Evaluation of the Aging Properties of Terminal Blend Hybrid Asphalt Based on Chemical and Rheological Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Aging Procedures
2.3. ATR-FTIR Test
2.4. Temperature Sweep (TS) Test
2.5. Multiple Stress Creep and Recovery (MSCR) Test
3. Results and Discussion
3.1. ATR-FTIR Analysis
3.2. Evaluation of G*
3.3. Evaluation of δ
3.4. Evaluation of G*/sin δ
3.5. Evaluation of G′, G″, η′, and η″
3.6. Evaluation of Jnr0.1 and Jnr3.2
3.7. Evaluation of R0.1, R3.2, Jnr-diff, and Rdiff
3.8. Correlation Analysis
4. Conclusions
- ATR-FTIR analysis shows the ΔICA of the TBHA binder is less than that of the 0T_3S_0.1Sul after the STA and LTA, and the superior anti-aging properties of TBHA (both STA and LTA) are further demonstrated.
- During the STA, the SBS modifier in the TBHA degrades and makes the bitumen predominantly soft, however, during the LTA, the hardening of the bitumen plays a dominant role and increases its elasticity.
- Before and after STA and LTA, the rheological indexes of the DSR oscillation test and the MSCR test indexes of the TBHA binder do not correlate well, but the rheological indexes of the DSR oscillation test and the ICA indexes of the ATR-FTIR test of the TBHA binder correlate better.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lo Presti, D.; Izquierdo, M.A.; Jiménez del Barco Carrión, A. Towards storage-stable high-content recycled tyre rubber modified bitumen. Constr. Build. Mater. 2018, 172, 106–111. [Google Scholar] [CrossRef]
- Sienkiewicz, M.; Borzędowska-Labuda, K.; Wojtkiewicz, A.; Janik, H. Development of methods improving storage stability of bitumen modified with ground tire rubber: A review. Fuel Process. Technol. 2017, 159, 272–279. [Google Scholar] [CrossRef]
- Szerb, E.I.; Nicotera, I.; Teltayev, B.; Vaiana, R.; Rossi, C.O. Highly stable surfactant-crumb rubber-modified bitumen: NMR and rheological investigation. Road Mater. Pavement Des. 2018, 19, 1192–1202. [Google Scholar] [CrossRef]
- Bressi, S.; Fiorentini, N.; Huang, J.; Losa, M. Crumb Rubber Modifier in Road Asphalt Pavements: State of the Art and Statistics. Coatings 2019, 9, 384. [Google Scholar] [CrossRef] [Green Version]
- Hosseinnezhad, S.; Kabir, S.F.; Oldham, D.; Mousavi, M.; Fini, E.H. Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction. J. Clean. Prod. 2019, 225, 82–89. [Google Scholar] [CrossRef]
- Tahami, S.A.; Mirhosseini, A.F.; Dessouky, S.; Mork, H.; Kavussi, A. The use of high content of fine crumb rubber in asphalt mixes using dry process. Constr. Build. Mater. 2019, 222, 643–653. [Google Scholar] [CrossRef]
- Hemida, A.; Abdelrahman, M. Component analysis of bio-asphalt binder using crumb rubber modifier and guayule resin as an innovative asphalt replacer. Resour. Conserv. Recycl. 2021, 169, 105486. [Google Scholar] [CrossRef]
- Kabir, S.F.; Zheng, R.; Delgado, A.G.; Fini, E.H. Use of microbially desulfurized rubber to produce sustainable rubberized bitumen. Resour. Conserv. Recycl. 2021, 164, 105144. [Google Scholar] [CrossRef]
- Picado-Santos, L.G.; Capitão, S.D.; Neves, J.M.C. Crumb rubber asphalt mixtures: A literature review. Constr. Build. Mater. 2020, 247, 118577. [Google Scholar] [CrossRef]
- Xiang, L.; Cheng, J.; Kang, S. Thermal oxidative aging mechanism of crumb rubber/SBS composite modified asphalt. Constr. Build. Mater. 2015, 75, 169–175. [Google Scholar] [CrossRef]
- Dong, F.; Yu, X.; Liu, S.; Wei, J. Rheological behaviors and microstructure of SBS/CR composite modified hard asphalt. Constr. Build. Mater. 2016, 115, 285–293. [Google Scholar] [CrossRef]
- Jiang, Z.; Easa, S.M.; Hu, C.; Zheng, X. Understanding damping performance and mechanism of crumb rubber and styrene-butadiene-styrene compound modified asphalts. Constr. Build. Mater. 2019, 206, 151–159. [Google Scholar] [CrossRef]
- Tur Rasool, R.; Hongru, Y.; Hassan, A.; Wang, S.; Zhang, H. In-field aging process of high content SBS modified asphalt in porous pavement. Polym. Degrad. Stab. 2018, 155, 220–229. [Google Scholar] [CrossRef]
- Shirini, B.; Imaninasab, R. Performance evaluation of rubberized and SBS modified porous asphalt mixtures. Constr. Build. Mater. 2016, 107, 165–171. [Google Scholar] [CrossRef]
- Lin, P.; Huang, W.; Tang, N.; Xiao, F. Performance characteristics of Terminal Blend rubberized asphalt with SBS and polyphosphoric acid. Constr. Build. Mater. 2017, 141, 171–182. [Google Scholar] [CrossRef]
- Li, B.; Huang, W.; Tang, N.; Hu, J.; Lin, P.; Guan, W.; Xiao, F.; Shan, Z. Evolution of components distribution and its effect on low temperature properties of terminal blend rubberized asphalt binder. Constr. Build. Mater. 2017, 136, 598–608. [Google Scholar] [CrossRef]
- Han, L.; Zheng, M.; Wang, C. Current status and development of terminal blend tyre rubber modified asphalt. Constr. Build. Mater. 2016, 128, 399–409. [Google Scholar] [CrossRef]
- Zeinali, A.; Blankenship, P.B.; Mahboub, K.C. Comparison of Performance Properties of Terminal Blend Tire Rubber and Polymer Modified Asphalt Mixtures. In Proceedings of the Second Transportation & Development Congress 2014, Orlando, FL, USA, 8–11 June 2014; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 239–248. [Google Scholar]
- Jones, D.; Harvey, J.T.; Monismith, C.L. Reflective cracking study: Summary report. Inst. Transp. Stud. Work. Pap. Ser. 2008. Available online: https://escholarship.org/uc/item/357679nm (accessed on 1 May 2022).
- Santucci, L. Rubber roads: Waste tires find a home. Pavement Technol. Updat. 2009, 1, 12. [Google Scholar]
- Qi, X.; Shenoy, A.; Al-Khateeb, G.; Arnold, T.; Gibson, N.; Youtcheff, J.; Harman, T. Laboratory characterization and full-scale accelerated performance testing of crumb rubber asphalts and other modified asphalt systems. In Proceedings of the Asphalt Rubber 2006 Conference, Palm Springs, CA, USA, 25–27 October 2006; pp. 39–65. [Google Scholar]
- Chipps, J.F.; Davison, R.R.; Glover, C.J. A model for oxidative aging of rubber-modified asphalts and implications to performance analysis. Energy Fuels 2001, 15, 637–647. [Google Scholar] [CrossRef]
- Attia, M.; Abdelrahman, M. Enhancing the performance of crumb rubber-modified binders through varying the interaction conditions. Int. J. Pavement Eng. 2009, 10, 423–434. [Google Scholar] [CrossRef]
- Crucho, J.; Picado-Santos, L.; Neves, J.; Capitão, S.; Al-Qadi, I.L. Tecnico accelerated ageing (TEAGE)–a new laboratory approach for bituminous mixture ageing simulation. Int. J. Pavement Eng. 2020, 21, 753–765. [Google Scholar] [CrossRef]
- Ruan, Y.; Davison, R.R.; Glover, C.J. Oxidation and viscosity hardening of polymer-modified asphalts. Energy Fuels 2003, 17, 991–998. [Google Scholar] [CrossRef]
- Airey, G.D. State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. Int. J. Pavement Eng. 2003, 4, 165–176. [Google Scholar] [CrossRef]
- AASHTO T240; Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test). American Association of State Highway and Transportation Official: Washington, DC, USA, 2013.
- AASHTO R28; Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV). American Association of State Highway and Transportation Official: Washington, DC, USA, 2012.
- AASHTO M 332-14; Standard Specification for Performance-Graded Asphalt Binder using Multiple Stress Creep Recovery (MSCR) Test. American Association of State Highway and Transportation Official: Washington, DC, USA, 2014.
- Hajj, E.Y.; Sebaaly, P.E.; Hitti, E.; Borroel, C. Performance Evaluation of Terminal Blend Tire Rubber HMA and WMA Mixtures-Case Studies. J. Assoc. Asph. Paving Technol. 2011, 80, 665–696. [Google Scholar]
- Liu, L.; Li, M.; Lu, Q. Two-Step Mixing Process Elaboration of the Hot-Mix Asphalt Mixture Based on Surface Energy Theory. J. Mater. Civ. Eng. 2020, 32, 04020301. [Google Scholar] [CrossRef]
- Wang, S.; Huang, W. Investigation of aging behavior of terminal blend rubberized asphalt with SBS polymer. Constr. Build. Mater. 2021, 267, 120870. [Google Scholar] [CrossRef]
- Li, M.; Liu, L.; Xing, C.; Liu, L.; Wang, H. Influence of rejuvenator preheating temperature and recycled mixture’s curing time on performance of hot recycled mixtures. Constr. Build. Mater. 2021, 295, 123616. [Google Scholar] [CrossRef]
- Li, M.; Xing, C.; Liu, L.; Huang, W.; Meng, Y. Gel permeation chromatography-based method for assessing the properties of binders in reclaimed asphalt pavement mixtures. Constr. Build. Mater. 2022, 316, 126005. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, J.; Duan, H.; Luo, H.; Liu, X. Molecular dynamics insight into the adsorption and distribution of bitumen subfractions on Na-montmorillonite surface. Fuel 2022, 310, 122380. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Zheng, W.; Chen, Z.; Shi, C. A Novel Rejuvenating Method for Structural and Performance Recovery of Aged SBS-Modified Bitumen. ACS Sustain. Chem. Eng. 2022, 10, 1565–1577. [Google Scholar] [CrossRef]
- D’Angelo, J.A. The Relationship of the MSCR Test to Rutting. Road Mater. Pavement Des. 2009, 10, 61–80. [Google Scholar] [CrossRef]
Binder Type | Modification Plan | ||
---|---|---|---|
Linear SBS Polymer, % | Sulphur, % | CR, % | |
0T_3S_0.1Sul | 3 | 0.1 | 0 |
5T_3S_0.2Sul | 3 | 0.2 | 5 |
10T_3S_0.2Sul | 3 | 0.2 | 10 |
15T_3S_0.2Sul | 3 | 0.2 | 15 |
20T_3S_0.2Sul | 3 | 0.2 | 20 |
Index | Calculation Method |
---|---|
ICA | CI= A1700cm−1/A2700~3000cm−1 |
Binder Type | Virgin Status | STA Status | LTA Status | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G′, Pa | Rank | G″, Pa | Rank | G′, Pa | Rank | G″, Pa | Rank | G′, Pa | Rank | G″, Pa | Rank | |
0T_3S_0.1Sul | 516 | 2 | 1274 | 1 | 338 | 1 | 1336 | 1 | 569 | 2 | 2896 | 1 |
5T_3S_0.2Sul | 379 | 5 | 1049 | 5 | 62 | 5 | 700 | 5 | 516 | 4 | 2208 | 3 |
10T_3S_0.2Sul | 440 | 4 | 1159 | 3 | 258 | 2 | 1106 | 2 | 648 | 1 | 2511 | 2 |
15T_3S_0.2Sul | 464 | 3 | 1142 | 4 | 181 | 4 | 938 | 4 | 462 | 5 | 2144 | 4 |
20T_3S_0.2Sul | 528 | 1 | 1190 | 2 | 255 | 3 | 976 | 3 | 548 | 3 | 2097 | 5 |
Binder Type | Virgin Status | STA Status | LTA Status | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
η′, Pa·s | Rank | η″, Pa·s | Rank | η′, Pa·s | Rank | η″, Pa·s | Rank | η′, Pa·s | Rank | η″, Pa·s | Rank | |
0T_3S_0.1Sul | 127.4 | 1 | 51.6 | 2 | 133.6 | 1 | 33.8 | 1 | 289.6 | 1 | 56.9 | 2 |
5T_3S_0.2Sul | 104.9 | 5 | 37.9 | 5 | 70.0 | 5 | 6.2 | 5 | 220.8 | 3 | 51.6 | 4 |
10T_3S_0.2Sul | 115.9 | 3 | 44.0 | 4 | 110.6 | 2 | 25.8 | 2 | 251.1 | 2 | 64.8 | 1 |
15T_3S_0.2Sul | 114.2 | 4 | 46.4 | 3 | 93.8 | 4 | 18.1 | 4 | 214.4 | 4 | 46.2 | 5 |
20T_3S_0.2Sul | 119.0 | 2 | 52.8 | 1 | 97.6 | 3 | 25.5 | 3 | 209.7 | 5 | 54.8 | 3 |
Binder Type | Virgin Status | STA Status | LTA Status | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R0.1, % | Rank | R3.2, % | Rank | R0.1, % | Rank | R3.2, % | Rank | R0.1, % | Rank | R3.2, % | Rank | |
0T_3S_0.1Sul | 96.57 | 1 | 84.36 | 1 | 28.58 | 2 | 10.12 | 2 | 3.35 | 5 | 2.88 | 5 |
5T_3S_0.2Sul | 89.17 | 5 | 51.75 | 2 | 0 | 5 | 0 | 5 | 18.78 | 3 | 5.39 | 3 |
10T_3S_0.2Sul | 89.95 | 4 | 51.73 | 3 | 22.88 | 3 | 5.76 | 3 | 21.77 | 2 | 6.91 | 2 |
15T_3S_0.2Sul | 93.50 | 3 | 45.92 | 4 | 20.47 | 4 | 2.54 | 4 | 18.63 | 4 | 4.23 | 4 |
20T_3S_0.2Sul | 95.00 | 2 | 37.50 | 5 | 55.14 | 1 | 12.90 | 1 | 37.31 | 1 | 9.60 | 1 |
Binder Type | Virgin Status | STA Status | LTA Status | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Jnr-diff, % | Rank | Rdiff, % | Rank | Jnr-diff, % | Rank | Rdiff, % | Rank | Jnr-diff, % | Rank | Rdiff, % | Rank | |
0T_3S_0.1Sul | 294.00 | 5 | 12.64 | 5 | 44.67 | 4 | 64.60 | 4 | 14.38 | 5 | 14.18 | 5 |
5T_3S_0.2Sul | 349.18 | 4 | 41.97 | 4 | 13.08 | 5 | 0 | 5 | 33.19 | 4 | 71.31 | 3 |
10T_3S_0.2Sul | 366.93 | 3 | 42.49 | 3 | 39.30 | 2 | 74.80 | 3 | 35.49 | 3 | 68.27 | 4 |
15T_3S_0.2Sul | 752.97 | 2 | 50.89 | 2 | 41.27 | 2 | 87.62 | 1 | 36.66 | 2 | 77.30 | 1 |
20T_3S_0.2Sul | 1280.95 | 1 | 60.52 | 1 | 108.60 | 1 | 76.61 | 2 | 63.85 | 1 | 74.26 | 2 |
Index Type | ICA | G* | δ | G*/sin δ | G′ | G″ | η′ | η″ | Jnr0.1 | Jnr3.2 | Jnr-diff | R0.1 | R3.2 | Rdiff | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ICA | P | 1 | 0.902 | 0.518 | 0.882 | 0.463 | 0.918 | 0.918 | 0.463 | 0.080 | −0.050 | −0.543 | −0.709 | −0.650 | 0.205 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
G* | P | 0.902 | 1 | 0.145 | 0.999 | 0.776 | 0.999 | 0.999 | 0.776 | −0.276 | −0.421 | −0.277 | −0.389 | −0.307 | 0.068 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
δ | P | 0.518 | 0.145 | 1 | 0.099 | −0.494 | 0.187 | 0.187 | −0.494 | 0.865 | 0.799 | −0.781 | −0.945 | −0.842 | −0.002 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
G*/sin δ | P | 0.882 | 0.999 | 0.099 | 1 | 0.805 | 0.996 | 0.996 | 0.805 | −0.314 | −0.458 | −0.238 | −0.346 | −0.267 | 0.062 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
G′ | P | 0.463 | 0.776 | −0.494 | 0.805 | 1 | 0.747 | 0.747 | 1.000 | −0.752 | −0.846 | 0.253 | 0.250 | 0.266 | 0.046 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
G″ | P | 0.918 | 0.999 | 0.187 | 0.996 | 0.747 | 1 | 1.000 | 0.747 | −0.240 | −0.386 | −0.313 | −0.427 | −0.343 | 0.073 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
η′ | P | 0.918 | 0.999 | 0.187 | 0.996 | 0.747 | 1.000 | 1 | 0.747 | −0.240 | −0.386 | −0.313 | −0.427 | −0.343 | 0.073 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
η″ | P | 0.463 | 0.776 | −0.494 | 0.805 | 1.000 | 0.747 | 0.747 | 1 | −0.752 | −0.846 | 0.253 | 0.250 | 0.266 | 0.046 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
Jnr0.1 | P | 0.080 | −0.276 | 0.865 | −0.314 | −0.752 | −0.240 | −0.240 | −0.752 | 1 | 0.976 | −0.495 | −0.715 | −0.620 | −0.215 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
Jnr3.2 | P | −0.050 | −0.421 | 0.799 | −0.458 | −0.846 | −0.386 | −0.386 | −0.846 | 0.976 | 1 | −0.395 | −0.626 | −0.607 | −0.111 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
Jnr-diff | P | −0.543 | −0.277 | −0.781 | −0.238 | 0.253 | −0.313 | −0.313 | 0.253 | −0.495 | −0.395 | 1 | 0.759 | 0.558 | −0.069 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
R0.1 | P | −0.709 | −0.389 | −0.945 | −0.346 | 0.250 | −0.427 | −0.427 | 0.250 | −0.715 | −0.626 | 0.759 | 1 | 0.908 | −0.124 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
R3.2 | P | −0.650 | −0.307 | −0.842 | −0.267 | 0.266 | −0.343 | −0.343 | 0.266 | −0.620 | −0.607 | 0.558 | 0.908 | 1 | −0.393 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | |
Rdiff | P | 0.205 | 0.068 | −0.002 | 0.062 | 0.046 | 0.073 | 0.073 | 0.046 | −0.215 | −0.111 | −0.069 | −0.124 | −0.393 | 1 |
N | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Huang, W.; Liu, X.; Lin, P. Evaluation of the Aging Properties of Terminal Blend Hybrid Asphalt Based on Chemical and Rheological Methods. Sustainability 2022, 14, 7865. https://doi.org/10.3390/su14137865
Wang S, Huang W, Liu X, Lin P. Evaluation of the Aging Properties of Terminal Blend Hybrid Asphalt Based on Chemical and Rheological Methods. Sustainability. 2022; 14(13):7865. https://doi.org/10.3390/su14137865
Chicago/Turabian StyleWang, Sheng, Weidong Huang, Xueyan Liu, and Peng Lin. 2022. "Evaluation of the Aging Properties of Terminal Blend Hybrid Asphalt Based on Chemical and Rheological Methods" Sustainability 14, no. 13: 7865. https://doi.org/10.3390/su14137865
APA StyleWang, S., Huang, W., Liu, X., & Lin, P. (2022). Evaluation of the Aging Properties of Terminal Blend Hybrid Asphalt Based on Chemical and Rheological Methods. Sustainability, 14(13), 7865. https://doi.org/10.3390/su14137865