Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Design
2.2. Soil Analysis
2.3. Plant Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Characterization of Prepared Biochar
3.1.1. X-ray Diffraction
3.1.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2. Soil Characteristics
3.3. Plant Biomass
3.4. Proline and Antioxidant Enzymes
4. Discussion
4.1. Characterizations of Prepared Biochar
4.2. Soil Characteristics
4.3. Plant Biomass
4.4. Proline and Antioxidant Enzymes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hammam, A.A.; Mohamed, E.S. Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. Egypt. J. Remote Sens. Space Sci. 2020, 23, 125–131. [Google Scholar] [CrossRef]
- Allam, A.R.; Saaf, E.J.; Dawoud, M.A. Desalination of brackish groundwater in Egypt. Desalination 2003, 152, 19–26. [Google Scholar] [CrossRef]
- Singh, A. Alternative management options for irrigation-induced salinization and waterlogging under different climatic conditions. Ecol. Indic. 2018, 90, 184–192. [Google Scholar] [CrossRef]
- Mohamed, A. Gravity applications to groundwater storage variations of the Nile Delta Aquifer. J. Appl. Geophys. 2020, 182, 104177. [Google Scholar] [CrossRef]
- El-Sharkawy, M.; El-Beshsbeshy, T.; Al-Shal, R.; Missaoui, A. Effect of plant growth stimulants on alfalfa response to salt stress. Agric. Sci. 2017, 8, 267–291. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Han, X.; Li, Y.; Yang, J.; Li, N.; An, N. Effects of biochar and straw application on the physicochemical and biological properties of paddy soils in Northeast China. Sci. Rep. 2019, 9, 16531. [Google Scholar] [CrossRef] [Green Version]
- Hassan, H.B.A.; el Gebaly, M.R.; Ghani, S.S.A.; Hussein, Y.M.M. An economic study of recycling agricultural wastes in Egypt. Middle East J. Agric. Res. 2014, 3, 592–608. [Google Scholar]
- Kamara, A.; Kamara, H.S.; Kamara, M.S. Effect of rice straw biochar on soil quality and the early growth and biomass yield of two rice varieties. Agric. Sci. 2015, 6, 798. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, J.; Yang, X.; Zhou, Y.; Zhang, L.; Yang, Y.; Luo, L.; Yan, Q. Responses of ammonia-oxidizing microorganisms to biochar and compost amendments of heavy metals-polluted soil. J. Environ. Sci. 2021, 102, 263–272. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Zhao, M.; Rong, H.; Zhang, K. Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge-based composting. J. Hazard. Mater. 2018, 344, 163–168. [Google Scholar] [CrossRef]
- Anwari, G.; Mandozai, A.; Feng, J. Effects of biochar amendment on soil problems and improving rice production under salinity conditions. Adv. J. Grad. Res. 2020, 7, 45–63. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 2008, 46, 437–444. [Google Scholar] [CrossRef]
- Wang, H.; Gao, B.; Fang, J.Y.; Ok, S.; Xue, Y.; Yang, K.; Cao, X. Engineered biochar derived from eggshell-treated biomass for removal of aqueous lead. Ecol. Eng. 2018, 121, 124–129. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M.; Aboyeji, C.M.; Dunsin, O.; Simeon, V.T. Effects of biochar and poultry manure on soil characteristics and the yield of radish. Sci. Hortic. 2019, 243, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, B.P.; Cowie, A.L. Characterization and evaluation of biochars for their application as a soil amendment. Aust. J. Soil Res. 2010, 48, 516–525. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Sahin, O.; Taskin, M.B.; Atakol, O.; Yılmaz, N. Variations in mineral element concentrations of poultry manure biochar obtained at different pyrolysis temperatures, and their effects on crop growth and mineral nutrition. Soil Use Manag. 2015, 31, 429–437. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central Amazon Basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Ali, M.M. Effect of plant residues derived biochar on fertility of a new reclaimed sandy soil and growth of wheat (Triticum aestivum L.). Egypt. J. Soil Sci. 2018, 58, 93–103. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Sahin, O.; Taskin, M.B.; Kaya, E.C.; Atakol, O.; Emir, E.; Inal, A.; Gunes, A. Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use Manag. 2017, 33, 447–456. [Google Scholar] [CrossRef]
- Huang, W.H.; Lee, D.J.; Huang, C. Modification on biochars for applications: A research update. Bioresour. Technol. 2021, 319, 124100. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, B.; Zubatiuk, T.; Leszczynska, D.; Leszczynski, J.; Chen, W.Y. Chemical activation of biochar for energy and environmental applications: A comprehensive review. Rev. Chem. Eng. 2019, 35, 777–815. [Google Scholar] [CrossRef]
- Benis, K.Z.; Damuchali, A.M.; Soltan, J.; McPhedran, K. Treatment of aqueous arsenic—A review of biochar modification methods. Sci. Total Environ. 2020, 739, 139750. [Google Scholar] [CrossRef]
- Mosa, A.A.; El-Ghamry, A.; Al-Zahrani, H.; Selim, E.M.; El-Khateeb, A. Chemically modified biochar derived from cotton stalks: Characterization and assessing its potential for heavy metals removal from wastewater. Environ. Biodivers. Soil Secur. 2017, 1, 33–45. [Google Scholar]
- International Biochar Initiative (IBI). Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil; International Biochar Initiative (IBI): Canandaigua, NY, USA, 2012. [Google Scholar]
- Wang, T.; Arbestain, C.M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ashbiochars. Plant Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
- Page, M.A. Methods of Soil Analysis. Part 2; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Klute, A. (Ed.) Methods of Soil Analysis. Part 1; American Society of Agronomy: Madison, WI, USA, 1986. [Google Scholar]
- Briggs, D.J. Soils, Sources and Methods in Geography; Butterworths: London, UK, 1977. [Google Scholar]
- Miyazawa, M.; Pavan, M.A.; de Oliveira, E.L.; Ionashiro, M.; Silva, A.K. Gravimetric determination of soil organic matter. Braz. Arch. Biol. Technol. 2000, 43, 475–478. [Google Scholar] [CrossRef]
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual; Soil Survey Investigations Report No. 42, Version 5.0; Department of Agriculture, Natural Resources Conservation Service: Lincoln, NE, USA, 2014.
- Cottenie, A.; Verlo, M.; Kjekens, L.; Camerlynch, R. Chemical Analysis of Plant and Soil; Laboratory of Analytical Agrochemistry, State University: Gent, Belgium, 1982; Volume 42, pp. 280–284. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; USDA Agricultural Handbook No. 60; US Department of Agriculture: Washington, DC, USA, 1954; p. 160. [CrossRef]
- Rashidi, M.; Seilsepour, M. Modeling of soil exchangeable sodium percentage based on soil sodium adsorption ratio. ARPN J. Agric. Biol. Sci. 2008, 3, 1990–6145. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971, 44, 276–287. [Google Scholar] [CrossRef]
- Kar, M.; Mishra, D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 1976, 57, 315–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmeyer, H.U.; Gawehn, K.; Grasse, M. Citrate synthetase. Methods Enzym. Anal. 1970, 7, 471–472. [Google Scholar]
- El-Shafie, A.S.; Hassan, S.S.; Akther, N.; El-Azazy, M. Watermelon rinds as cost-efficient adsorbent for acridine orange: A response surface methodological approach. Environ. Sci. Pollut. Res. 2021, 1–20. [Google Scholar] [CrossRef]
- Kumar, M.; Potkule, J.; Tomar, M.; Punia, S.; Singh, S.; Patil, S.; Singh, S.; Ilakiya, T.; Kaur, C.; Kennedy, J.F. Jackfruit seed slimy sheath, a novel source of pectin: Studies on antioxidant activity, functional group, and structural morphology. Carbohydr. Polym. Technol. Appl. 2021, 2, 100054. [Google Scholar] [CrossRef]
- Tozar, T.; Boni, M.; Staicu, A.; Pascu, M.L. Optical characterization of ciprofloxacin photolytic degradation by uv-pulsed laser radiation. Molecules 2021, 26, 2324. [Google Scholar] [CrossRef]
- Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [Google Scholar] [CrossRef]
- Magesh, N.; Renita, A.A.; Siva, R.; Harirajan, N.; Santhosh, A. Adsorption behavior of fluoroquinolone (ciprofloxacin) using zinc oxide impregnated activated carbon prepared from jack fruit peel: Kinetics and isotherm studies. Chemosphere 2022, 290, 133227. [Google Scholar] [CrossRef]
- Sabagh, A.E.; Islam, M.S.; Skalicky, M.; Raza, M.A.; Singh, K.; Hossain, M.A.; Arshad, A. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Liu, X.; Chen, D.; Yang, T.; Huang, F.; Fu, S.; Li, L. Changes in soil labile and recalcitrant carbon pools after land-use change in a semi-arid agro-pastoral ecotone in Central Asia. Ecol. Indic. 2020, 110, 105925. [Google Scholar] [CrossRef]
- Naeem, M.A.; Imran, M.; Amjad, M.; Abbas, G.; Tahir, M.; Murtaza, B.; Zakir, A.; Shahid, M.; Bulgariu, L.; Ahmad, I. Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar. Water 2019, 11, 1438. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Han, Q.; Feng, B.; Liu, Z. Preparation of amphiphilic mesoporous carbon-based solid acid from kraft lignin activated by phosphoric acid and its catalytic performance for hydration of α-pinene. BioResources 2019, 14, 4284–4303. [Google Scholar] [CrossRef]
- Liu, C.; Wang, W.; Wu, R.; Liu, Y.; Lin, X.; Kan, H.; Zheng, Y. Preparation of acid-and alkali-modified biochar for removal of methylene blue pigment. ACS Omega 2020, 5, 30906–30922. [Google Scholar] [CrossRef] [PubMed]
- El-Azazy, M.; El-Shafie, A.S.; Al-Shaikh Yousef, B. Green tea waste as an efficient adsorbent for methylene blue: Structuring of a novel adsorbent using full factorial design. Molecules 2021, 26, 6138. [Google Scholar] [CrossRef]
- Libutti, A.; Trotta, V.; Rivelli, A.R. Biochar, vermicompst, and compost as soil organic amendments: Influence on growth parameters, nitrate and chlorophyll content of Swiss Chard (Beta vulgaris L. var. cycla). Agronomy 2020, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; He, F.; Shao, H.; Zhang, Z.; Xu, G. Effects of biochar application on Suaeda salsa growth and saline soil properties. Environ. Earth Sci. 2016, 75, 630. [Google Scholar] [CrossRef]
- Yao, R.; Li, H.; Zhu, W.; Yang, J.; Wang, X.; Yin, C.; Jing, Y.; Chen, Q.; Xie, W. Biochar and potassium humate shift the migration, transformation and redistribution of urea-N in salt-affected soil under drip fertigation: Soil column and incubation experiments. Irrig. Sci. 2022, 40, 267–282. [Google Scholar] [CrossRef]
- Duan, M.; Liu, G.; Zhou, B.; Chen, X.; Wang, Q.; Zhu, H.; Li, Z. Effects of modified biochar on water and salt distribution and water-stable macro-aggregates in saline-alkaline soil. J. Soils Sediments 2021, 21, 2192–2202. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, X.; Song, J.; Li, W.; Wang, H. Application of cotton straw biochar and compound Bacillus biofertilizer decrease the bioavailability of soil cd through impacting soil bacteria. BMC Microbiol. 2022, 22, 35. [Google Scholar] [CrossRef]
- Fernandes, J.D.; Chaves, L.H.; Mendes, J.S.; Chaves, I.B.; Tito, G.A. Alterations in soil salinity with the use of different biochar doses. Rev. Ciências Agrárias 2019, 42, 89–98. [Google Scholar]
- Zhang, P.; Xue, B.; Jiao, L.; Meng, X.; Zhang, L.; Li, B.; Sun, H. Preparation of ball-milled phosphorus-loaded biochar and its highly effective remediation for Cd-and Pb-contaminated alkaline soil. Sci. Total Environ. 2022, 813, 152648. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.Y.; Jiang, J.; Xu, R.K.; Li, Z. Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 2012, 89, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Silber, A.; Levkovitch, I.; Graber, E.R. pH-dependent mineral release and surface properties of corn straw biochar: Agronomic implications. Environ. Sci. Technol. 2010, 44, 9318–9323. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, J.A.; Spokas, K.A.; Novak, J.M.; Lentz, R.D.; Cantrell, K.B. Biochar elemental composition and factors influencing nutrient retention. In Biochar for Environmental Management. Science, Technology and Implementation; Routledge: London, UK, 2015; p. 139. [Google Scholar]
- Abdelhafez, A.A.; Zhang, X.; Zhou, L.; Cai, M.; Cui, N.; Chen, G.; Zou, G.; Abbas, M.H.; Kenawy, M.H.; Ahmad, M.; et al. Eco-friendly production of biochar via conventional pyrolysis: Application of biochar and liquefied smoke for plant productivity and seed germination. Environ. Technol. Innov. 2021, 22, 101540. [Google Scholar] [CrossRef]
- Moradi, S.; Rasouli-Sadaghiani, M.H.; Sepehr, E.; Khodaverdiloo, H.; Barin, M. Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environ. Monit. Assess. 2019, 191, 257. [Google Scholar] [CrossRef]
- Luo, X.; Wang, L.; Liu, G.; Wang, X.; Wang, Z.; Zheng, H. Effects of biochar on carbon mineralization of coastal wetland soils in the Yellow River Delta, China. Ecol. Eng. 2016, 94, 329–336. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, F.; Wang, Z.; Xing, B. The role of biochars in sustainable crop production and soil resiliency. J. Exp. Bot. 2020, 71, 520–542. [Google Scholar] [CrossRef]
- Lu, W.; Ding, W.; Zhang, J.; Li, Y.; Luo, J.; Bolan, N.; Xie, Z. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: A negative priming effect. Soil Biol. Biochem. 2014, 76, 12–21. [Google Scholar] [CrossRef]
- Ding, Z.; Alharbi, S.; Ali, E.F.; Ghoneim, A.M.; Hadi Al Fahd, M.; Wang, G.; Eissa, M.A. Effect of phosphorus-loaded biochar and nitrogen-fertilization on release kinetic of toxic heavy metals and tomato growth. Int. J. Phytoremediat. 2022, 24, 156–165. [Google Scholar] [CrossRef]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Meng, J.; Jiang, L.; Yang, X.; Lan, Y.; Cheng, X.; Chen, W. Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Appl. Soil Ecol. 2017, 116, 12–22. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Zhao, L.; Nan, H.; Kan, Y.; Xu, X.; Qiu, H.; Cao, X. Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent. Environ. Pollut. 2019, 254, 113–114. [Google Scholar] [CrossRef] [PubMed]
- Günal, E.; Erdem, H.; Çelik, İ. Effects of three different biochars amendment on water retention of silty loam and loamy soils. Agric. Water Manag. 2018, 208, 232–244. [Google Scholar] [CrossRef]
- Yue, Y.; Guo, W.N.; Lin, Q.M.; Li, G.T.; Zhao, X.R. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. J. Soil Water Conserv. 2016, 71, 467–475. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Luo, X.X.; Wang, Z.Y.; Xing, B.S. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil: Roles of soil aggregation and microbial modulation. Sci. Total Environ. 2018, 610, 951–960. [Google Scholar] [CrossRef]
- Chaganti, V.N.; Crohn, D.M. Evaluating the relative contribution of physiochemical and biological factors in ameliorating a saline–sodic soil amended with composts and biochar and leached with reclaimed water. Geoderma 2015, 259, 45–55. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Yang, H.; Feng, Y.; Chen, Y.; Wang, X.; Chen, H. Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2. Chem. Eng. J. 2014, 257, 20–27. [Google Scholar] [CrossRef]
- Huang, M.; Yang, L.; Qin, H.; Jiang, L.; Zou, Y. Quantifying the effect of biochar amendment on soil quality and crop productivity in Chinese rice paddies. Field Crops Res. 2013, 154, 172–177. [Google Scholar] [CrossRef]
- Ahmad, A.; Chowdhary, P.; Khan, N.; Chaurasia, D.; Varjani, S.; Pandey, A.; Chaturvedi, P. Effect of sewage sludge biochar on the soil nutrient, microbial abundance, and plant biomass: A sustainable approach towards mitigation of solid waste. Chemosphere 2022, 287, 132112. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Dong, C.; Chen, Z.; Liu, Y.; Zhang, Y.; Gou, P.; Zhao, X.; Ma, D.; Kang, G.; Wang, C.; et al. Successive biochar amendment affected crop yield by regulating soil nitrogen functional microbes in wheat-maize rotation farmland. Environ. Res. 2021, 194, 110671. [Google Scholar] [CrossRef] [PubMed]
- Peiris, C.; Wathudura, P.D.; Gunatilake, S.R.; Gajanayake, B.; Wewalwela, J.J.; Abeysundara, S.; Vithanage, M. Effect of acid modified tea-waste biochar on crop productivity of red onion (Allium cepa L.). Chemosphere 2022, 288, 132551. [Google Scholar] [CrossRef] [PubMed]
- Farouk, S.; Al-Huqail, A.A. Sustainable biochar and/or melatonin improve salinity tolerance in borage plants by modulating osmotic adjustment, antioxidants, and ion homeostasis. Plants 2022, 11, 765. [Google Scholar] [CrossRef]
- Turan, V.; Khan, S.A.; Iqbal, M.; Ramzani, P.M.A.; Fatima, M. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf. 2018, 161, 409–419. [Google Scholar] [CrossRef]
- Ur Rehman, M.Z.; Batool, Z.; Ayub, M.A.; Hussaini, K.M.; Murtaza, G.; Usman, M.; Naeem, A.; Khalid, H.; Rizwan, M.; Ali, S. Effect of acidified biochar on bioaccumulation of cadmium (Cd) and rice growth in contaminated soil. Environ. Technol. Innov. 2020, 19, 101015. [Google Scholar] [CrossRef]
- Oladele, S.O.; Adeyemo, A.J.; Awodun, M.A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils. Geoderma 2019, 336, 1–11. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Han, I.; Wang, P.; Mei, Q.; Huang, Y. Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Sci. Rep. 2020, 10, 8837. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Wu, G.; Shen, H.; Fu, G.; Wang, Y. Combined effects of biochar and chicken manure on maize (Zea mays L.) growth, lead uptake and soil enzyme activities under lead stress. PeerJ 2021, 9, e11754. [Google Scholar] [CrossRef]
- Inal, A.; Gunes, A.; Sahin, O.; Taskin, M.B.; Kaya, E.C. Impacts of biochar and processed poultry manure, applied to a calcareous soil on the growth of bean and maize. Soil Use Manag. 2015, 31, 106–113. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yang, F.; Zhang, H.; Liu, L.; Liu, X.; Chen, J.; Wang, X.; Wang, Y.; Li, C. Beneficial effects of biochar-based organic fertilizer on nitrogen assimilation, antioxidant capacities, and photosynthesis of sugar beet (Beta vulgaris L.) under saline-alkaline stress. Agronomy 2020, 10, 1562. [Google Scholar] [CrossRef]
- Soliman, M.H.; Alnusairi, G.S.; Khan, A.A.; Alnusaire, T.S.; Fakhr, M.A.; Abdulmajeed, A.M.; Aldesuquy, H.S.; Yahya, M.; Najeeb, U. Biochar and selenium nanoparticles induce water transporter genes for sustaining carbon assimilation and grain production in salt-stressed wheat. J. Plant Growth Regul. 2022, 1–22. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Alkan, N.; Elad, Y.; Sela, N.; Philosoph, A.M.; Graber, E.R.; Frenkel, O. Molecular insights into biochar-mediated plant growth promotion and systemic resistance in tomato against Fusarium crown and root rot disease. Sci. Rep. 2020, 10, 13934. [Google Scholar] [CrossRef]
- Mehmood, S.; Ahmed, W.; Ikram, M.; Imtiaz, M.; Mahmood, S.; Tu, S.; Chen, D. Chitosan modified biochar increases soybean (Glycine max L.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants 2020, 9, 1173. [Google Scholar] [CrossRef]
Characteristics | Different Biochar Types | |||
---|---|---|---|---|
RSB | RSMB | CSB | CSMB | |
pH * | 7.60 | 5.88 | 7.51 | 5.34 |
EC (dS m−1) * | 1.51 | 0.96 | 1.67 | 1.12 |
C % | 65.3 | 49.8 | 78.3 | 63.5 |
N % | 1.66 | 1.52 | 2.12 | 1.97 |
P % | 0.61 | 0.54 | 0.68 | 0.62 |
K % | 1.24 | 1.01 | 6.95 | 3.84 |
CEC (cmol+ kg−1) | 38.4 | 56.8 | 42.6 | 61.5 |
Chemical Characteristics | Value | Physical Characteristics | Value | ||
---|---|---|---|---|---|
Soluble Ions, EC and pH | Particle Size Distribution (%) | ||||
pH (soil suspension 1:2.5) | 8.27 | Sand | 16.03 | ||
ECe (dS·m−1) | 7.12 | Silt | 24.38 | ||
Soluble ions (mM·L−1) | Clay | 56.59 | |||
Na+ | 61.87 | Texture class | Clayey | ||
K+ | 0.41 | O.M % | 0.88 | ||
Ca2+ | 24.56 | O.C % | 0.51 | ||
Mg2+ | 18.67 | CEC (cmolc kg−1) | 34.72 | ||
HCO3− | 4.50 | Bulk density (g cm−3) | 1.39 | ||
Cl− | 53.21 | Total porosity (%) | 47.55 | ||
SO42− | 47.84 | Soil moisture characters % | |||
SAR | 13.31 | F.C | 39.50 | ||
ESP | 16.42 | W.P | 21.47 | ||
Available macronutrients (mg·kg−1) | A.W | 18.03 | |||
N | 22.15 | P | 7.38 | K | 236.46 |
Treatments | Depth (cm) | Maize | Wheat | ||||||
---|---|---|---|---|---|---|---|---|---|
EC (dS·m−1) | ESP (%) | CEC (cmol+ kg−1) | S.O.C (%) | EC (dS·m−1) | ESP (%) | CEC (cmol+ kg−1) | S.O.C (%) | ||
Control | 0–20 | 6.17 ± 0.02 j | 15.16 ± 0.01 e | 33.37 ± 0.01 i | 0.87 ± 0.01 bcd | 5.91 ± 0.08 h | 14.85 ± 0.03 e | 33.04 ± 0.03 i | 0.87 ± 0.03 bcdef |
20–40 | 6.65 ± 0.01 f | 15.66 ± 0.05 c | 31.60 ± 0.05 k | 0.78 ± 0.05 cde | 6.43 ± 0.03 f | 15.43 ± 0.02 c | 31.24 ± 0.02 k | 0.79 ± 0.02 def | |
40–60 | 7.49 ± 0.01 a | 16.45 ± 0.02 a | 32.66 ± 0.02 j | 0.71 ± 0.02 de | 7.22 ± 0.02 a | 16.20 ± 0.07 a | 32.35 ± 0.07 j | 0.72 ± 0.07 f | |
RSB | 0–20 | 6.11 ± 0.01 k | 13.61 ± 0.04 i | 37.52 ± 0.04 e | 1.00 ± 0.04 ab | 5.48 ± 0.02 i | 13.02 ± 0.04 j | 37.19 ± 0.20 e | 1.02 ± 0.20 ab |
20–40 | 6.62 ± 0.02 f | 13.82 ± 0.02 h | 35.99 ± 0.02 h | 0.86 ± 0.02 bcd | 6.13 ± 0.03 g | 13.64 ± 0.07 h | 35.64 ± 0.03 h | 0.88 ± 0.03 bcde | |
40–60 | 7.42 ± 0.02 b | 14.22 ± 0.01 g | 36.91 ± 0.01 f | 0.78 ± 0.01 cde | 7.07 ± 0.02 b | 14.64 ± 0.05 f | 36.60 ± 0.02 f | 0.79 ± 0.02 def | |
RSMB | 0–20 | 5.96 ± 0.04 l | 13.76 ± 0.04 hi | 38.13 ± 0.02 c | 1.06 ± 0.02 a | 5.27 ± 0.02 m | 12.44 ± 0.04 k | 37.80 ± 0.04 c | 1.09 ± 0.04 a |
20–40 | 6.51 ± 0.01 g | 14.10 ± 0.36 g | 36.60 ± 0.03 g | 0.92 ± 0.03 abc | 5.38 ± 0.03 i | 13.25 ± 0.01 i | 36.25 ± 0.01 g | 0.94 ± 0.01 abcd | |
40–60 | 7.34 ± 0.01 c | 15.07 ± 0.04 e | 37.52 ± 0.05 e | 0.83 ± 0.05 bcde | 6.87 ± 0.02 d | 13.34 ± 0.04 i | 37.21 ± 0.04 e | 0.84 ± 0.04 cdef | |
CSB | 0–20 | 5.90 ± 0.1 m | 14.88 ± 0.04 f | 38.43 ± 0.04 b | 0.87 ± 0.04 bcd | 5.61 ± 0.01 k | 14.56 ± 0.30 f | 38.10 ± 0.30 b | 0.88 ± 0.03 bcde |
20–40 | 6.39 ± 0.01 h | 15.39 ± 0.02 d | 36.91 ± 0.02 f | 0.78 ± 0.02 cde | 6.16 ± 0.01 g | 15.15 ± 0.02 d | 36.56 ± 0.02 f | 0.80 ± 0.02 def | |
40–60 | 7.22 ± 0.02 d | 16.20 ± 0.03 b | 37.82 ± 0.03 d | 0.72 ± 0.03 de | 6.95 ± 0.05 c | 15.94 ± 0.02 b | 37.51 ± 0.02 d | 0.73 ± 0.02 ef | |
CSMB | 0–20 | 5.76 ± 0.01 n | 13.13 ± 0.02 j | 39.04 ± 0.04 a | 0.94 ± 0.04 abc | 5.07 ± 0.01 n | 12.98 ± 0.20 j | 38.71 ± 0.04 a | 0.96 ± 0.04 abc |
20–40 | 6.28 ± 0.02 i | 13.90 ± 0.03 h | 37.34 ± 0.37 e | 0.67 ± 0.03 e | 5.65 ± 0.03 j | 13.37 ± 0.03 i | 37.17 ± 0.07 e | 0.86 ± 0.07 cdef | |
40–60 | 7.13 ± 0.03 e | 13.74 ± 0.05 hi | 38.43 ± 0.04 b | 0.78 ± 0.04 cde | 6.66 ± 0.02 e | 13.93 ± 0.02 g | 38.12 ± 0.05 b | 0.80 ± 0.05 def | |
LSD (0.05) | 0.064 | 0.066 | 0.066 | 0.066 | 0.004 | 0.16 | 0.16 | 0.16 | |
F-test | |||||||||
Treatment | ** | ** | ** | ** | ** | ** | ** | ** | |
Season | ** | ** | ** | - | ** | ** | ** | - | |
Depth | ** | ** | ** | ** | ** | ** | ** | ** | |
Treatment × Season | ** | ** | - | - | ** | ** | - | - | |
Treatment × Depth | ** | ** | - | - | ** | ** | - | - | |
Season × Depth | ** | ** | - | - | ** | ** | - | - | |
Treatment × Season × Depth | ** | ** | - | - | ** | ** | - | - |
Treatments | Depth | Maize | Wheat | ||||
---|---|---|---|---|---|---|---|
N | P | K | N | P | K | ||
0−20 | 26.33 ± 0.01 k | 8.72 ± 0.02 g | 248.16 ± 0.01 n | 27.31 ± 0.03 i | 8.94 ± 0.07 h | 279.02 ± 0.03 n | |
Control | 20–40 | 26.67 ± 0.05 j | 8.59 ± 0.01 g | 256.23 ± 0.05 m | 27.56 ± 0.03 k | 8.85 ± 0.03 h | 286.47 ± 0.02 m |
40–60 | 26.82 ± 0.02 j | 8.29 ± 0.05 h | 243.64 ± 0.02 o | 27.74 ± 0.07 j | 8.61 ± 0.02 i | 276.56 ± 0.07 o | |
0–20 | 32.60 ± 0.04 h | 11.12 ± 0.03 d | 262.82 ± 0.04 j | 33.58 ± 0.20 h | 11.44 ± 0.03 d | 293.68 ± 0.20 j | |
RSB | 20–40 | 32.93 ± 0.02 g | 10.98 ± 0.05 d | 273.00 ± 0.02 h | 33.82 ± 0.03 g | 11.20 ± 0.02 e | 303.24 ± 0.03 h |
40–60 | 32.16 ± 0.01 i | 10.37 ± 0.03 f | 258.75 ± 0.01 k | 33.08 ± 0.02 i | 10.63 ± 0.20 g | 291.67 ± 0.02 k | |
0–20 | 33.73 ± 0.02 e | 12.12 ± 0.03 a | 266.61 ± 0.02 i | 34.71 ± 0.04 e | 12.34 ± 0.04 a | 297.47 ± 0.04 i | |
RSMB | 20–40 | 33.98 ± 0.03 d | 11.96 ± 0.02 a | 276.39 ± 0.03 g | 34.87 ± 0.01 d | 12.28 ± 0.01 a | 306.63 ± 0.01 g |
40–60 | 34.02 ± 0.05 d | 11.76 ± 0.04 b | 258.53 ± 0.05 i | 34.94 ± 0.01 d | 12.02 ± 0.04 b | 291.45 ± 0.04 l | |
0–20 | 34.29 ± 0.04 c | 11.50 ± 0.03 c | 282.70 ± 0.04 e | 35.27 ± 0.3 c | 11.82 ± 0.02 c | 313.56 ± 0.30 f | |
CSB | 20–40 | 33.43 ± 0.02 f | 11.06 ± 0.02 d | 294.33 ± 0.02 b | 34.32 ± 0.02 f | 11.32 ± 0.30 de | 324.57 ± 0.02 b |
40–60 | 34.45 ± 0.03 c | 10.64 ± 0.05 e | 281.18 ± 0.03 f | 35.37 ± 0.02 c | 10.86 ± 0.02 f | 314.10 ± 0.02 e | |
0–20 | 35.05 ± 0.04 a | 11.96 ± 0.02 a | 288.48 ± 0.04 c | 36.03 ± 0.04 a | 12.01 ± 0.07 b | 319.34 ± 0.04 c | |
CSMB | 20–40 | 34.94 ± 0.64 a | 11.47 ± 0.05 c | 298.48 ± 0.36 a | 36.01 ± 0.07 a | 11.69 ± 0.05 c | 328.90 ± 0.07 a |
40–60 | 34.65 ± 0.04 b | 11.01 ± 0.03 d | 284.41 ± 0.04 d | 35.57 ± 0.05 b | 11.27 ± 0.0.4 e | 317.33 ± 0.05 d | |
LSD | 0.066 | 0.066 | 0.066 | 0.16 | 0.16 | 0.16 | |
F-test | |||||||
Treatment | ** | ** | ** | ** | ** | ** | |
Season | ** | ** | ** | ** | ** | ** | |
Depth | - | ** | ** | - | ** | ** | |
Treatment × Season | - | - | ** | - | - | ** | |
Treatment × Depth | ** | ** | ** | ** | ** | ** | |
Season × Depth | * | ** | * | ** | |||
Treatment × Season × Depth | - | - | - | - | - | - |
Treatments | Grain Yield (T·ha−1) | Straw Yield (T·ha−1) | ||
---|---|---|---|---|
Maize | Wheat | Maize | Wheat | |
Control | 5.36 ± 0.16 e | 3.46 ± 0.20 d | 8.62 ± 0.34 c | 14.81 ± 0.64 b |
RSB | 6.10 ± 0.16 d | 4.25 ± 0.08 c | 9.61 ± 0.29 b | 15.31 ± 0.29 b |
RSMB | 6.77 ± 0.43 c | 4.36 ± 0.15 bc | 10.04 ± 0.55 b | 16.45 ± 0.20 a |
CSB | 7.50 ± 0.32 b | 4.71 ± 0.09 ab | 11.07 ± 0.38 a | 16.68 ± 0.13 a |
CSMB | 8.14 ± 0.35 a | 4.93 ± 0.20 a | 11.51 ± 0.31 a | 17.43 ± 0.87 a |
LSD | 0.38 | 0.38 | 0.99 | 0.99 |
F-test | ||||
Treatment | ** | ** | ** | ** |
Season | ** | ** | ** | ** |
Treatment × season | ** | - | ** | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sharkawy, M.; El-Naggar, A.H.; AL-Huqail, A.A.; Ghoneim, A.M. Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils. Sustainability 2022, 14, 8190. https://doi.org/10.3390/su14138190
El-Sharkawy M, El-Naggar AH, AL-Huqail AA, Ghoneim AM. Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils. Sustainability. 2022; 14(13):8190. https://doi.org/10.3390/su14138190
Chicago/Turabian StyleEl-Sharkawy, Mahmoud, Ahmed H. El-Naggar, Arwa Abdulkreem AL-Huqail, and Adel M. Ghoneim. 2022. "Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils" Sustainability 14, no. 13: 8190. https://doi.org/10.3390/su14138190
APA StyleEl-Sharkawy, M., El-Naggar, A. H., AL-Huqail, A. A., & Ghoneim, A. M. (2022). Acid-Modified Biochar Impacts on Soil Properties and Biochemical Characteristics of Crops Grown in Saline-Sodic Soils. Sustainability, 14(13), 8190. https://doi.org/10.3390/su14138190