Implementation of P-Reactive Layer for Improving Urban Water Quality: Kinetic Studies, Dimensioning and Economic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reactive Materials
2.2. Batch Kinetic Tests
2.3. Statistical Analysis
2.4. Kinetic Models
2.5. Reservoir Dimension
2.6. Phosphorus Removal Efficiency in the Infiltration Time, T
3. Results and Discussion
3.1. Sorption of Kinetic Tests
3.2. Statistic Anaysiss
3.3. Kinetic Models
3.4. Reservoir P-Reactive Layer Dimension and Economic Analysis
3.5. Limitations of Potential RMs Field Applications
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cullis, J.D.S.; Horn, A.; Rossouw, N.; Fisher-Jeffes, L.; Kunneke, M.M.; Hoffman, W. Urbanisation, Climate Change and Its Impact on Water Quality and Economic Risks in a Water Scarce and Rapidly Urbanising Catchment: Case Study of the Berg River Catchment. H2Open J. 2019, 2, 146–167. [Google Scholar] [CrossRef] [Green Version]
- WUP2011. World Urbanization Prospects the 2011 Revision; UN: Washington, DC, USA, 2011. [Google Scholar]
- Lisenbee, W.A.; Hathaway, J.M.; Burns, M.J.; Fletcher, T.D. Modeling Bioretention Stormwater Systems: Current Models and Future Research Needs. Environ. Model. Softw. 2021, 144, 105146. [Google Scholar] [CrossRef]
- Zhang, X.Q. The Trends, Promises and Challenges of Urbanisation in the World. Habitat Int. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Pokrývková, J.; Jurík, Ľ.; Lackóová, L.; Halászová, K.; Hanzlík, R.; Banihabib, M.E. The Urban Environment Impact of Climate Change Study and Proposal of the City Micro-Environment Improvement. Sustainability 2021, 13, 4096. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- de Macedo, M.B.; Gomes Júnior, M.N.; Jochelavicius, V.; de Oliveira, T.R.P.; Mendiondo, E.M. Modular Design of Bioretention Systems for Sustainable Stormwater Management under Drivers of Urbanization and Climate Change. Sustainability 2022, 14, 6799. [Google Scholar] [CrossRef]
- Drizo, A. The Looming Threat of Eutrophication. In Phosphorus Pollution Control-Policies and Strategies; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 1–10. ISBN 978-1-118-82551-8. [Google Scholar]
- Valentukevičienė, M.; Najafabadi, M. Use of Natural Sorbent for Stormwater Treatment. In Proceedings of the 11th International Conference “Environmental Engineering”, Vilnius, Lithuania, 21–22 August 2020. [Google Scholar]
- Kalmykova, Y.; Harder, R.; Borgestedt, H.; Svanäng, I. Pathways and Management of Phosphorus in Urban Areas. J. Ind. Ecol. 2012, 16, 928–939. [Google Scholar] [CrossRef] [Green Version]
- Saliu, T.D.; Oladoja, N.A. Assessing the Suitability of Solid Aggregates for Nutrient Recovery from Aqua Systems. J. Water Process Eng. 2020, 33, 101000. [Google Scholar] [CrossRef]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; McCarthy, M.J.; Newell, S.E.; Qin, B.; Scott, J.T. Mitigating Cyanobacterial Harmful Algal Blooms in Aquatic Ecosystems Impacted by Climate Change and Anthropogenic Nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R. Phosphorus Control Is Critical to Mitigating Eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef] [Green Version]
- EEA. Council Directive of 21 May 1991 Concerning Urban Waste Water Treatment (91/271/EEC); EEA: Copenhagen, Denmark, 1991. [Google Scholar]
- Carvalho, L.; McDonald, C.; de Hoyos, C.; Mischke, U.; Phillips, G.; Borics, G.; Poikane, S.; Skjelbred, B.; Solheim, A.L.; Van Wichelen, J.; et al. Sustaining Recreational Quality of European Lakes: Minimizing the Health Risks from Algal Blooms through Phosphorus Control. J. Appl. Ecol. 2013, 50, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Lürling, M.; van Oosterhout, F. Controlling Eutrophication by Combined Bloom Precipitation and Sediment Phosphorus Inactivation. Water Res. 2013, 47, 6527–6537. [Google Scholar] [CrossRef]
- Dodds, W.K.; Jones, J.R.; Welch, E.B. Suggested Classification of Stream Trophic State: Distributions of Temperate Stream Types by Chlorophyll, Total Nitrogen, and Phosphorus. Water Res. 1998, 32, 1455–1462. [Google Scholar] [CrossRef]
- Richardson, C.J.; King, R.S.; Qian, S.S.; Vaithiyanathan, P.; Qualls, R.G.; Stow, C.A. Estimating Ecological Thresholds for Phosphorus in the Everglades. Environ. Sci. Technol. 2007, 41, 8084–8091. [Google Scholar] [CrossRef]
- USEPA. Nutrient Criteria Technical Guidance Manual-Lakes and Reservoirs. 2000. Available online: https://nepis.epa.gov (accessed on 6 July 2022).
- Xu, D.; Lee, L.Y.; Lim, F.Y.; Lyu, Z.; Zhu, H.; Ong, S.L.; Hu, J. Water Treatment Residual: A Critical Review of Its Applications on Pollutant Removal from Stormwater Runoff and Future Perspectives. J. Environ. Manag. 2020, 259, 109649. [Google Scholar] [CrossRef]
- Koryto, K.; Hunt, W.; Arellano, C.; Page, J. Performance of Regenerative Stormwater Conveyance on the Removal of Dissolved Pollutants: Field Scale Simulation Study. J. Environ. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Zinger, Y.; Blecken, G.-T.; Fletcher, T.D.; Viklander, M.; Deletić, A. Optimising Nitrogen Removal in Existing Stormwater Biofilters: Benefits and Tradeoffs of a Retrofitted Saturated Zone. Ecol. Eng. 2013, 51, 75–82. [Google Scholar] [CrossRef]
- Paule-Mercado, M.A.; Ventura, J.S.; Memon, S.A.; Jahng, D.; Kang, J.-H.; Lee, C.-H. Monitoring and Predicting the Fecal Indicator Bacteria Concentrations from Agricultural, Mixed Land Use and Urban Stormwater Runoff. Sci. Total Environ. 2016, 550, 1171–1181. [Google Scholar] [CrossRef]
- Kumar, P.S.; Korving, L.; van Loosdrecht, M.C.M.; Witkamp, G.-J. Adsorption as a Technology to Achieve Ultra-Low Concentrations of Phosphate: Research Gaps and Economic Analysis. Water Res. X 2019, 4, 100029. [Google Scholar] [CrossRef]
- Pretty, J.N.; Mason, C.F.; Nedwell, D.B.; Hine, R.E.; Leaf, S.; Dils, R. Environmental Costs of Freshwater Eutrophication in England and Wales. Environ. Sci. Technol. 2003, 37, 201–208. [Google Scholar] [CrossRef] [Green Version]
- HELCOM. HELCOM (2018): State of the Baltic Sea–SecondHELCOM Holistic Assessment 2011–2016. In Baltic Sea Environment Proceedings 155; HELCOM: Helsinki, Finland, 2018. [Google Scholar]
- Dodds, W.K.; Bouska, W.W.; Eitzmann, J.L.; Pilger, T.J.; Pitts, K.L.; Riley, A.J.; Schloesser, J.T.; Thornbrugh, D.J. Eutrophication of U.S. Freshwaters: Analysis of Potential Economic Damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef]
- Grand Lake St Marys Restoration Commission. The Strategic Plan for the Grand Lake St. Marys Restoration Commission; Grand Lake St Marys Restoration Commission: Montezuma, OH, USA, 2011. [Google Scholar]
- Directorate-General for Research and Innovation (European Commission). Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on ‘Nature Based Solutions and Re Naturing Cities’; Full Version; Publications Office of the European Union: Luxembourg, 2015; ISBN 978-92-79-46051-7. [Google Scholar]
- Bolund, P.; Hunhammar, S. Ecosystem Services in Urban Areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Passeport, E.; Hunt, W.F.; Line, D.E.; Smith, R.A.; Brown, R.A. Field Study of the Ability of Two Grassed Bioretention Cells to Reduce Storm-Water Runoff Pollution. J. Irrig. Drain. Eng. 2009, 135, 505–510. [Google Scholar]
- Komlos, J.; Traver, R. Long-Term Orthophosphate Removal in a Field-Scale Storm-Water Bioinfiltration Rain Garden. J. Environ. Eng. 2012, 138, 566. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. A Field Evaluation of Rain Garden Flow and Pollutant Treatment. Water Air Soil Pollut. 2005, 167, 123–138. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y.; Chen, L. Field Performance of Bioretention Systems for Runoff Quantity Regulation and Pollutant Removal. Water Air Soil Pollut. 2017, 228, 468. [Google Scholar] [CrossRef]
- Waajen, G.; van Oosterhout, F.; Douglas, G.; Lürling, M. Geo-Engineering Experiments in Two Urban Ponds to Control Eutrophication. Water Res. 2016, 97, 69–82. [Google Scholar] [CrossRef]
- Ekka, S.A.; Rujner, H.; Leonhardt, G.; Blecken, G.-T.; Viklander, M.; Hunt, W.F. Next Generation Swale Design for Stormwater Runoff Treatment: A Comprehensive Approach. J. Environ. Manag. 2021, 279, 111756. [Google Scholar] [CrossRef]
- Wen, D.; Chang, N.-B.; Wanielista, M.P. Assessing Nutrient Removal in Stormwater Runoff for Urban Farming with Iron Filings-Based Green Environmental Media. Sci. Rep. 2020, 10, 9379. [Google Scholar] [CrossRef]
- Bacelo, H.; Pintor, A.M.A.; Santos, S.C.R.; Boaventura, R.A.R.; Botelho, C.M.S. Performance and Prospects of Different Adsorbents for Phosphorus Uptake and Recovery from Water. Chem. Eng. J. 2020, 381, 122566. [Google Scholar] [CrossRef]
- Klimeski, A.; Uusitalo, R.; Turtola, E. Screening of Ca- and Fe-Rich Materials for Their Applicability as Phosphate-Retaining Filters. Ecol. Eng. 2014, 68, 143–154. [Google Scholar] [CrossRef]
- Cucarella, V.; Renman, G. Phosphorus Sorption Capacity of Filter Materials Used for On-Site Wastewater Treatment Determined in Batch Experiments–A Comparative Study. J. Environ. Qual. 2009, 38, 381–392. [Google Scholar] [CrossRef]
- Hamisi, R.; Renman, G.; Renman, A.; Wörman, A. Modelling Phosphorus Sorption Kinetics and the Longevity of Reactive Filter Materials Used for On-Site Wastewater Treatment. Water 2019, 11, 811. [Google Scholar] [CrossRef] [Green Version]
- Bus, A.; Karczmarczyk, A. Kinetic Studies on Removing Phosphate from Synthetic Solution and River Water by Reactive Material in a Form of Suspended Reactive Filters. Desalination Water Treat. 2018, 136, 237–244. [Google Scholar] [CrossRef]
- Łożyńska, J.; Bańkowska-Sobczak, A.; Popek, Z.; Dunalska, J.A. Selection of P-Reactive Materials for Treatment of Hypolimnetic Water Withdrawn from Eutrophic Lakes. Ecohydrol. Hydrobiol. 2020, 20, 276–288. [Google Scholar] [CrossRef]
- Kirkkala, T.; Ventelä, A.-M.; Tarvainen, M. Fosfilt Filters in an Agricultural Catchment: A Long-Term Field-Scale. Agric. Food Sci. 2012, 21, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Bus, A.; Karczmarczyk, A.; Baryła, A. The Use of Reactive Material for Limiting P-Leaching from Green Roof Substrate. Water Sci. Technol. 2016, 73, 3027–3032. [Google Scholar] [CrossRef]
- Baryła, A.; Karczmarczyk, A.; Brandyk, A.; Bus, A. The Influence of a Green Roof Drainage Layer on Retention Capacity and Leakage Quality. Water Sci. Technol. 2018, 77, 2886–2895. [Google Scholar] [CrossRef] [Green Version]
- Castellar, J.A.d.C.; Formosa, J.; Chimenos, J.M.; Canals, J.; Bosch, M.; Rosell, J.R.; da Silva, H.P.; Morató, J.; Brix, H.; Arias, C.A. Crushed Autoclaved Aerated Concrete (CAAC), a Potential Reactive Filter Medium for Enhancing Phosphorus Removal in Nature-Based Solutions—Preliminary Batch Studies. Water 2019, 11, 1442. [Google Scholar] [CrossRef] [Green Version]
- Rosenquist, S.E.; Hession, W.C.; Eick, M.J.; Vaughan, D.H. Variability in Adsorptive Phosphorus Removal by Structural Stormwater Best Management Practices. Ecol. Eng. 2010, 36, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Palmer, E.T.; Poor, C.J.; Hinman, C.; Stark, J.D. Nitrate and Phosphate Removal through Enhanced Bioretention Media: Mesocosm Study. Water Environ. Res. 2013, 85, 823–832. [Google Scholar] [CrossRef]
- Weiss, P.T.; Aljobeh, Z.Y.; Bradford, C.; Breitzke, E.A. An Iron-Enhanced Rain Garden for Dissolved Phosphorus Removal. In Proceedings of the World Environmental and Water Resources Congress 2016, Palm Beach, FL, USA, 22–26 May 2016; pp. 185–194. [Google Scholar] [CrossRef]
- Liu, Y.; Goor, J.; Robinson, C.E. Behaviour of Soluble Reactive Phosphorus within Field-Scale Bioretention Systems. J. Hydrol. 2021, 601, 126597. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L. Comparison between Linear and Non-Linear Forms of Pseudo-First-Order and Pseudo-Second-Order Adsorption Kinetic Models for the Removal of Methylene Blue by Activated Carbon. Front. Environ. Sci. Eng. China 2009, 3, 320–324. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Peers, A.M. Elovich Adsorption Kinetics and the Heterogeneous Surface. J. Catal. 1965, 4, 499–503. [Google Scholar] [CrossRef]
- Vadivelan, V.; Kumar, K.V. Equilibrium, Kinetics, Mechanism, and Process Design for the Sorption of Methylene Blue onto Rice Husk. J. Colloid Interface Sci. 2005, 286, 90–100. [Google Scholar] [CrossRef]
- Arbeitsblatt DWA-A 117 Bemessung von Regenrückhalteräumen. Available online: https://shop.falter.at/detail/9783944328393 (accessed on 2 July 2022).
- Bogdanowicz, E.; Stachy, J. Maksymalne Opady Deszczu w Polsce. Charakterystyki Projektowe. In Materiały Badawcze, Hydrologia i Oceanologia; IMGW: Warszawa, Poland, 1998. [Google Scholar]
- Karczmarczyk, A. Determination of Soil Permeability for Infiltration of Effluent from on Site Wastewater Treatment Systems. Nfrastructure Ecol. Rural. Areas 2016, 2, 959–970. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX%3A32000L0060 (accessed on 13 July 2022).
- Government of Poland. Regulation of the Minister of Infrastructure of 25 June 2021 on the Classification of Ecological Status, Ecological Potential and Chemical Status and the Method of Classification of the State of Surface Water Bodies, as Well as Environmental Quality Standards for Priority Substances (Dz.U. 2021, 1475); Government of Poland: Warszawa, Poland, 2021. [Google Scholar]
- Karczmarczyk, A.; Baryła, A.; Fronczyk, J.; Bus, A.; Mosiej, J. Phosphorus and Metals Leaching from Green Roof Substrates and Aggregates Used in Their Composition. Minerals 2020, 10, 112. [Google Scholar] [CrossRef] [Green Version]
- Klimeski, A.; Chardon, W.J.; Turtola, E.; Uusitalo, R. Potential and Limitations of Phosphate Retention Media in Water Protection: A Process-Based Review of Laboratory and Field-Scale Tests. Agric. Food Sci. 2012, 21, 206–223. [Google Scholar] [CrossRef] [Green Version]
- Karczmarczyk, A.; Woja, K.; Bilska, P.; Bus, A.; Baryła, A. The Efficiency of Filtration Materials (Polonite® and Leca®) Supporting Phosphorus Removal in on-Site Treatment Systems with Wastewater Infiltration. Infrastruct. Ecol. Rural. Areas 2017, IV, 1401–1413. [Google Scholar] [CrossRef]
- Bus, A.; Agnieszka, K. P-Binding Mineral Materials to Enhance Phosphate Removal Using Nature-Based Solutions in Urban Areas. Desalination Water Treat. 2020, 205, 198–207. [Google Scholar] [CrossRef]
- Afridi, M.N.; Lee, W.-H.; Kim, J.-O. Effect of Phosphate Concentration, Anions, Heavy Metals, and Organic Matter on Phosphate Adsorption from Wastewater Using Anodized Iron Oxide Nanoflakes. Environ. Res. 2019, 171, 428–436. [Google Scholar] [CrossRef]
- Almanassra, I.W.; Mckay, G.; Kochkodan, V.; Ali Atieh, M.; Al-Ansari, T. A State of the Art Review on Phosphate Removal from Water by Biochars. Chem. Eng. J. 2021, 409, 128211. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.; Lee, C.-G.; Choi, J.-W.; Hong, S.-G.; Park, S.-J. Application of Thermally Treated Crushed Concrete Granules for the Removal of Phosphate: A Cheap Adsorbent with High Adsorption Capacity. Water Air Soil Pollut. 2017, 228, 8. [Google Scholar] [CrossRef]
- Wei, J.; Meng, X.; Wen, X.; Song, Y. Adsorption and Recovery of Phosphate from Water by Amine Fiber, Effects of Co-Existing Ions and Column Filtration. J. Environ. Sci. 2020, 87, 123–132. [Google Scholar] [CrossRef]
- Mekonnen, D.T.; Alemayehu, E.; Lennartz, B. Adsorptive Removal of Phosphate from Aqueous Solutions Using Low-Cost Volcanic Rocks: Kinetics and Equilibrium Approaches. Materials 2021, 14, 1312. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Wan, L.; Zhou, Q.; Wang, X. Batch and Fixed-Bed Column Performance of Phosphate Adsorption by Lanthanum-Doped Activated Carbon Fiber. Water Air Soil Pollut. 2012, 223, 5893–5902. [Google Scholar] [CrossRef]
- Deng, Y.; Wheatley, A. Mechanisms of Phosphorus Removal by Recycled Crushed Concrete. Int. J. Environ. Res. Public Health 2018, 15, 357. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Spoonamore, S. Stormwater Runoff Treatment Using Bioswales Augmented with Advanced Nanoengineered Materials. In Aquananotechnology; Reisner, D.E., Pradeep, T., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 688–707. ISBN 978-0-429-18563-2. [Google Scholar]
- Xu, Y.; Liu, T.; Huang, Y.; Zhu, J.; Zhu, R. Role of Phosphate Concentration in Control for Phosphate Removal and Recovery by Layered Double Hydroxides. Environ. Sci. Pollut. Res. 2020, 27, 16612–16623. [Google Scholar] [CrossRef]
- Wu, B.; Wan, J.; Zhang, Y.; Pan, B.; Lo, I.M.C. Selective Phosphate Removal from Water and Wastewater Using Sorption: Process Fundamentals and Removal Mechanisms. Environ. Sci. Technol. 2020, 54, 50–66. [Google Scholar] [CrossRef]
- Naturalist Retention Tank. Available online: https://sendzimir.org.pl/wp-content/uploads/2019/03/Naturalistyczne_stawy_retencyjne.pdf (accessed on 5 July 2022).
- Brown, R.A.; Hunt, W.F. Impacts of Media Depth on Effluent Water Quality and Hydrologic Performance of Undersized Bioretention Cells. J. Irrig. Drain. Eng. 2011, 137, 132–143. [Google Scholar] [CrossRef]
- Price List of Hydroidea Products. Available online: http://www.hydroidea.com/wp-content/uploads/Cennik-Hydroidea.pdf (accessed on 3 July 2022).
Specification | Tested Reactive Materials | |||||
---|---|---|---|---|---|---|
AAC | Filtralite®Nature P | Leca® | Limestone | Opoka | Zeolite | |
Main chemical composition [%] | ||||||
SiO2 | 57.24 | 63 | 66.57 | 0.61 | 55.11 | 47.8 |
Al2O3 | 1.96 | 17 | 16.57 | - | 5.65 | 6.07 |
CaO | 24.62 | 2 | 2.46 | 29.3 | 23.86 | 2.84 |
SO3 | 1.35 | - | - | - | - | - |
Fe2O3 | 1.03 | 7 | 7.1 | 0.31 | - | - |
MgO | 0.52 | - | 1.99 | 6.79 | - | - |
K2O | 0.48 | 4 | 2.69 | - | 1.04 | 2.19 |
Fe | - | - | - | 0.14 | 2.1 | 1.07 |
Main physical properties of tested RMs | ||||||
Grain size [mm] | 1–2 | 0.5–4.0 * | 0–4 ** | 1–2 | 1–2 | 1–2 |
pH [-] | 9.0 | ≈12.0 * | 7.2 | 8.8 | 10.8 | 8.5 |
Porosity [%] | 83.7 | 60.0 * | 42.0 | 40.0 | 38.0 | 50.0 |
Bulk density [g/cm3] | 0.30 | 0.37 * | 0.51 ** | 1.50 | 0.73 | 0.90 |
P-PO4 [µg/dm3] | BOD [mg O2/dm3] | Total Solids [mg/dm3] | pH [-] | Color [PtCo] | EC [µS/cm] | TDS [mg/L] | Turbidity [NTU] |
---|---|---|---|---|---|---|---|
186.594 | 4.0 | 24.0 | 7.84 | 150 | 1036 | 518 | 10.5 |
Type | Roofs | Parking Surface | Roads | Pedestrian Walks | Green Areas |
---|---|---|---|---|---|
Surface coverage, Fi [%] | 12.29 | 14.98 | 5.92 | 4.02 | 62.80 |
Runoff coefficient, [-] | 0.8 | 0.7 | 0.7 | 0.5 | 0.1 |
Reactive Material | AAC | Filtralite® Nature P | Leca® | Limestone | Opoka | Zeolite | Initial Load |
---|---|---|---|---|---|---|---|
AAC | 1.000000 | 0.468086 | 1.000000 | 1.000000 | 1.000000 | 0.043985 * | |
Filtralite® Nature P | 1.000000 | 0.555554 | 1.000000 | 1.000000 | 1.000000 | 0.035188 * | |
Leca® | 0.468086 | 0.555554 | 1.000000 | 0.773478 | 1.000000 | 0.000002 * | |
Limestone | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.001679 * | |
Opoka | 1.000000 | 1.000000 | 0.773478 | 1.000000 | 1.000000 | 0.022247 * | |
Zeolite | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 0.000403 * | |
Initial load | 0.043985 * | 0.035188 * | 0.000002 * | 0.001679 * | 0.022247 * | 0.000403 * |
AAC | Filtralite® Nature P | Leca® | Limestone | Opoka | Zeolite | |
---|---|---|---|---|---|---|
Pseudo-first order model | ||||||
KI (min−1) | 1.7∙10−5 | 9.0∙10−5 | 170∙10−5 | 9.0∙10−5 | 17∙10−5 | 9.0∙10−5 |
qe (µg/g) | 2.479 | 13.813 | 0.9340 | 15.669 | 1.956 | 1.949 |
R2 (-) | 0.6081 | 0.5809 | 0.7495 | 0.7748 | 0.5185 | 0.3388 |
Pseudo-second order model | ||||||
KII (g/µg min) | 28∙10−5 | 88∙10−5 | 35∙10−5 | 54∙10−5 | 27∙10−5 | 12∙10−5 |
qe (µg/g) | 15.221 | 10.427 | 7.199 | 9.990 | 15.015 | 0.083 |
R2 (-) | 0.9653 | 0.9843 | 0.9277 | 0.9864 | 0.9780 | 0.9999 |
Elovich model | ||||||
A | 0.0010 | 0.0664 | 0.000001 | 0.0026 | 0.0013 | 0.0014 |
Β | 0.43 | 0.64 | 0.60 | 0.63 | 0.44 | 0.71 |
R2 | 0.9103 | 0.8024 | 0.9802 | 0.8135 | 0.9740 | 0.8084 |
Intra-particle diffusion model | ||||||
Kd (µg/g min0.5) | 0.2298 | 0.1365 | 0.1627 | 0.1542 | 0.2290 | 0.1126 |
C (µg/g) | 1.6988 | 3.059 | 2.1121 | 1.2680 | 1.5430 | 1.3406 |
R2 (-) | 0.7932 | 0.5511 | 0.8509 | 0.8385 | 0.9036 | 0.4659 |
Specification | AAC | Filtralite® Nature P | Opoka |
---|---|---|---|
Price, EUR/m3 | 215 | 232 | 332 |
Volume of P-reactive layer (bottom) = 23.1 m3 | |||
Cost of P-filtration layer, EUR | 2489 | 2679 | 3833 |
Total mass of P-reactive layer, kg | 3465 | 4274 | 9009 |
Potential removed mass of P-PO4 in infiltration time, g | 29 | 42 | 77 |
Volume of P-reactive layer (bottom+sides) = 48.6 m3 | |||
Cost of P-filtration layer, EUR | 5234 | 5634 | 8062 |
Total mass of P-reactive layer, kg | 7287 | 8988 | 18,947 |
Potential removed mass of P-PO4 in infiltration time, g | 61 | 89 | 163 |
Unite cost of P-PO4 removed in infiltration time, EUR/g | 85.53 | 63.39 | 49.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bus, A. Implementation of P-Reactive Layer for Improving Urban Water Quality: Kinetic Studies, Dimensioning and Economic Analysis. Sustainability 2022, 14, 9151. https://doi.org/10.3390/su14159151
Bus A. Implementation of P-Reactive Layer for Improving Urban Water Quality: Kinetic Studies, Dimensioning and Economic Analysis. Sustainability. 2022; 14(15):9151. https://doi.org/10.3390/su14159151
Chicago/Turabian StyleBus, Agnieszka. 2022. "Implementation of P-Reactive Layer for Improving Urban Water Quality: Kinetic Studies, Dimensioning and Economic Analysis" Sustainability 14, no. 15: 9151. https://doi.org/10.3390/su14159151
APA StyleBus, A. (2022). Implementation of P-Reactive Layer for Improving Urban Water Quality: Kinetic Studies, Dimensioning and Economic Analysis. Sustainability, 14(15), 9151. https://doi.org/10.3390/su14159151