Pilot-Scale Radio Frequency-Assisted Pasteurization of Chili Powders Prepacked by Different Packaging Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and RF Apparatus
2.2. Evaluation of 5 Packaging Films in the RF Heating Process
2.3. Optimization of RF Heating Conditions
2.4. RF-Assisted Pasteurization Process
2.5. Quality Analysis of Chili Powders
2.6. Statistical Analysis
3. Results and Discussion
3.1. Influence of RF Heating on Packaging Films
3.1.1. Appearance
3.1.2. Mechanical Properties
3.2. Optimization of the RF Heating Process Using NWF
3.2.1. Range Analysis
3.2.2. Analysis of Variance
3.3. Inactivation Kinetics of S. Enterica Enteritidis PT 30 in Chili Powders
3.4. Quality of Chili Powders before and after the Pasteurization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, H.J.; Zhao, Y.Y.; Gong, C.T.; Jiao, S.S. Effect of radio frequency heating stress on sublethal injury of Salmonella Typhimurium in red pepper powder. LWT-Food Sci. Technol. 2020, 117, 108700. [Google Scholar] [CrossRef]
- Liu, S.X.; Ozturk, S.; Xu, J.; Kong, F.B.; Gray, P.; Zhu, M.J.; Sablani, S.S.; Tang, J.M. Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. J. Food Eng. 2018, 217, 68–74. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, Q.; Zhang, E.; Chen, Y.; Chen, X.; Wang, Y. Radio frequency pasteurization and heating uniformity of canned pineapple. J. Food Sci. 2022, 87, 2640–2650. [Google Scholar] [CrossRef]
- Chen, L.; Wei, X.; Irmak, S.; Chaves, B.D.; Subbiah, J. Inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in cumin seeds by radiofrequency heating. Food Control 2019, 103, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Irmak, S.; Chaves, B.D.; Subbiah, J. Microbial challenge study and quality evaluation of cumin seeds pasteurized by continuous radio frequency processing. Food Control 2019, 111, 107052. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Cheng, T.; Guan, X.; Wang, S. Effects of water activity, temperature and particle size on thermal inactivation of Escherichia coli ATCC 25922 in red pepper powder. Food Control 2019, 107, 106817. [Google Scholar] [CrossRef]
- Ozturk, S.; Kong, F.; Singh, R.K. Evaluation of Enterococcus faecium NRRL B-2354 as a potential surrogate of Salmonella in packaged paprika, white pepper and cumin powder during radio frequency heating. Food Control 2019, 108, 106833. [Google Scholar] [CrossRef]
- Jeong, S.-G.; Kang, D.-H. Influence of moisture content on inactivation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating. Int. J. Food Microbiol. 2014, 176, 15–22. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Lei, Y.; Fu, H.; Chen, X.; Wang, Y. Pilot-scale radio frequency pasteurisation of chili powder: Heating uniformity and heating model. J. Sci. Food Agric. 2016, 96, 3853–3859. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Sagong, H.-G.; Choi, S.H.; Ryu, S.; Kang, D.-H. Radio-frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157:H7 on black and red pepper spice. Int. J. Food Microbiol. 2012, 153, 171–175. [Google Scholar] [CrossRef]
- Uemura, K.; Takahashi, C.; Kobayashi, I. Inactivation of Enzymes in Packed Miso Paste by Radio-Frequency Heating. J. Jpn. Soc. Food Sci. Technol.-Nippon Shokuhin Kagaku Kogaku Kaishi 2014, 61, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Uemura, K.; Takahashi, C.; Kobayashi, I. Pasteurization of Packed Tofu by Radio Frequency Heating. J. Jpn. Soc. Food Sci. Technol.-Nippon Shokuhin Kagaku Kogaku Kaishi 2015, 62, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Tong, T.; Wang, P.; Shi, H.; Li, F.; Jiao, Y. Radio frequency inactivation of E. coli O157: H7 and Salmonella Typhimurium ATCC 14028 in black pepper (piper nigrum) kernels: Thermal inactivation kinetic study and quality evaluation. Food Control 2021, 132, 108553. [Google Scholar] [CrossRef]
- Piscopo, A.; Zappia, A.; De Bruno, A.; Poiana, M. Qualitative variations on Calabrian Provola cheeses stored under different packaging conditions. J. Dairy Res. 2015, 82, 499–505. [Google Scholar] [CrossRef]
- Dhaka, V.; Singh, S.; Anil, A.G.; Naik, T.S.S.K.; Garg, S.; Samuel, J.; Kumar, M.; Ramamurthy, P.C.; Singh, J. Occurrence, toxicity and remediation of polyethylene terephthalate plastics. A review. Environ. Chem. Lett. 2022, 20, 1777–1800. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Tran, T.H.; Hao, L.T.; Jeon, H.; Koo, J.M.; Shin, G.; Hwang, D.S.; Hwang, S.Y.; Park, J.; Oh, D.X. Biorenewable, transparent, and oxygen/moisture barrier nanocellulose/nanochitin-based coating on polypropylene for food packaging ap-plications. Carbohydr. Polym. 2021, 271, 12. [Google Scholar] [CrossRef]
- Asensio, E.; Montañés, L.; Nerín, C. Migration of volatile compounds from natural biomaterials and their safety evaluation as food contact materials. Food Chem. Toxicol. 2020, 142, 111457. [Google Scholar] [CrossRef]
- Ponnambalam, D.; Lim, L.T.; Manickavasagan, A.; Yucheng, F. Effect of heat-sealing parameters on the thermal profile and seal strength of multilayer films and non-woven. Packag. Technol. Sci. 2021, 34, 623–639. [Google Scholar] [CrossRef]
- Demeczky, M. Continuous pasteurization of bottled fruit juices by high frequency energy. In Proceedings of the IV International Congress on Food Science and Technology, Madrid, Spain, 23–27 September 1974; pp. 11–20. [Google Scholar]
- Kong, L.; Zhang, M. Impacts of RF-Hot Air Sterilizing on the Quality of Carrots in a Small Package. J. Food Sci. Biotechnol. 2015, 34, 943–948. (In Chinese) [Google Scholar]
- Yang, F.X.; Wang, Z.Q.; Xu, T.; Jiang, Y. Study on Anti-Soft and Antibacterial Packaging Materials for French Fries. Packag. J. 2018, 10, 55–62. (In Chinese) [Google Scholar]
- Huang, Z.; Zhang, B.; Marra, F.; Wang, S.J. Computational modelling of the impact of polystyrene containers on radio frequency heating uniformity improvement for dried soybeans. Innov. Food Sci. Emerg. Technol. 2016, 33, 365–380. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, L.; Wang, S. Computer simulation of radio frequency selective heating of insects in soybeans. Int. J. Heat Mass Transf. 2015, 90, 406–417. [Google Scholar] [CrossRef]
- Zhao, W.; Tang, Y. Effects of lipid, PET/PE and PA/PE with high-pressure processing. Int. J. Food Prop. 2016, 20, 801–809. [Google Scholar] [CrossRef]
- FDA. “Risk Profile: Pathogen and FiFilthn Spices” CFSAN Risk & Safety Assessments. 2019. Available online: https://www.fda.gov/food/cfsan-risk-safety-assessments/risk-profile-pathogen-and-filth-spices (accessed on 18 January 2022).
- FDA. Guidance for Industry: Measures to Address the Risk for Contamination by Salmonella Species in Food Containing a Peanut-Derived Product as an Ingredient. 2009. Available online: https://www.federalregister.gov/documents/2009/03/11/E9-5367/guidance-for-industry-measures-to-address-the-risk-for-contamination-by-salmonella-species-in-food (accessed on 18 January 2022).
- CDC. Multistate Outbreak of Salmonella Typhimurium Infections Linked to Peanut Butter, 2008–2009 (FINAL UPDATE). 2009. Available online: https://www.cdc.gov/salmonella/2009/peanut-butter-2008-2009.html (accessed on 18 January 2022).
- FDA. Urgent Food Recall of Jungle Jim’s Roast No Salt Sunflower Seeds, Windy Acres Fruity Trail Mix & Windy Acres No Salt Sunflower Seeds Due to Potential Presence of Listeria Monocytogenes. 2016. Available online: https://www.fda.gov/Safety/Recalls/ucm504811.htm (accessed on 18 January 2022).
- CDC. Multistate Outbreak of Salmonella Braenderup Infections Linked to nut butter Manufactured by NSpired Natural Foods, Inc. (Final Update). 2014. Available online: https://www.cdc.gov/salmonella/braenderup-08-14/index.html (accessed on 18 January 2022).
- Villa-Rojas, R.; Tang, J.; Wang, S.; Gao, M.; Kang, D.-H.; Mah, J.-H.; Gray, P.; Sosa-Morales, M.E.; López-Malo, A. Thermal Inactivation of Salmonella enteritidis PT 30 in Almond Kernels as Influenced by Water Activity. J. Food Prot. 2013, 76, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byun, K.H.; Cho, M.J.; Park, S.Y.; Chun, H.S.; Ha, S.D. Effects of gamma ray, electron beam, and X-ray on the reduction of As-pergillus flavus on red pepper powder (Capsicum annuum L.) and gochujang (red pepper paste). Food Sci. Technol. Int. 2019, 25, 649–658. [Google Scholar] [CrossRef]
- Jeong, A.R.; Jo, M.J.; Oh, S.-W.; Ku, K.-H.; Park, J.-B.; Kim, H.J. Microbiological Contamination of Fresh-Red Pepper and Pack-aged-Red Pepper Powder in South Korea. Prev. Nutr. Food Sci. 2010, 15, 233–238. [Google Scholar] [CrossRef]
- Tan, J.C.; Cheetham, A.K. Mechanical properties of hybrid inorganic–organic framework materials: Establishing fundamental structure–property relationships. Chem. Soc. Rev. 2011, 40, 1059–1080. [Google Scholar] [CrossRef]
- Antoniou, J.; Liu, F.; Majeed, H.; Zhong, F. Characterization of tara gum edible films incorporated with bulk chitosan and chi-tosan nanoparticles: A comparative study. Food Hydrocoll. 2015, 44, 309–319. [Google Scholar] [CrossRef]
- Miller, K.; Krochta, J. Oxygen and aroma barrier properties of edible films: A review. Trends Food Sci. Technol. 1997, 8, 228–237. [Google Scholar] [CrossRef]
- Cui, W.; Li, X.; Zhou, S.; Weng, J. Investigation on process parameters of electrospinning system through orthogonal experimental design. J. Appl. Polym. Sci. 2006, 103, 3105–3112. [Google Scholar] [CrossRef]
- Liu, S.; Rojas, R.V.; Gray, P.; Zhu, M.-J.; Tang, J. Enterococcus faecium as a Salmonella surrogate in the thermal processing of wheat flour: Influence of water activity at high temperatures. Food Microbiol. 2018, 74, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Lau, S.K.; Stratton, J.; Irmak, S.; Subbiah, J. Radiofrequency pasteurization process for inactivation of Salmonella spp. and Enterococcus faecium NRRL B-2354 on ground black pepper. Food Microbiol. 2019, 82, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.R. The CIE 1976 Color-Difference Formulae. Color Res. Appl. 1977, 2, 7–11. [Google Scholar] [CrossRef]
- Garruti, D.D.S.; Mesquita, W.D.S.; Magalhães, H.C.R.; Araújo, M.D.S.; Pereira, R.D.C.A. Odor-contributing volatile compounds of a new Brazilian tabasco pepper cultivar analyzed by HS-SPME-GC-MS and HS-SPME-GC-O/FID. Food Sci. Technol. 2021, 41, 696–701. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Vieira, M.; Silva, M.; Santos, L.; Beppu, M.M. Natural-based plasticizers and biopolymer films: A review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.F.; Rezaei, M.; Zandi, M.; Ghavi, F.F. Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chem. 2013, 136, 1490–1495. [Google Scholar] [CrossRef]
- Jo, W.S.; Song, N.B.; Lee, J.H.; Song, K.B. Physical properties and antimicrobial activities of a persimmon peel/red algae compo-site film containing grapefruit seed extract. Food Sci. Biotechnol. 2014, 23, 1169–1172. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.Q.; Lu, L.X.; Tang, Y.L.; Yuan, L.; Pan, L. Impact of high-pressure processing on diffusion in polyethylene based on molecular dynamics simulation. Mol. Simul. 2017, 43, 548–557. [Google Scholar] [CrossRef]
- Fu, Z.-Q.; Wang, L.-J.; Li, D.; Wei, Q.; Adhikari, B. Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films. Carbohydr. Polym. 2011, 86, 202–207. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, Y.; Bao, C.; Hou, Q.; Yu, A. Optimisation of a circularly vibrating screen based on DEM simulation and Taguchi orthogonal experimental design. Powder Technol. 2017, 310, 307–317. [Google Scholar] [CrossRef]
- Dag, D.; Singh, R.K.; Kong, F. Developments in Radio Frequency Pasteurization of Food Powders. Food Rev. Int. 2020, 38, 1197–1214. [Google Scholar] [CrossRef]
- Ozturk, S.; Liu, S.; Xu, J.; Tang, J.; Chen, J.; Singh, R.K.; Kong, F. Inactivation of Salmonella enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing. LWT-Food Sci. Technol. 2019, 111, 782–789. [Google Scholar] [CrossRef]
- Hu, S.Z.; Zhao, Y.Y.; Hayouka, Z.; Wang, D.F.; Jiao, S.S. Inactivation kinetics for Salmonella typhimurium in red pepper powders treated by radio frequency heating. Food Control 2018, 85, 437–442. [Google Scholar] [CrossRef]
- Liu, S.; Tang, J.; Tadapaneni, R.K.; Yang, R.; Zhu, M.-J. Exponentially Increased Thermal Resistance of Salmonella spp. and Enterococcus faecium at Reduced Water Activity. Appl. Environ. Microbiol. 2018, 84, e02742-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, T.; Wang, S. Modified atmosphere packaging pre-storage treatment for thermal control of E. coli ATCC 25922 in almond kernels assisted by radio frequency energy. J. Food Eng. 2018, 246, 253–260. [Google Scholar] [CrossRef]
- Mokrzycki, W.S.; Tatol, M. Colour difference δE—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Waje, C.K.; Kim, H.-K.; Kim, K.-S.; Todoriki, S.; Kwon, J.-H. Physicochemical and Microbiological Qualities of Steamed and Irradiated Ground Black Pepper (Piper nigrum L.). J. Agric. Food Chem. 2008, 56, 4592–4596. [Google Scholar] [CrossRef]
- Molnar, H.; Bata-Vidacs, I.; Baka, E.; Cserhalmi, Z.; Ferenczi, S.; Tomoskozi-Farkas, R.; Adanyi, N.; Szekacs, A. The effect of dif-ferent decontamination methods on the microbial load, bioactive components, aroma and colour of spice paprika. Food Control 2018, 83, 131–140. [Google Scholar] [CrossRef]
Name | Appearance | Thickness (m) | Water Permeability Rate (gPa−1s−1m−1) | Manufacturer |
---|---|---|---|---|
Polyethylene (PE) | 5.60 × 10−6 | 4.53 × 10−14 | Vanke Material Co., Ltd. Shanghai, China | |
Polyethylene terephthalate (PET) | 7.13 × 10−5 | 1.58 × 10−13 | Vanke Material Co., Ltd. Shanghai, China | |
Polypropylene (PP) | 4.63 × 10−5 | 5.46 × 10−14 | Vanke Material Co., Ltd. Shanghai, China | |
Bamboo pulp paper (BPP) | 8.43 × 10−5 | 2.29 × 10−12 | Xiangfeng Packaging Co., Ltd. Dongguan, China | |
Non-woven fabric (NWF) | 2.09 × 10−4 | 5.58 × 10−12 | Xinle Packaging Co., Ltd. Dongguan, China |
Trial No. | Electrode Gap | Sample Thickness | Heating Time | Average Temperature | UI |
---|---|---|---|---|---|
(mm) | (mm) | (s) | (°C) | (λ) | |
1 | 100 | 50 | 350 | 60.59 | 0.1826 |
2 | 100 | 60 | 400 | 62.42 | 0.1349 |
3 | 100 | 70 | 450 | 67.06 | 0.0946 |
4 | 110 | 50 | 400 | 60.05 | 0.1768 |
5 | 110 | 60 | 450 | 64.18 | 0.132 |
6 | 110 | 70 | 350 | 66.59 | 0.1192 |
7 | 120 | 50 | 450 | 59.44 | 0.1898 |
8 | 120 | 60 | 350 | 62.12 | 0.1389 |
9 | 120 | 70 | 400 | 64.95 | 0.1125 |
Average temperature (°C) | K1 | 63.36 | 60.03 | 63.1 | |
K2 | 63.61 | 62.91 | 62.47 | ||
K3 | 62.17 | 66.2 | 63.56 | ||
R | 1.19 | 6.17 | 1.09 | ||
UI (λ) | K1 | 0.1374 | 0.1831 | 0.1469 | |
K2 | 0.1427 | 0.1353 | 0.1414 | ||
K3 | 0.1471 | 0.1088 | 0.1388 | ||
R | 0.0097 | 0.0743 | 0.0081 |
Factors | SS | DF | MS | F | P | |
---|---|---|---|---|---|---|
Average temperature (°C) | Electrode gap | 3.5347 | 2 | 1.7673 | 12.9244 | 0.0718 |
Sample thickness | 57.2505 | 2 | 28.6252 | 209.3339 | 0.0048 | |
Heating time | 1.7852 | 2 | 0.8926 | 6.5273 | 0.1328 | |
Error | 0.2735 | 2 | 0.1367 | - | - | |
UI (λ) | Electrode gap | 0.0001 | 2 | 0.0001 | 0.7522 | 0.5707 |
Sample thickness | 0.0085 | 2 | 0.0043 | 45.2146 | 0.0216 | |
Heating time | 0.0001 | 2 | 0.0001 | 0.5454 | 0.6471 | |
Error | 0.0002 | 2 | 0.0001 | - | - |
Name | HA | RF-HA |
---|---|---|
moisture content (%) | 4.61 ± 0.16 a | 4.44 ± 0.15 a |
aw,25°C | 0.372 ± 0.014 a | 0.330 ± 0.025 b |
color L* | 27.43 ± 0.40 a | 26.64 ± 0.42 a |
color a* | 43.76 ± 0.20 a | 43.79 ± 0.17 a |
color b* | 47.12 ± 0.68 a | 45.77 ± 0.73 b |
color difference ΔE | - | 1.5701 |
capsaicin (g/kg) | 0.288 | 0.283 |
Name | HA | RF-HA (Difference) |
---|---|---|
D-Limonene | 52.13 ± 0.63 a | 54.25 ± 7.54 a |
β-Myrcene | 22.61 ± 0.04 a | 22.05 ± 0.52 a |
b-Thujene | 15.69 ± 14.22 a | 8.26 ± 12.77 a |
Linalyl butyrate | 6.66 ± 0.32 a | 7.77 ± 0.30 b (16.68%) |
Linalyl anthranilate | 5.98 ± 0.24 a | 6.08 ± 0.22 a |
β-Linalool | 5.70 ± 0.02 a | 6.26 ± 1.24 a |
(Z)-β-ocimene | 5.39 ± 0.24 a | 5.76 ± 0.83 a |
(10S, 11S)-himachala-3(12),4-diene | 4.25 ± 0.47 a | 6.24 ± 0.60 b (46.80%) |
β-Phellandrene | 1.57 ± 0.02 a | 2.01 ± 0.26 a |
Cosmene | 0.67 ± 0.25 a | 0.85 ± 0.55 a |
Dihydroactinidiolide | 0.45 ± 0.01 a | 0.71 ± 0.71 a |
Anethole | 0.40 ± 0.03 a | 0.41 ± 0.06 a |
Dodecane | 0.36 ± 0.03 a | 0.43 ± 0.02 b (20.73%) |
10-Methyleicosane | 0.45 ± 0.03 a | ND b (−100.00%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Li, R.; Li, Q.; Zhang, Q.; Qin, W.; Liu, S. Pilot-Scale Radio Frequency-Assisted Pasteurization of Chili Powders Prepacked by Different Packaging Films. Sustainability 2022, 14, 9132. https://doi.org/10.3390/su14159132
Ma S, Li R, Li Q, Zhang Q, Qin W, Liu S. Pilot-Scale Radio Frequency-Assisted Pasteurization of Chili Powders Prepacked by Different Packaging Films. Sustainability. 2022; 14(15):9132. https://doi.org/10.3390/su14159132
Chicago/Turabian StyleMa, Shaojie, Rui Li, Qingye Li, Qing Zhang, Wen Qin, and Shuxiang Liu. 2022. "Pilot-Scale Radio Frequency-Assisted Pasteurization of Chili Powders Prepacked by Different Packaging Films" Sustainability 14, no. 15: 9132. https://doi.org/10.3390/su14159132
APA StyleMa, S., Li, R., Li, Q., Zhang, Q., Qin, W., & Liu, S. (2022). Pilot-Scale Radio Frequency-Assisted Pasteurization of Chili Powders Prepacked by Different Packaging Films. Sustainability, 14(15), 9132. https://doi.org/10.3390/su14159132