
- Wang, Y.; Jin, C.; Lu, M.; Lu, Y. Assessing the Suitability of Regional Human Settlements Environment from a Different Preferences Perspective: A Case Study of Zhejiang Province, China. Habitat Int. 2017, 70, 1–12. [Google Scholar] [CrossRef]
- Halik, W.; Mamat, A.; Dang, J.H.; Deng, B.S.H.; Tiyip, T. Suitability Analysis of Human Settlement Environment within the Tarim Basin in Northwestern China. Quat. Int. 2013, 311, 175–180. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, C. Quality Evaluation and Division of Regional Types of Rural Human Settlements in China. Habitat Int. 2020, 105, 102278. [Google Scholar] [CrossRef]
- Luo, X.; Yang, J.; Sun, W.; He, B. Suitability of Human Settlements in Mountainous Areas from the Perspective of Ventilation: A Case Study of the Main Urban Area of Chongqing. J. Clean. Prod. 2021, 310, 127467. [Google Scholar] [CrossRef]
- Ma, L.; Liu, S.; Fang, F.; Che, X.; Chen, M. Evaluation of Urban-Rural Difference and Integration Based on Quality of Life. Sustain. Cities Soc. 2020, 54, 101877. [Google Scholar] [CrossRef]
- Salonen, A.O.; Åhlberg, M. Obstacles to Sustainable Living in the Helsinki Metropolitan Area. Sustain. Cities Soc. 2013, 8, 48–55. [Google Scholar] [CrossRef]
- Shami, M.R.; Rad, V.B.; Moinifar, M. The Structural Model of Indicators for Evaluating the Quality of Urban Smart Living. Technol. Forecast. Soc. Change 2022, 176, 121427. [Google Scholar] [CrossRef]
- You, Z.; Yang, H.; Fu, M. Settlement Intention Characteristics and Determinants in Floating Populations in Chinese Border Cities. Sustain. Cities Soc. 2018, 39, 476–486. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Jia, J.; Shen, Y.; Liu, J. Index System of Sustainable Rural Development Based on the Concept of Ecological Livability. Environ. Impact Assess. Rev. 2021, 86, 106478. [Google Scholar] [CrossRef]
- Xiao, Y.; Chai, J.; Wang, R.; Huang, H. Assessment and Key Factors of Urban Liveability in Underdeveloped Regions: A Case Study of the Loess Plateau, China. Sustain. Cities Soc. 2022, 79, 103674. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, K.; Wu, Q.; Cai, Y.; Lu, Y.; Wei, J. Adaptability Evaluation of Human Settlements in Chengdu Based on 3S Technology. Environ. Sci. Pollut. Res. 2022, 29, 5988–5999. [Google Scholar] [CrossRef]
- Guan, Y.; Li, X.; Yang, J.; Li, S.; Tian, S. Spatial Differentiation of Comprehensive Suitability of Urban Human Settlements Based on GIS: A Case Study of Liaoning Province, China. Environ. Dev. Sustain. 2022, 24, 4150–4174. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Yu, M. Evaluation and Determinants of Satisfaction with Rural Livability in China’s Less-Developed Eastern Areas: A Case Study of Xianju County in Zhejiang Province. Ecol. Indic. 2019, 104, 711–722. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, H.; Chen, B.; Xia, X.; Li, P. China’s Rural Human Settlements: Qualitative Evaluation, Quantitative Analysis and Policy Implications. Ecol. Indic. 2019, 105, 398–405. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.; Song, B.; Wang, R. Evaluation of Urban Suitable Ecological Land Based on the Minimum Cumulative Resistance Model: A Case Study from Changzhou, China. Ecol. Model. 2015, 318, 194–203. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Yi, S. An Integrated Approach to Constructing Ecological Security Patterns and Identifying Ecological Restoration and Protection Areas: A Case Study of Jingmen, China. Ecol. Indic. 2022, 137, 108723. [Google Scholar] [CrossRef]
- Geospatial Data Cloud. Available online: http://www.gscloud.cn (accessed on 28 March 2022).
- Data Center for Resources and Environmental Sciences of the Chinese Academy of Sciences. Available online: https://www.resdc.cn (accessed on 28 March 2022).
- Fu, Y.; Shi, X.; He, J.; Yuan, Y.; Qu, L. Identification and Optimization Strategy of County Ecological Security Pattern: A Case Study in the Loess Plateau, China. Ecol. Indic. 2020, 112, 106030. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Jiang, Z.-Y.; Li, Y.-Y.; Yang, Z.-G.; Wang, X.-H.; Li, X.-B. Construction and Optimization of an Urban Ecological Security Pattern Based on Habitat Quality Assessment and the Minimum Cumulative Resistance Model in Shenzhen City, China. Forests 2021, 12, 847. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI Models to Construct an Ecological Security Network for the Urban Agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef]
- Wang, C.-N.; Le, T.Q.; Chang, K.-H.; Dang, T.-T. Measuring Road Transport Sustainability Using MCDM-Based Entropy Objective Weighting Method. Symmetry 2022, 14, 1033. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, L.-S. Evaluation of Urban Competitiveness in Environmental Protection Zones Based on Principal Component Analysis (Pca) and Entropy Method. J. Environ. Prot. Ecol. 2021, 22, 182–188. [Google Scholar]
- Wang, F.; Lu, Y.; Li, J.; Ni, J. Evaluating Environmentally Sustainable Development Based on the PSR Framework and Variable Weigh Analytic Hierarchy Process. Int. J. Environ. Res. Public Health 2021, 18, 2836. [Google Scholar] [CrossRef]
- He, Y.X.; Jiao, Z.; Yang, J. Comprehensive Evaluation of Global Clean Energy Development Index Based on the Improved Entropy Method. Ecol. Indic. 2018, 88, 305–321. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental Vulnerability Assessment for Mainland China Based on Entropy Method. Ecol. Indic. 2018, 91, 410–422. [Google Scholar] [CrossRef]
- Nie, W.; Shi, Y.; Siaw, M.J.; Yang, F.; Wu, R.; Wu, X.; Zheng, X.; Bao, Z. Constructing and Optimizing Ecological Network at County and Town Scale: The Case of Anji County, China. Ecol. Indic. 2021, 132, 108294. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, Y.; Zhang, S.; Yang, Z.; Huang, L.; Lei, B.; Li, L.; Zhou, Z.; Xiong, H.; Li, X. Identification and Prevention of Agricultural Non-Point Source Pollution Risk Based on the Minimum Cumulative Resistance Model. Glob. Ecol. Conserv. 2020, 23, e01149. [Google Scholar] [CrossRef]
- Mahdevari, S.; Shahriar, K.; Esfahanipour, A. Human Health and Safety Risks Management in Underground Coal Mines Using Fuzzy TOPSIS. Sci. Total Environ. 2014, 488–489, 85–99. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Q.; Wan, X.; Li, X.; Wang, Y.; Wang, W. Comprehensive Ecological Risk Assessment for Semi-Arid Basin Based on Conceptual Model of Risk Response and Improved TOPSIS Model-a Case Study of Wei River Basin, China. Sci. Total Environ. 2020, 719, 137502. [Google Scholar] [CrossRef]
- Shang, Q.; Deng, Y.; Cheong, K.H. Identifying Influential Nodes in Complex Networks: Effective Distance Gravity Model. Inf. Sci. 2021, 577, 162–179. [Google Scholar] [CrossRef]
- Yi, K.; Zhang, D.; Zhang, L.; Ji, H.; Xiao, J. Paths and Strategies to Drive MICE into Tourism Based on Gravity Model and Wilson Model: A Case Study of Jiangxi Province in China. Arab. J. Geosci. 2020, 13, 1233. [Google Scholar] [CrossRef]
- Liu, E.; Wang, Y.; Chen, W.; Chen, W.; Ning, S. Evaluating the Transformation of China’s Resource-Based Cities: An Integrated Sequential Weight and TOPSIS Approach. Socio-Econ. Plan. Sci. 2021, 77, 101022. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Long, T.; Sun, S.; Gao, J. Mega-City Region Sustainability Assessment and Obstacles Identification with GIS–Entropy–TOPSIS Model: A Case in Yangtze River Delta Urban Agglomeration, China. J. Clean. Prod. 2021, 294, 126147. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Zhu, X.; Cao, H. An Early Warning Method of Landscape Ecological Security in Rapid Urbanizing Coastal Areas and Its Application in Xiamen, China. Ecol. Model. 2010, 221, 2251–2260. [Google Scholar] [CrossRef]
- Su, S.; Li, D.; Yu, X. Assessing Land Ecological Security in Shanghai (China) Based on Catastrophe Theory. Stoch. Environ. Res. Risk Assess. 2011, 25, 737–746. [Google Scholar] [CrossRef]
- Xue, X.G.; Li, L. Research on Coordination Degree of Economic Development and Human Settlements Environment Based on PCA for Guizhou. Adv. Mater. Res. 2014, 962–965, 2055–2060. [Google Scholar]
- Davidescu, A.A.; Apostu, S.A.; Pantilie, A.M.; Amzuica, B.F. Romania’s South-Muntenia Region, towards Sustainable Regional Development. Implications for Regional Development Strategies. Sustainability 2020, 12, 5799. [Google Scholar] [CrossRef]
- Mitrica, B.; Sageata, R.; Mocanu, I.; Grigorescu, I.; Dumitrascu, M. Competitiveness and Cohesion in Romania’s Regional Development: A Territorial Approach. Geod. Vestn. 2021, 65, 440–458. [Google Scholar] [CrossRef]
- Anbari, M.; Malaki, A. Social Effects of Industrial Growth Poles on Local Sustainable Development: Assaluyeh Industrial Growth Poles Case Study. Community Dev. Rural Urban Communities 2012, 3, 87–106. [Google Scholar]
- Dobrescu, E.M.; Dobre, E.M. Theories Regarding the Role of the Growth Poles in the Economic Integration. Procedia Econ. Financ. 2014, 8, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Land Spatial Planning of Aksu Prefecture (2020–2035). Available online: http://www.aks.gov.cn/DFS/file/2022/06/06/20220606124729927rxnl6n.pdf (accessed on 28 March 2022).
Resistance Factor | Unit | Index Type | Grade of Resistance Coefficient | Weight/% | ||||
---|---|---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | ||||
Elevation | km | + | [0, 1.4) | [1.4, 2.1) | [2.1, 3.0) | [3.0, 4.0) | [4.0, ∞) | 14.61 |
Slope | (°) | + | [0, 5) | [5, 10) | [10, 20) | [20, 30) | [30, ∞) | 14.14 |
NDVI | / | − | [0.8, ∞) | [0.5, 0.8) | [0.25, 0.5) | [0.1, 0.25) | [0, 0.1) | 10.65 |
Soil erosion degree | / | + | micro | mild | moderate | serious | severe | 12.33 |
Annual precipitation | mm | − | [137, ∞) | [113, 137) | [89, 113) | [65, 89) | [41, 65) | 11.60 |
Days of floating dust | days/year | + | [0, 31) | [31, 40) | [40, 50) | [50, 60) | [60, ∞) | 12.54 |
Number of earthquakes (≥3.0) | times/year | + | [0, 1) | [1, 4) | [4, 13) | [13, 15) | [15, ∞) | 13.58 |
Distance from main road | km | − | [15, ∞) | [8, 15) | [5, 8) | [2, 5) | [0, 2) | 10.55 |
The Subsystem | Indicators | Unit | Index Type | Weight/% |
---|---|---|---|---|
Economic development | Per capita GDP | Yuan | + | 9.77 |
Per capita annual income | Yuan | + | 7.74 | |
Culture and education | Student-teacher ratio | Student/teacher | − | 8.82 |
Number of literary and artistic institutions | Institution | + | 8.47 | |
Transportation | Car ownership | Car | + | 10.21 |
Urban road length | km | + | 9.92 | |
Public infrastructure | Rate of television | % | + | 7.02 |
Green area | hm2 | + | 10.03 | |
Length of water supply and drainage pipes | km | + | 9.55 | |
Health and medical security | Number of people with basic medical insurance | People | + | 9.38 |
Number of beds in medical institutions | Bed | + | 9.09 |
Town | Ecological Cost Distance | Ranking | Town | Ecological Cost Distance | Ranking | |
---|---|---|---|---|---|---|
Laohutai Town | 0.136 | 1 | …… | Gulawati Town | 9.623 | 91 |
Yakra Town | 0.531 | 2 | Bixibag Town | 10.018 | 92 | |
Yimum Town | 0.535 | 3 | Yuerqi Town | 10.391 | 93 | |
Autobash Town | 0.673 | 4 | allahag town | 10.539 | 94 | |
Wushi Urban Area | 0.835 | 5 | Gulebag Town | 10.826 | 95 | |
Tumusuke Town | 0.919 | 6 | Qiman Town | 11.278 | 96 | |
Jinyang Town | 1 | 7 | Gaizikumu Town | 11.584 | 97 | |
Tagrak Town | 1.02 | 8 | Tarim Town | 12.714 | 98 | |
Chagrak Town | 1.02 | 9 | Keping Urban Area | 13.372 | 99 | |
Arg Town | 1.024 | 10 | Gaizlik Town | 22.257 | 100 |
Town | Value | Ranking | Town | Value | Ranking | |
---|---|---|---|---|---|---|
Kuche Urban Area | 0.946 | 1 | …… | Gaizikumu Town | 0.021 | 91 |
Wuzun Town | 0.860 | 2 | Bageturgeluc Town | 0.018 | 92 | |
Aksu Urban Area | 0.728 | 3 | Yamansu Town | 0.009 | 93 | |
Ayikule Town | 0.662 | 4 | Autobash Town | 0.008 | 94 | |
Alaer Urban Area | 0.660 | 5 | Gaizlik Town | 0.007 | 95 | |
Baicheng Urban Area | 0.633 | 6 | Yuerqi Town | 0.005 | 96 | |
Shaya Urban Area | 0.618 | 7 | Tamuturgeluc Town | 0.002 | 97 | |
Yaha town | 0.612 | 8 | Wigan Town | 0.002 | 98 | |
Chang’an Town | 0.600 | 9 | Gongtsingtuan Town | 0.002 | 99 | |
Wensu Urban Area | 0.584 | 10 | Yakra Town | 0.001 | 100 |
Urban Area | Value | Ranking | Town | Value | Ranking |
---|---|---|---|---|---|
Kuche Urban Area | 0.946 | 1 | Wuzun Town | 0.784 | 1 |
Baicheng Urban Area | 0.782 | 2 | Mijik Town | 0.773 | 2 |
Alaer Urban Area | 0.781 | 3 | Toyburghledi Town | 0.771 | 3 |
Akesu Urban Area | 0.763 | 4 | Chang’an Town | 0.763 | 4 |
Shaya Urban Area | 0.722 | 5 | Ayikule Town | 0.741 | 5 |
Wensu Urban Area | 0.704 | 6 | …… | ||
Wushi Urban Area | 0.668 | 7 | Yuerqi Town | 0.270 | 87 |
Xinhe Urban Area | 0.617 | 8 | Tarim Town | 0.262 | 88 |
Awati Urban Area | 0.552 | 9 | Gaizikumu Town | 0.252 | 89 |
Keping Urban Area | 0.333 | 10 | Gaizlik Town | 0.003 | 90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Wang, H.; Tan, B.; Xue, M.; Yin, Y. Analysis of the Spatial Differentiation and Development Optimization of Towns’ Livable Quality in Aksu, China. Sustainability 2022, 14, 7728. https://doi.org/10.3390/su14137728
Wei Y, Wang H, Tan B, Xue M, Yin Y. Analysis of the Spatial Differentiation and Development Optimization of Towns’ Livable Quality in Aksu, China. Sustainability. 2022; 14(13):7728. https://doi.org/10.3390/su14137728
Chicago/Turabian StyleWei, Yiming, Hongwei Wang, Bo Tan, Mengqi Xue, and Yucong Yin. 2022. "Analysis of the Spatial Differentiation and Development Optimization of Towns’ Livable Quality in Aksu, China" Sustainability 14, no. 13: 7728. https://doi.org/10.3390/su14137728
APA StyleWei, Y., Wang, H., Tan, B., Xue, M., & Yin, Y. (2022). Analysis of the Spatial Differentiation and Development Optimization of Towns’ Livable Quality in Aksu, China. Sustainability, 14(13), 7728. https://doi.org/10.3390/su14137728