Where Will ‘Water-Energy-Food’ Research Go Next?—Visualisation Review and Prospect
Abstract
:1. Introduction
2. Visualisation Analysis of WEF with CiteSpace
2.1. Descriptive Analysis of WEF Publications
2.2. Analysis of Co-Cited Authors in WEF
2.3. Major Research Institutions in WEF
2.4. Topic Distribution in WEF Research
2.5. Co-Occurrence Evolution in WEF Research
3. Contents of WEF Nexus Research
3.1. Concept of WEF Nexus
3.1.1. Internal Research of the WEF Nexus
- (1)
- Water and Energy → Food
- (2)
- Water and Food → Energy
- (3)
- Energy→Water
3.1.2. External Research of the WEF Nexus
- (1)
- Carbon emission
- (2)
- Livelihood
- (3)
- Geographic characteristics
- (4)
- Climate change
- (5)
- Policy/Law/Rule
- (6)
- Trade
- (7)
- New topics
3.1.3. Integrated Research of the WEF Nexus
- (1)
- Efficiency
- (2)
- Sustainability
- (3)
- Security
3.2. Citation Burst Analysis in WEF Nexus Research
3.3. Knowledge Cluster Analysis in WEF Nexus Research
4. Methods of WEF Nexus Research
4.1. Qualitative Methods
4.2. Quantitative Methods
5. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartfiel, L.; Soupir, M.; Kanwar, R.S. Malta’s Water Scarcity Challenges: Past, Present, and Future Mitigation Strategies for Sustainable Water Supplies. Sustainability 2020, 12, 9835. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Roy, M.; McDonald, L.M.; Emendack, Y. Reflections on farmers’ social networks: A means for sustainable agricultural development? Environ. Dev. Sustain. 2021, 23, 2973–3008. [Google Scholar] [CrossRef]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C.; et al. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [Green Version]
- Hoff, H. Global water resources and their management. Curr. Opin. Environ. Sustain. 2009, 1, 141–147. [Google Scholar] [CrossRef]
- Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J. Greening the global water system. J. Hydrol. 2010, 384, 177–186. [Google Scholar] [CrossRef]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Bazilian, M.; Nussbaumer, P.; Rogner, H.-H.; Brew-Hammond, A.; Foster, V.; Pachauri, S.; Williams, E.; Howells, M.; Niyongabo, P.; Musaba, L.; et al. Energy access scenarios to 2030 for the power sector in sub-Saharan Africa. Util. Policy 2012, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manag. 2007, 21, 35–48. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G. Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region. Environ. Sci. Policy 2014, 39, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Singh, V.P.; Fu, Q.; Liu, D.; Li, T.; Zhou, Y. Optimization of agricultural water–food–energy nexus in a random environment: An integrated modelling approach. Stoch. Environ. Res. Risk Assess. 2021, 35, 3–19. [Google Scholar] [CrossRef]
- Gathala, M.K.; Laing, A.M.; Tiwari, T.P.; Timsina, J.; Islam, M.S.; Chowdhury, A.K.; Chattopadhyay, C.; Singh, A.K.; Bhatt, B.P.; Shrestha, R.; et al. Enabling smallholder farmers to sustainably improve their food, energy and water nexus while achieving environmental and economic benefits. Renew. Sustain. Energy Rev. 2020, 120, 109645. [Google Scholar] [CrossRef]
- Kamrani, K.; Roozbahani, A.; Shahdany, S.M.H. Using Bayesian networks to evaluate how agricultural water distribution systems handle the water-food-energy nexus. Agric. Water Manag. 2020, 239, 106265. [Google Scholar] [CrossRef]
- Al-Thani, N.A.; Govindan, R.; Al-Ansari, T. Maximising nutritional benefits within the energy, water and food nexus. J. Clean. Prod. 2020, 266, 121877. [Google Scholar] [CrossRef]
- Song, F.; Reardon, T.; Tian, X.; Lin, C. The energy implication of China’s food system transformation. Appl. Energy 2019, 240, 617–629. [Google Scholar] [CrossRef]
- Li, S.; Ziara, R.M.M.; Dvorak, B.; Subbiah, J. Assessment of water and energy use at process level in the U.S. beef packing industry: Case study in a typical U.S. large-size plant. J. Food Process Eng. 2018, 41, e12919. [Google Scholar] [CrossRef]
- Zimmerman, R.; Zhu, Q.; Dimitri, C. A network framework for dynamic models of urban food, energy and water systems (FEWS). Environ. Prog. Sustain. Energy 2018, 37, 122–131. [Google Scholar] [CrossRef]
- Pagani, M.; De Menna, F.; Johnson, T.G.; Vittuari, M. Impacts and costs of embodied and nutritional energy of food losses in the US food system: Farming and processing (Part A). J. Clean. Prod. 2020, 244, 118730. [Google Scholar] [CrossRef]
- Vittuari, M.; Pagani, M.; Johnson, T.G.; De Menna, F. Impacts and costs of embodied and nutritional energy of food waste in the US food system: Distribution and consumption (Part B). J. Clean. Prod. 2020, 252, 119857. [Google Scholar] [CrossRef]
- Rosa, L.; Rulli, M.C.; Davis, K.F.; D’Odorico, P. The Water-Energy Nexus of Hydraulic Fracturing: A Global Hydrologic Analysis for Shale Oil and Gas Extraction. Earth’s Futur. 2018, 6, 745–756. [Google Scholar] [CrossRef] [Green Version]
- Uen, T.-S.; Chang, F.-J.; Zhou, Y.; Tsai, W.-P. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Sci. Total Environ. 2018, 633, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.V. Energy-Water-Food Nexus and Recommendations for Security. J. Energy Resour. Technol.-Trans. ASME 2015, 137, 34701. [Google Scholar] [CrossRef]
- Neto, R.D.S.; Berchin, I.I.; Magtoto, M.; Berchin, S.; Xavier, W.G.; Guerra, J. An integrative approach for the water-energy-food nexus in beef cattle production: A simulation of the proposed model to Brazil. J. Clean. Prod. 2018, 204, 1108–1123. [Google Scholar] [CrossRef]
- Bonsch, M.; Humpenöder, F.; Popp, A.; Bodirsky, B.L.; Dietrich, J.P.; Rolinski, S.; Biewald, A.; Lotze-Campen, H.; Weindl, I.; Gerten, D.; et al. Trade-offs between land and water requirements for large-scale bioenergy production. Glob. Chang. Biol. Bioenergy 2016, 8, 11–24. [Google Scholar] [CrossRef]
- Næss, J.S.; Cavalett, O.; Cherubini, F. The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. 2021, 4, 525–536. [Google Scholar] [CrossRef]
- Li, P.C.; Ma, H.W. Evaluating the environmental impacts of the water-energy-food nexus with a life-cycle approach. Resour. Conserv. Recycl. 2020, 157, 104789. [Google Scholar] [CrossRef]
- Liu, D.; Guo, S.; Liu, P.; Xiong, L.; Zou, H.; Tian, J.; Zeng, Y.; Shen, Y.; Zhang, J. Optimisation of water-energy nexus based on its diagram in cascade reservoir system. J. Hydrol. 2019, 569, 347–358. [Google Scholar] [CrossRef]
- Espinosa-Tasón, J.; Berbel, J.; Gutiérrez-Martín, C. Energized water: Evolution of water-energy nexus in the Spanish irrigated agriculture, 1950–2017. Agric. Water Manag. 2020, 233, 106073. [Google Scholar] [CrossRef]
- Ramaswami, A.; Boyer, D.; Nagpure, A.S.; Fang, A.; Bogra, S.; Bakshi, B.; Cohen, E.; Rao-Ghorpade, A. An urban systems framework to assess the trans-boundary food-energy-water nexus: Implementation in Delhi, India. Environ. Res. Lett. 2017, 12, 25008. [Google Scholar] [CrossRef] [Green Version]
- Toboso-Chavero, S.; Nadal, A.; Petit-Boix, A.; Pons, O.; Villalba, G.; Gabarrell, X.; Josa, A.; Rieradevall, J. Towards Productive Cities: Environmental Assessment of the Food-Energy-Water Nexus of the Urban Roof Mosaic. J. Ind. Ecol. 2019, 23, 767–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamas, Z.; Abou Najm, M.; Al-Hindi, M.; Yassine, A.; Khattar, R. Sustainable resource optimization under water-energy-food-carbon nexus. J. Clean. Prod. 2021, 278, 123894. [Google Scholar] [CrossRef]
- He, G.; Geng, C.; Zhai, J.; Zhao, Y.; Wang, Q.; Jiang, S.; Zhu, Y.; Wang, L. Impact of food consumption patterns change on agricultural water requirements: An urban-rural comparison in China. Agric. Water Manag. 2021, 243, 106504. [Google Scholar] [CrossRef]
- Biggs, E.M.; Bruce, E.; Boruff, B.; Duncan, J.M.A.; Horsley, J.; Pauli, N.; McNeill, K.; Neef, A.; Van Ogtrop, F.; Curnow, J.; et al. Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environ. Sci. Policy 2015, 54, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Wolde, Z.; Wei, W.; Kunpeng, W.; Ketema, H. Local community perceptions toward livelihood and water–energy–food nexus: A perspective on food security. Food Energy Secur. 2020, 9, e207. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Nhamo, L.; Mpandeli, S.; Nhemachena, C.; Senzanje, A.; Sobratee, N.; Chivenge, P.P.; Slotow, R.; Naidoo, D.; Liphadzi, S.; et al. The Water–Energy–Food Nexus as a Tool to Transform Rural Livelihoods and Well-Being in Southern Africa. Int. J. Environ. Res. Public Health 2019, 16, 2970. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Li, J.; Yuan, W.; Wang, R.Y. Coordinating the food-energy-water nexus in grain production in the context of rural livelihood transitions and farmland resource constraints. Resour. Conserv. Recycl. 2021, 164, 105148. [Google Scholar] [CrossRef]
- Nhamo, L.; Ndlela, B.; Mpandeli, S.; Mabhaudhi, T. The Water-Energy-Food Nexus as an Adaptation Strategy for Achieving Sustainable Livelihoods at a Local Level. Sustainability 2020, 12, 8582. [Google Scholar] [CrossRef]
- Liang, S.; Qu, S.; Zhao, Q.; Zhang, X.; Daigger, G.T.; Newell, J.P.; Miller, S.A.; Johnson, J.X.; Love, N.G.; Zhang, L.; et al. Quantifying the Urban Food–Energy–Water Nexus: The Case of the Detroit Metropolitan Area. Environ. Sci. Technol. 2019, 53, 779–788. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Q.; He, C.; Wang, C.; Wang, Y.; Li, K. Water-energy nexus within urban agglomeration: An assessment framework combining the multiregional input-output model, virtual water, and embodied energy. Resour. Conserv. Recycl. 2021, 164, 105113. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y. Pre-Warning Measurement of Water Resources Security in the Yangtze River Basin from the Perspective of Water-Energy-Food Symbiosis. Water 2021, 13, 475. [Google Scholar] [CrossRef]
- Allam, M.M.; Eltahir, E.A.B. Water-Energy-Food Nexus Sustainability in the Upper Blue Nile (UBN) Basin. Front. Environ. Sci. 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Simpson, G.B.; Badenhorst, J.; Jewitt, G.P.W.; Berchner, M.; Davies, E. Competition for Land: The Water-Energy-Food Nexus and Coal Mining in Mpumalanga Province, South Africa. Front. Environ. Sci. 2019, 7, 86. [Google Scholar] [CrossRef]
- Feng, C.; Qu, S.; Jin, Y.; Tang, X.; Liang, S.; Chiu, A.S.F.; Xu, M. Uncovering urban food-energy-water nexus based on physical input-output analysis: The case of the Detroit Metropolitan Area. Appl. Energy 2019, 252, 113422. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Wi, S.; Ray, P.A.; Brown, C.M.; Khalil, A.F. The future nexus of the Brahmaputra River Basin: Climate, water, energy and food trajectories. Glob. Environ. Chang. -Hum. Policy Dimens. 2016, 37, 16–30. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Chen, Y.; Zou, S.; Nover, D. Managing the water-climate- food nexus for sustainable development in Turkmenistan. J. Clean. Prod. 2019, 220, 212–224. [Google Scholar] [CrossRef]
- Gain, A.K.; Giupponi, C.; Benson, D. The water–energy–food (WEF) security nexus: The policy perspective of Bangladesh. Water Int. 2015, 40, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Keulertz, M.; Woertz, E. Financial challenges of the nexus: Pathways for investment in water, energy and agriculture in the Arab world. Int. J. Water Resour. Dev. 2015, 31, 312–325. [Google Scholar] [CrossRef]
- Ziv, G.; Watson, E.; Young, D.; Howard, D.C.; Larcom, S.T.; Tanentzap, A.J. The potential impact of Brexit on the energy, water and food nexus in the UK: A fuzzy cognitive mapping approach. Appl. Energy 2018, 210, 487–498. [Google Scholar] [CrossRef]
- Hannibal, B.; Vedlitz, A. Throwing it out: Introducing a nexus perspective in examining citizen perceptions of organizational food waste in the U.S. Environ. Sci. Policy 2018, 88, 63–71. [Google Scholar] [CrossRef]
- Olawuyi, D. Sustainable development and the water-energy-food nexus: Legal challenges and emerging solutions. Environ. Sci. Policy 2020, 103, 1–9. [Google Scholar] [CrossRef]
- Belinskij, A. Water-Energy-Food Nexus within the Framework of International Water Law. Water 2015, 7, 5396–5415. [Google Scholar] [CrossRef] [Green Version]
- Larcom, S.; van Gevelt, T. Regulating the water-energy-food nexus: Interdependencies, transaction costs and procedural justice. Environ. Sci. Policy 2017, 72, 55–64. [Google Scholar] [CrossRef]
- Siderius, C.; Conway, D.; Yassine, M.; Murken, L.; Lostis, P.-L.; Dalin, C. Multi-scale analysis of the water-energy-food nexus in the Gulf region. Environ. Res. Lett. 2020, 15, 94024. [Google Scholar] [CrossRef]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Zhai, M.; Huang, G.; Liu, L.; Xu, X.; Li, J. Transfer of virtual water embodied in food: A new perspective. Sci. Total Environ. 2019, 659, 872–883. [Google Scholar] [CrossRef]
- Vora, N.; Shah, A.; Bilec, M.M.; Khanna, V. Food–Energy–Water Nexus: Quantifying Embodied Energy and GHG Emissions from Irrigation through Virtual Water Transfers in Food Trade. ACS Sustain. Chem. Eng. 2017, 5, 2119–2128. [Google Scholar] [CrossRef]
- Allouche, J.; Middleton, C.; Gyawali, D. Technical Veil, Hidden Politics: Interrogating the Power Linkages behind the Nexus. Water Altern. -Interdiscip. J. Water Politics Dev. 2015, 8, 610–626. [Google Scholar]
- Hussein, H.; Lambert, L.A. A Rentier State under Blockade: Qatar’s Water-Energy-Food Predicament from Energy Abundance and Food Insecurity to a Silent Water Crisis. Water 2020, 12, 1051. [Google Scholar] [CrossRef] [Green Version]
- Hennig, T.; Wang, W.; Magee, D.; He, D. Yunnan’s Fast-Paced Large Hydropower Development: A Powershed-Based Approach to Critically Assessing Generation and Consumption Paradigms. Water 2016, 8, 476. [Google Scholar] [CrossRef]
- Hennig, T. Damming the transnational Ayeyarwady basin. Hydropower and the water-energy nexus. Renew. Sustain. Energy Rev. 2016, 65, 1232–1246. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Hussein, H. The water-energy-food nexus and COVID-19: Towards a systematization of impacts and responses. Sci. Total Environ. 2021, 779, 146529. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; You, F. Food-energy-water-waste nexus systems optimization for New York State under the COVID-19 pandemic to alleviate health and environmental concerns. Appl. Energy 2021, 282, 116181. [Google Scholar] [CrossRef]
- Zhang, T.M.; Xu, Y.J. Evaluation on the Efficiency of Water-Energy-Food Nexus Based on Data Envelopment Analysis (DEA) and Malmquist in Different Regions of China. Int. J. Comput. Intell. Syst. 2019, 12, 1649–1659. [Google Scholar] [CrossRef]
- Sun, C.; Yan, X.; Zhao, L. Coupling efficiency measurement and spatial correlation characteristic of water–energy–food nexus in China. Resour. Conserv. Recycl. 2021, 164, 105151. [Google Scholar] [CrossRef]
- Huang, D.; Shen, Z.; Sun, C.; Li, G. Shifting from Production-Based to Consumption-Based Nexus Governance: Evidence from an Input–Output Analysis of the Local Water-Energy-Food Nexus. Water Resour. Manag. 2021, 35, 1673–1688. [Google Scholar] [CrossRef]
- Ibrahim, M.D.; Ferreira, D.C.; Daneshvar, S.; Marques, R.C. Transnational resource generativity: Efficiency analysis and target setting of water, energy, land, and food nexus for OECD countries. Sci. Total Environ. 2019, 697, 134017. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.-H.; Chiueh, P.-T.; Lo, S.-L. Measuring urban food-energy-water nexus sustainability: Finding solutions for cities. Sci. Total Environ. 2021, 752, 141954. [Google Scholar] [CrossRef]
- Malagó, A.; Comero, S.; Bouraoui, F.; Kazezyılmaz-Alhan, C.M.; Gawlik, B.M.; Easton, P.; Laspidou, C. An analytical framework to assess SDG targets within the context of WEFE nexus in the Mediterranean region. Resour. Conserv. Recycl. 2021, 164, 105205. [Google Scholar] [CrossRef]
- Cansino-Loeza, B.; Ponce-Ortega, J.M. Sustainable assessment of Water-Energy-Food Nexus at regional level through a multi-stakeholder optimization approach. J. Clean. Prod. 2021, 290, 125194. [Google Scholar] [CrossRef]
- Das, A.; Sahoo, B.; Panda, S.N. Evaluation of Nexus-Sustainability and Conventional Approaches for Optimal Water-Energy-Land-Crop Planning in an Irrigated Canal Command. Water Resour. Manag. 2020, 34, 2329–2351. [Google Scholar] [CrossRef]
- Cansino-Loeza, B.; Sánchez-Zarco, X.G.; Mora-Jacobo, E.G.; Saggiante-Mauro, F.E.; González-Bravo, R.; Mahlknecht, J.; Ponce-Ortega, J.M. Systematic Approach for Assessing the Water–Energy–Food Nexus for Sustainable Development in Regions with Resource Scarcities. ACS Sustain. Chem. Eng. 2020, 8, 13734–13748. [Google Scholar] [CrossRef]
- Purwanto, A.; Sušnik, J.; Suryadi, F.; de Fraiture, C. Using group model building to develop a causal loop mapping of the water-energy-food security nexus in Karawang Regency, Indonesia. J. Clean. Prod. 2019, 240, 118170. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Wang, G.; Bao, Z.; Diao, Y.; Liu, J. Evaluating the Collaborative Security of Water–Energy–Food in China on the Basis of Symbiotic System Theory. Water 2021, 13, 1112. [Google Scholar] [CrossRef]
- González-Rosell, A.; Blanco, M.; Arfa, I. Integrating Stakeholder Views and System Dynamics to Assess the Water–Energy–Food Nexus in Andalusia. Water 2020, 12, 3172. [Google Scholar] [CrossRef]
- Zhang, T.; Tan, Q.; Yu, X.; Zhang, S. Synergy assessment and optimization for water-energy-food nexus: Modeling and application. Renew. Sustain. Energy Rev. 2020, 134, 110059. [Google Scholar] [CrossRef]
- Siciliano, G.; Rulli, M.C.; D’Odorico, P. European large-scale farmland investments and the land-water-energy-food nexus. Adv. Water Resour. 2017, 110, 579–590. [Google Scholar] [CrossRef] [Green Version]
- El-Gafy, I.; Grigg, N.; Waskom, R. Water-Food-Energy: Nexus and Non-Nexus Approaches for Optimal Cropping Pattern. Water Resour. Manag. 2017, 31, 4971–4980. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Elagib, N.A. Towards understanding the integrative approach of the water, energy and food nexus. Sci. Total Environ. 2017, 574, 1131–1139. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, L.-C.; Uen, T.-S.; Guo, S.; Xu, C.-Y.; Chang, F.-J. Prospect for small-hydropower installation settled upon optimal water allocation: An action to stimulate synergies of water-food-energy nexus. Appl. Energy 2019, 238, 668–682. [Google Scholar] [CrossRef]
- Gao, J.Y.; Zhao, J.S.; Wang, H. Dam-Impacted Water-Energy-Food Nexus in Lancang-Mekong River Basin. J. Water Resour. Plan. Manag. 2021, 147, 4021010. [Google Scholar] [CrossRef]
- Basheer, M.; Wheeler, K.G.; Ribbe, L.; Majdalawi, M.; Abdo, G.; Zagona, E.A. Quantifying and evaluating the impacts of cooperation in transboundary river basins on the Water-Energy-Food nexus: The Blue Nile Basin. Sci. Total Environ. 2018, 630, 1309–1323. [Google Scholar] [CrossRef] [PubMed]
- Gragg, R.S.; Anandhi, A.; Jiru, M.; Usher, K.M. A Conceptualization of the Urban Food-Energy-Water Nexus Sustainability Paradigm: Modeling From Theory to Practice. Front. Environ. Sci. 2018, 6, 133. [Google Scholar] [CrossRef]
- Qian, X.-Y.; Liang, Q.-M. Sustainability evaluation of the provincial water-energy-food nexus in China: Evolutions, obstacles, and response strategies. Sustain. Cities Soc. 2021, 75, 103332. [Google Scholar] [CrossRef]
- de Melo, T.G.; de Souza, B.L.; Scopinho, R.A. Peri-urban territories and WEF nexus: The challenges of Brazilian agrarian reform areas for social justice. J. Integr. Environ. Sci. 2020, 17, 45–67. [Google Scholar] [CrossRef]
- Benjamin, M.F.D.; Andiappan, V.; Lee, J.-Y.; Tan, R.R. Increasing the reliability of bioenergy parks utilizing agricultural waste feedstock under demand uncertainty. J. Clean. Prod. 2020, 269, 122385. [Google Scholar] [CrossRef]
- Jaroenkietkajorn, U.; Gheewala, S.H. Interlinkage between water-energy-food for oil palm cultivation in Thailand. Sustain. Prod. Consum. 2020, 22, 205–217. [Google Scholar] [CrossRef]
- Endo, A.; Burnett, K.; Orencio, P.M.; Kumazawa, T.; Wada, C.A.; Ishii, A.; Tsurita, I.; Taniguchi, M. Methods of the Water-Energy-Food Nexus. Water 2015, 7, 5806–5830. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G. Managing the food, water, and energy nexus for achieving the Sustainable Development Goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Mayor, B.; López-Gunn, E.; Villarroya, F.I.; Montero, E. Application of a water–energy–food nexus framework for the Duero river basin in Spain. Water Int. 2015, 40, 791–808. [Google Scholar] [CrossRef]
- Al-Saidi, M.; Hefny, A. Institutional arrangements for beneficial regional cooperation on water, energy and food priority issues in the Eastern Nile Basin. J. Hydrol. 2018, 562, 821–831. [Google Scholar] [CrossRef]
- Green, J.M.H.; Cranston, G.R.; Sutherland, W.J.; Tranter, H.R.; Bell, S.J.; Benton, T.G.; Blixt, E.; Bowe, C.; Broadley, S.; Brown, A.; et al. Research priorities for managing the impacts and dependencies of business upon food, energy, water and the environment. Sustain. Sci. 2017, 12, 319–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steel, B.S.; Wolters, E.A.; Warner, R.L. Public Preferences for Food-Energy-Water Tradeoffs in the Western US. Sustainability 2019, 11, 5200. [Google Scholar] [CrossRef] [Green Version]
- Gebreyes, M.; Bazzana, D.; Simonetto, A.; Müller-Mahn, D.; Zaitchik, B.; Gilioli, G.; Simane, B. Local Perceptions of Water-Energy-Food Security: Livelihood Consequences of Dam Construction in Ethiopia. Sustainability 2020, 12, 2161. [Google Scholar] [CrossRef] [Green Version]
- Urbinatti, A.M.; Dalla Fontana, M.; Stirling, A.; Giatti, L.L. ‘Opening up’ the governance of water-energy-food nexus: Towards a science-policy-society interface based on hybridity and humility. Sci. Total Environ. 2020, 744, 140945. [Google Scholar] [CrossRef]
- Nhamo, L.; Ndlela, B.; Nhemachena, C.; Mabhaudhi, T.; Mpandeli, S.; Matchaya, G. The Water-Energy-Food Nexus: Climate Risks and Opportunities in Southern Africa. Water 2018, 10, 567. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhang, P.; Luo, Z.; Zhang, D.; Bi, B.; Cao, X. Recent Progress on the Water–Energy–Food Nexus using Bibliometric Analysis. Curr. Sci. 2019, 117, 577–586. [Google Scholar] [CrossRef]
- De Andrade Guerra, J.B.S.O.; Berchin, I.I.; Garcia, J.; da Silva Neiva, S.; Jonck, A.V.; Faraco, R.A.; de Amorim, W.S.; Ribeiro, J.M.P. A literature-based study on the water-energy-food nexus for sustainable development. Stoch. Environ. Res. Risk Assess. 2021, 35, 95–116. [Google Scholar] [CrossRef]
- Bromwich, B. Nexus meets crisis: A review of conflict, natural resources and the humanitarian response in Darfur with reference to the water-energy-food nexus. Int. J. Water Resour. Dev. 2015, 31, 375–392. [Google Scholar] [CrossRef]
- Pahl-Wostl, C. Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environ. Sci. Policy 2019, 92, 356–367. [Google Scholar] [CrossRef]
- Marttunen, M.; Mustajoki, J.; Sojamo, S.; Ahopelto, L.; Keskinen, M. A Framework for Assessing Water Security and the Water-Energy-Food NexusThe Case of Finland. Sustainability 2019, 11, 2900. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Taniguchi, M.; Mohtar, R.H.; Choi, J.-Y.; Yoo, S.-H. An Analysis of the Water-Energy-Food-Land Requirements and CO2 Emissions for Food Security of Rice in Japan. Sustainability 2018, 10, 3354. [Google Scholar] [CrossRef] [Green Version]
- Huang, A.; Chang, F.-J. Prospects for Rooftop Farming System Dynamics: An Action to Stimulate Water-Energy-Food Nexus Synergies toward Green Cities of Tomorrow. Sustainability 2021, 13, 9042. [Google Scholar] [CrossRef]
- Memarzadeh, M.; Moura, S.; Horvath, A. Optimizing dynamics of integrated food–energy–water systems under the risk of climate change. Environ. Res. Lett. 2019, 14, 74010. [Google Scholar] [CrossRef] [Green Version]
- Kurian, M.; Scott, C.; Reddy, V.R.; Alabaster, G.; Nardocci, A.; Portney, K.; Boer, R.; Hannibal, B. One Swallow Does Not Make a Summer: Siloes, Trade-Offs and Synergies in the Water-Energy-Food Nexus. Front. Environ. Sci. 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Das, T.; Cabezas, H. Tools and concepts for environmental sustainability in the food-energy-water nexus: Chemical engineering perspective. Environ. Prog. Sustain. Energy 2018, 37, 73–81. [Google Scholar] [CrossRef]
- Fang, D.; Chen, B. Linkage analysis for the water–energy nexus of city. Appl. Energy 2017, 189, 770–779. [Google Scholar] [CrossRef]
- Daher, B.T.; Mohtar, R.H. Water–energy–food (WEF) Nexus Tool 2.0: Guiding integrative resource planning and decision-making. Water Int. 2015, 40, 748–771. [Google Scholar] [CrossRef]
- Walsh, M.J.; Van Doren, L.G.; Sills, D.L.; Archibald, I.; Beal, C.M.; Lei, X.G.; Huntley, M.E.; Johnson, Z.; Greene, C.H. Algal food and fuel coproduction can mitigate greenhouse gas emissions while improving land and water-use efficiency. Environ. Res. Lett. 2016, 11, 114006. [Google Scholar] [CrossRef]
- Karlberg, L.; Hoff, H.; Amsalu, T.; Andersson, K.; Binnington, T.; Flores-Lopez, F.; de Bruin, A.; Gebrehiwot, S.G.; Gedif, B.; zur Heide, F.; et al. Tackling Complexity: Understanding the Food-Energy-Environment Nexus in Ethiopia’s Lake Tana Sub-basin. Water Altern.-Interdiscip. J. Water Politics Dev. 2015, 8, 710–734. [Google Scholar]
- Serrano-Tovar, T.; Penate Suarez, B.; Musicki, A.; de la Fuente Bencomo, J.A.; Cabello, V.; Giampietro, M. Structuring an integrated water-energy-food nexus assessment of a local wind energy desalination system for irrigation. Sci. Total Environ. 2019, 689, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Huang, D.; Li, Y. China’s Input-Output Efficiency of Water-Energy-Food Nexus Based on the Data Envelopment Analysis (DEA) Model. Sustainability 2016, 8, 927. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Vesselinov, V.V. Integrated modeling approach for optimal management of water, energy and food security nexus. Adv. Water Resour. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Li, M.; Singh, V.P. Sustainability of water and energy use for food production based on optimal allocation of agricultural irrigation water. Int. J. Water Resour. Dev. 2020, 36, 528–546. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. Indoor Vertical Farming in the Urban Nexus Context: Business Growth and Resource Savings. Sustainability 2020, 12, 1965. [Google Scholar] [CrossRef] [Green Version]
- Holt, N.; Shukla, S.; Hochmuth, G.; Muñoz-Carpena, R.; Ozores-Hampton, M. Transforming the food-water-energy-land-economic nexus of plasticulture production through compact bed geometries. Adv. Water Resour. 2017, 110, 515–527. [Google Scholar] [CrossRef]
Cluster No. | Characteristics | Main Research Topics | References |
---|---|---|---|
#0, #4, #8, and #10 | Agricultural sustainability |
| [77,78] |
#1 | Critical interlinkage |
| [79,80] |
#2, #6, and #11 | River basin |
| [81,82] |
#3 | Response variable |
| [83,84] |
#5 | Social inequality |
| [58,85] |
#7, #9, and #12 | Bioenergy |
| [86,87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ju, K.; Wei, X. Where Will ‘Water-Energy-Food’ Research Go Next?—Visualisation Review and Prospect. Sustainability 2022, 14, 7751. https://doi.org/10.3390/su14137751
Wang J, Ju K, Wei X. Where Will ‘Water-Energy-Food’ Research Go Next?—Visualisation Review and Prospect. Sustainability. 2022; 14(13):7751. https://doi.org/10.3390/su14137751
Chicago/Turabian StyleWang, Jue, Keyi Ju, and Xiaozhuo Wei. 2022. "Where Will ‘Water-Energy-Food’ Research Go Next?—Visualisation Review and Prospect" Sustainability 14, no. 13: 7751. https://doi.org/10.3390/su14137751
APA StyleWang, J., Ju, K., & Wei, X. (2022). Where Will ‘Water-Energy-Food’ Research Go Next?—Visualisation Review and Prospect. Sustainability, 14(13), 7751. https://doi.org/10.3390/su14137751