Study on the Coupling Relationship between Relocation for Poverty Alleviation and Spatiotemporal Evolution of Rocky Desertification in Karst Areas of Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Rocky Desertification Index
2.4. Classification of Rocky Desertification
2.5. Research Methods
2.5.1. Rate of Change
2.5.2. Image Difference Analysis
2.5.3. Transfer Matrix
2.5.4. Coupling Coordination Model
2.5.5. CA-Markov Model
3. Results
3.1. Spatiotemporal Evolution Analysis of Influencing Factors of Rocky Desertification
3.2. Spatial and Temporal Distribution Pattern of Rocky Desertification
3.2.1. Distribution of Rocky Desertification
3.2.2. Dynamic Change Rate of Rocky Desertification
3.3. Change of Rocky Desertification Types before and after Relocation
3.4. Analysis of Coupling Coordination Degree between Ex Situ Poverty Alleviation and Relocation and Rocky Desertification
3.5. Future Scenario Prediction of Rocky Desertification
4. Discussion
5. Conclusions
- (1)
- In the past 20 years, the vegetation coverage in Panzhou City has generally improved, and the implementation of ex situ poverty alleviation and relocation projects has significantly promoted the reduction of rocky desertification areas and their degree. After relocation (2015–2020), the improvement rate of rocky desertification accelerated, and the ecological environment continued to improve.
- (2)
- Before the relocation, from 2000 to 2005, the main direction of rocky desertification transfer was from LRD to MRD and SRD. After the relocation, all types of rocky desertification changed to NRD. The improvement effect of rocky desertification is remarkable, and the main contribution comes from PRD and LRD.
- (3)
- The greater the relocation intensity, the more obvious the improvement effect of the rocky desertification area in the village, and the higher the corresponding coupling coordination level. Among them, the coupling coordination degree between LRD and relocation intensity is the most significant, and the coupling coordination degree between PRD and relocation intensity is the lowest.
- (4)
- The forecast shows that the rocky desertification in Panzhou will continue to improve by 2025 and 2035, and relevant policies and measures will continue to play an important role in improving local rocky desertification.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, C.; Xiong, K.; Su, Q. Fragile types of Guizhou karst ecologic environments and its exploring and taming. J. Guizhou Norm. Univ. 1996, 14, 1–9. [Google Scholar]
- Zhang, J.; Dai, M.; Wang, L.; Zeng, C.; Su, W. The challenge and future of rocky desertification control in karst areas in southwest China. Solid Earth 2016, 7, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Wang, S. The most serious eco-geologically environmental problem in Southwestern China—Karst rocky desertification. Bull. Miner. Rock Geochem. 2003, 22, 120–126. [Google Scholar]
- Hooke, J.; Sandercock, P. Use of vegetation to combat desertification and land degradation: Recommendations and guidelines for spatial strategies in Mediterranean lands. Landsc. Urban Plan 2012, 107, 389–400. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Vieira, R.; Tomasella, J.; Alvalá, R.; Sestini, M.; Affonso, A.; Rodriguez, D.; Barbosa, A.; Cunha, A.; Valles, G.; Crepani, E.; et al. Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth 2015, 6, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Qiu, Y. Mobile China: Migration, Country and Family; Social Science Literature Press: Beijing, China, 2013; p. 67. [Google Scholar]
- Research Group of National Population and Family Planning Commission. The practice of population management in Britain and Its Enlightenment to China. Learn. Times 2012, 4, 1–9. [Google Scholar]
- Chen, F.; Wang, S.; Bai, X.; Liu, F.; Zhou, D.; Tian, Y.; Luo, G.; Li, Q.; Wu, L.; Zheng, C.; et al. Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification. Geocarto Int. 2019, 36, 262–280. [Google Scholar] [CrossRef]
- Raschky, P. Institutions and the losses from natural disasters. Nat. Hazards Earth Syst. Sci. 2008, 8, 627–634. [Google Scholar] [CrossRef]
- Lee, T.W.; Walker, J. Forests and farmers: GIS analysis of forest islands and large raised fields in the Bolivian Amazon. Land 2022, 11, 678. [Google Scholar] [CrossRef]
- Shove, E. Beyond the ABC: Climate change policy and theories of social change. Environ. Plan. A Econ. Space 2010, 42, 1273–1285. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z. Evolution Mechanism and Regulation of Rocky Desertification in Karst Mountains Under Human Intervention, Guizhou Province; Guizhou Normal University: Guiyang, China, 2015. [Google Scholar]
- Zhang, X. The course, effect, existing problems and Countermeasures of rocky desertification control in Guizhou. Carsologica Sin. 2016, 35, 497–502. [Google Scholar]
- Rogers, S.; Xue, T. Resettlement and climate change vulnerability: Evidence from rural China. Glob. Environ. Chang. 2015, 35, 62–69. [Google Scholar] [CrossRef]
- Fan, M.; Li, Y.; Li, W. Solving one problem by creating a bigger one: The consequences of ecological resettlement for grassland restoration and poverty alleviation in northwestern China. Land Use Policy 2015, 42, 124–130. [Google Scholar] [CrossRef]
- Lo, K.; Xue, L.; Wang, M. Spatial restructuring through poverty alleviation resettlement in rural China. J. Rural Stud. 2016, 47, 496–505. [Google Scholar] [CrossRef]
- Kim, J.-W.; Lu, Z.; Kaufmann, J. Evolution of sinkholes over wink, Texas, observed by high-resolution optical and SAR imagery. Remote Sens. Environ. 2019, 222, 119–132. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, C.; Wang, K. Comparing remote sensing methods for monitoring karst rocky desertification at sub-pixel scales in a highly heterogeneous Karst region. Sci. Rep. 2019, 9, 13368. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Qiang, H.; Qin, C.; Wang, Z.; Li, M. Spatiotemporal Evolution Analysis and Future Scenario Prediction of Rocky Desertification in a Subtropical Karst Region. Remote Sens. 2022, 14, 292. [Google Scholar] [CrossRef]
- Reynolds, J.; Smith, D.; Lambin, E.; Turner, B.; Mortimore, M.; Batterbury, S.; Downing, T.; Dowlatabadi, H.; Fernandez, R.; Herrick, J.; et al. Global desertification: Building a science for dryland development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Wang, S.; Bai, X.; Liu, F.; Tian, Y.; Luo, G.; Li, Q.; Wang, J.; Wu, L.; Cao, Y.; et al. Spatio-temporal evolution and future scenario prediction of karst rocky desertification based on CA-Markov model. Arab. J. Geosci. 2021, 14, 1262. [Google Scholar] [CrossRef]
- Xiong, K.; Chen, Q. Discussion on the law of rocky desertification evolution and comprehensive control. Carsologica Sin. 2010, 29, 267–273. [Google Scholar]
- Li, S. Poverty alleviation and relocation in Guizhou to achieve win-win development and ecology. Contemp. Guizhou 2020, 3, 30. [Google Scholar]
- Bai, X.; Wang, S.; Chen, Q.; Cheng, A.; Ni, X. Spatio-temporal evolution process and its evaluation method of karst rocky desertification in Guizhou province. Acta Geogr. Sin. 2009, 64, 609–618. [Google Scholar]
- Zhang, S.; Zhou, Z.; Sun, X.; Feng, Q.; Chen, Q. Based on the slopegrade of rocky desertification and water and soil loss correlation study in Karst Mountain area: A case in Panxian country, Guizhou. J. Soil Water Conserv. 2017, 31, 79–86. [Google Scholar]
- You, X.; He, D.; Xiao, Y.; Wang, L.; Song, C.; Ouyang, Z. Assessment of ecological protection effectiveness in a county area: Using Eshan county as an example. Acta Ecol. Sin. 2019, 39, 3051–3061. [Google Scholar]
- Wang, P.; An, Y. Spatial-temporal analysis of rocky desertification in Guizhou province during 2000–2010. J. Guizhou Norm. Univ. 2014, 32, 10–15. [Google Scholar]
- Zhou, Q.; Wei, X.; Zhou, X.; Cai, M.; Xu, Y. Vegetation coverage change and its response to topography in a typical karst region: The Lianjiang River Basin in southwest China. Environ. Earth Sci 2019, 78, 1–10. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.; Sobrino, J.; Plaza, A.; Guanter, L.; Moreno, J.; Martinez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 768–793. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 2010, 19, 1533–1543. [Google Scholar] [CrossRef]
- Yang, Q.; Jiang, Z.; Ma, Z.; Luo, W.; Yin, H.; Yu, Q.; Li, W. Spatial variability of karst rock desertification based on geostatistics and remote sensing Transactions of the CSAE. Trans. Chin. Soc. Agric. Eng. 2012, 28, 100–106. [Google Scholar]
- Wang, M.; Wang, S.; Bai, X.; Li, S.; Li, H.; Cao, Y.; Xi, H. Evolution characteristics of karst rocky desertification in typical small watershed and the key characterization factor and driving factor. Acta Ecol. Sin. 2019, 39, 6083–6097. [Google Scholar]
- Xi, H.; Wang, S.; Bai, X.; Tang, H.; Wu, L.; Chen, F.; Xiao, J.; Wang, M.; Li, H.; Cao, Y.; et al. Spatio-temporal characteristics of rocky desertification in typical Karst areas of Southwest China: A case study of Puding County, Guizhou Province. Acta Ecol. Sin. 2018, 38, 8919–8933. [Google Scholar]
- Zhang, S. Study on Land Rocky Desertification in Karst Mountainous Area of Northern Guangdong; Beijing Normal University: Beijing, China, 2007. [Google Scholar]
- Pontius, G.; Emily, S.; Menzie, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Wang, S.; Fang, C.; Wang, Y. Quantitative investigation of the interactive coupling relationship between urbanization and eco-environment. Acta Ecol. Sin. 2015, 35, 2244–2254. [Google Scholar]
- Guo, F.; Li, C.; Chen, C.; Gan, J. Spatial-temporal coupling characteristics of population urbanization and land urbanization in Northeast China. Econ. Geogr. 2015, 35, 49–56. [Google Scholar]
- Lv, T.; Wang, L.; Zhang, X.; Xie, H.; Lu, H.; Li, H.; Liu, W.; Zhang, Y. Coupling Coordinated development and exploring its influencing factors in Nanchang, China: From the perspectives of land urbanization and population urbanization. Land 2019, 8, 178. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Wang, X.; Li, C. The spatial disparties of regional comprehensive urbanization level of vice provincial city in China from 1997. Econ. Geogr. 2007, 27, 256–260. [Google Scholar]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Zheng, F.; Hu, Y. Assessing temporal-spatial land use simulation effects with CLUE-S and Markov-CA models in Beijing. Environ. Sci. Pollut. Res. Int. 2018, 25, 32231–32245. [Google Scholar] [CrossRef]
- Aburas, M.; Ho, Y.; Pradhan, B.; Salleh, A.; Alazaiza, M. Spatio-temporal simulation of future urban growth trends using an integrated CA-Markov model. Arab. J. Geosci. 2021, 14, 131. [Google Scholar] [CrossRef]
- Guan, D.; Zhao, Z.; Tan, J. Dynamic simulation of land use change based on logistic-CA-Markov and WLC-CA-Markov models: A case study in three gorges reservoir area of Chongqing, China. Environ. Sci. Pollut. Res. Int. 2019, 26, 20669–20688. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhou, D.; Bai, X.; Xiao, J.; Qian, Q. Spatial-temporal evolution of karst rocky desertification and future trends based on CA-Markov methods in Typical Karst Valley. Agric. Resour. Environ. 2018, 35, 174–180. [Google Scholar]
- Wen, L.; Li, Z. Evolution characteristics of rocky desertification during 2004–2016 in Guizhou Province, China. Acta Ecol. Sin. 2020, 40, 5928–5939. [Google Scholar]
- Bai, Z.; Wan, G. Study on watershed erosion rate and its environmental effects in Guizhou Karst region. J. Soil Eros. Soil Water Conserv. 1998, 4, 1–7. [Google Scholar]
- Xiong, K. Remote Sensing GIS Typical Study on Karst Rocky Desertification/Taking Guizhou Province as an Example; Geological Publishing House: Beijing, China, 2002. [Google Scholar]
- Li, X.; Xu, X.; Xie, B.; Liu, R.; Zhou, K. Influence of rural residential areas on the evolution of rocky desertification in Karst area. Econ. Geogr. 2020, 40, 154–163. [Google Scholar]
- He, D.; Dang, G. The spirit of migration and relocation in the process of poverty alleviation. Natl. Gov. 2016, 40, 32–40. [Google Scholar]
- Bao, L.; Sha, N. Comparative study on types and benefits of ecological migration in inner Mongolia. North. Econ. 2008, 23, 36–38. [Google Scholar]
- Li, P.; Wang, X. Migration, poverty alleviation and ecological civilization construction—Investigation report on ecological migration in Ningxia. Ningxia Soc. Sci. 2013, 3, 52–60. [Google Scholar]
- The State Forestry Administration of China (SFA). Bulletin on the Rocky Desertification in China. 2012. Available online: http://www.forestry.gov.cn/main/195/20181214/104340783851386.html (accessed on 26 June 2022). (In Chinese)
- Hu, X.; Wang, S.; Xu, P. Analysis on the causes of continuous drought in Southwest China from 2009 to 2013. Meteorological 2014, 40, 1216–1229. [Google Scholar]
- Wang, F. Study on Drought Characteristics and Early Warning Model in Guizhou; North China University Water Resources Hydropower: Zhengzhou, China, 2016. [Google Scholar]
- Xu, Y.; Huang, M.; Pan, W. Change characteristics of rocky desertification pattern in Qiannan Prefecture, Guizhou Province. Ecol. Sci. 2018, 37, 105–113. [Google Scholar]
- Zhang, Y.; Zhang, C.; Yang, K.; Peng, Z.; Tang, L.; Duan, H.; Wu, C.; Luo, Y. Temporal and Spatial Effects of Urbanization on Regional Thermal Comfort. Land 2022, 11, 688. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, G.; Lan, A.; Long, J.; An, Y.; Mei, Z. The relationship of land use with Karst rocky desertification in a typical Karst Area, China. Environ. Geol. 2006, 57, 624–632. [Google Scholar]
Strength Grade | Rock Exposure Rate (%) | Vegetation Coverage (%) | Slope (°) | |
---|---|---|---|---|
NRD | <20 | >70 | <5° | |
PRD | 20~30 | 60~70 | 5°–8° | |
Rocky desertification | LRD | 30~50 | 50~60 | 8°–15° |
MRD | 50~70 | 30~50 | 15°–25° | |
SRD | 70~90 | 10~30 | 25°–35° | |
ESRD | >90 | <10 | >35° |
Coupling Level | Low Coupling | General Coupling | Highly Coupling | Extreme Coupling |
---|---|---|---|---|
Coupling coordination level | Low coupling coordination degree | General coupl- ing coordination degree | Highly coupling coordination degree | Extreme coupling coordination level |
Coupling degree C/Coupling coordination degree D | [0, 0.3) | [0.3, 0.5) | [0.5, 0.8) | [0.8, 1) |
2000 | 2005 | 2010 | 2015 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Area | Ratio (%) | Area | Ratio (%) | Area | Ratio (%) | Area | Ratio (%) | Area | Ratio (%) | |
NRD | 670.34 | 31.87 | 682.86 | 32.46 | 502.52 | 23.89 | 665.14 | 31.62 | 934.23 | 44.41 |
PRD | 235.25 | 11.18 | 186.09 | 8.85 | 173.81 | 8.26 | 222.78 | 10.59 | 266.38 | 12.66 |
LRD | 307.43 | 14.61 | 269.54 | 12.81 | 244.12 | 11.60 | 298.68 | 14.20 | 300.18 | 14.27 |
MRD | 607.35 | 28.87 | 605.46 | 28.78 | 684.71 | 32.55 | 595.57 | 28.31 | 416.76 | 19.81 |
SRD | 198.33 | 9.43 | 249.44 | 11.86 | 364.56 | 17.33 | 221.43 | 10.53 | 105.89 | 5.03 |
ESRD | 84.94 | 4.04 | 110.25 | 5.24 | 133.92 | 6.37 | 100.04 | 4.76 | 80.2 | 3.81 |
2000–2005 | 2005–2010 | 2015–2010 | 2020–2015 | |||||
---|---|---|---|---|---|---|---|---|
∆S | ∆V | ∆S | ∆V | ∆S | ∆V | ∆S | ∆V | |
NRD | 45.52 | 9.10 | −186.34 | −37.27 | 179.62 | 35.92 | 222.08 | 44.42 |
PRD | −40.46 | −8.09 | −40.99 | −8.20 | 48.97 | 9.79 | 34.59 | 6.92 |
LRD | −58.88 | −11.78 | −25.42 | −5.08 | 31.56 | 6.31 | −8.50 | −1.70 |
MRD | −22.63 | −4.53 | 109.99 | 22.00 | −105.88 | −21.18 | −142.80 | −28.56 |
SRD | 51.11 | 10.22 | 119.10 | 23.82 | −123.39 | −24.68 | −79.26 | −15.85 |
ESRD | 25.34 | 5.07 | 23.67 | 4.73 | −30.88 | −6.18 | −26.12 | −5.22 |
2000–2010 | 2005–2015 | 2010–2020 | 2000–2020 | |||||
---|---|---|---|---|---|---|---|---|
∆S | ∆V | ∆S | ∆V | ∆S | ∆V | ∆S | ∆V | |
NRD | −140.82 | −14.08 | −6.72 | −0.67 | 401.71 | 40.17 | 222.08 | 44.42 |
PRD | −81.45 | −8.14 | 7.99 | 0.80 | 83.57 | 8.36 | 34.59 | 6.92 |
LRD | −84.30 | −8.43 | 6.14 | 0.61 | 23.06 | 2.31 | −8.50 | −1.70 |
MRD | 87.36 | 8.74 | 4.11 | 0.41 | −248.68 | −24.87 | −142.80 | −28.56 |
SRD | 170.21 | 17.02 | −4.30 | −0.43 | −202.65 | −20.26 | −79.26 | −15.85 |
ESRD | 49.00 | 4.90 | −7.22 | −0.72 | −57.00 | −5.70 | −26.12 | −5.22 |
Type | 2025 | 2035 | 2025–2035 | |||
---|---|---|---|---|---|---|
Area (km2) | Ratio (%) | Area (km2) | Ratio (%) | Amount of Change/km2 | Rate of Change (%) | |
NRD | 968.5 | 48.1 | 1028.26 | 51.06 | 59.76 | 6.17% |
PRD | 237.16 | 11.78 | 319.84 | 15.88 | 82.68 | 34.86% |
LRD | 320.16 | 15.9 | 290.35 | 14.42 | −29.81 | −9.31% |
MRD | 315.34 | 15.66 | 260.43 | 12.93 | −54.91 | −17.41% |
SRD | 104.18 | 5.17 | 73.08 | 3.63 | −31.1 | −29.85% |
ESRD | 68.3 | 3.39 | 41.68 | 2.07 | −26.62 | −38.98% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhou, Z.; Zhu, M.; Huang, D.; Zhu, C.; Feng, Q.; Luo, W. Study on the Coupling Relationship between Relocation for Poverty Alleviation and Spatiotemporal Evolution of Rocky Desertification in Karst Areas of Southwest China. Sustainability 2022, 14, 8037. https://doi.org/10.3390/su14138037
Wu X, Zhou Z, Zhu M, Huang D, Zhu C, Feng Q, Luo W. Study on the Coupling Relationship between Relocation for Poverty Alleviation and Spatiotemporal Evolution of Rocky Desertification in Karst Areas of Southwest China. Sustainability. 2022; 14(13):8037. https://doi.org/10.3390/su14138037
Chicago/Turabian StyleWu, Xiaopiao, Zhongfa Zhou, Meng Zhu, Denghong Huang, Changli Zhu, Qing Feng, and Wanlin Luo. 2022. "Study on the Coupling Relationship between Relocation for Poverty Alleviation and Spatiotemporal Evolution of Rocky Desertification in Karst Areas of Southwest China" Sustainability 14, no. 13: 8037. https://doi.org/10.3390/su14138037
APA StyleWu, X., Zhou, Z., Zhu, M., Huang, D., Zhu, C., Feng, Q., & Luo, W. (2022). Study on the Coupling Relationship between Relocation for Poverty Alleviation and Spatiotemporal Evolution of Rocky Desertification in Karst Areas of Southwest China. Sustainability, 14(13), 8037. https://doi.org/10.3390/su14138037