System Thinking Approach toward Reclamation of Regional Water Management under Changing Climate Conditions
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Dataset
2.1.3. Proposed Methodology
- First Step (Climate Projection)
- Second Step (ANN-Based Rainfall-Runoff Model)
- Third Step (System Dynamic Model)
2.2. Materials
2.2.1. LARS-WG
2.2.2. Artificial Neural Networks (ANNs)
2.2.3. System Dynamics
Key Variables for SD Model Development
Proposed Reclamation Scenarios in the SD Model
2.3. Evaluation Criteria
3. Results and Discussion
3.1. Results of Climate Projection
3.2. Results of Rainfall-Runoff Model
3.3. Results of System Dynamics Model
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Madani, K.; AghaKouchak, A.; Mirchi, A. Iran’s socio-economic drought: Challenges of a water-bankrupt nation. Iran. Stud. 2016, 49, 997–1016. [Google Scholar] [CrossRef]
- Dziedzic, R.; Karney, B.W. Energy metrics for water distribution system assessment: Case study of the Toronto network. J. Water Resour. Plan. Manag. 2015, 141, 04015032. [Google Scholar] [CrossRef] [Green Version]
- Dziedzic, R.M.; Karney, B.W. Water user survey on expectations of service in Guelph, ON, Canada. Water Pract. Technol. 2015, 10, 767–770. [Google Scholar] [CrossRef]
- Nazemi, A.; Zaerpour, M.; Hassanzadeh, E. Uncertainty in Bottom-Up Vulnerability Assessments of Water Supply Systems due to Regional Streamflow Generation under Changing Conditions. J. Water Resour. Plan. Manag. 2020, 146, 04019071. [Google Scholar] [CrossRef]
- Baghanam, A.H.; Seifi, A.J.; Sheikhbabaei, A.; Hassanzadeh, Y.; Besharat, M.; Asadi, E. Policy-Making toward Integrated Water Resources Management of Zarrine River Basin via System Dynamics Approach under Climate Change Impact. Sustainability 2022, 14, 3376. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Gokcekus, H. Data-driven ensemble model to statistically downscale rainfall using nonlinear predictor screening approach. J. Hydrol. 2018, 565, 538–551. [Google Scholar] [CrossRef]
- Lu, W.; Qin, X. Integrated framework for assessing climate change impact on extreme rainfall and the urban drainage system. Hydrol. Res. 2020, 51, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Farboudfam, N.; Nourani, V.; Aminnejad, B. Wavelet-based multi station disaggregation of rainfall time series in mountainous regions. Hydrol. Res. 2019, 50, 545–561. [Google Scholar] [CrossRef] [Green Version]
- Baghanam, A.H.; Nourani, V.; Keynejad, M.A.; Taghipour, H.; Alami, M.T. Conjunction of wavelet-entropy and SOM clustering for multi-GCM statistical downscaling. Hydrol. Res. 2019, 50, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Ebrahim, G.Y.; Jonoski, A.; Van Griensven, A.; Di Baldassarre, G. Downscaling technique uncertainty in assessing hydrological impact of climate change in the Upper Beles River Basin, Ethiopia. Hydrol. Res. 2013, 44, 377–398. [Google Scholar] [CrossRef]
- Zarghami, M.; Abdi, A.; Babaeian, I.; Hassanzadeh, Y.; Kanani, R. Impacts of climate change on runoffs in East Azerbaijan, Iran. Glob. Planet. Chang. 2011, 78, 137–146. [Google Scholar] [CrossRef]
- Hassan, Z.; Shamsudin, S.; Harun, S. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theor. Appl. Climatol. 2014, 116, 243–257. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Ali, S.; Bharti, B. Comparative evaluation of conceptual and physical rainfall–runoff models. Appl. Water Sci. 2020, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Alamdari, N.; Sample, D.J.; Steinberg, P.; Ross, A.C.; Easton, Z.M. Assessing the effects of climate change on water quantity and quality in an urban watershed using a calibrated stormwater model. Water 2017, 9, 464. [Google Scholar] [CrossRef]
- Hu, H.; Yang, K.; Sharma, A.; Mehrotra, R. Assessment of water and energy scarcity, security and sustainability into the future for the Three Gorges Reservoir using an ensemble of RCMs. J. Hydrol. 2020, 586, 124893. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Gebremichael, M. Using self-organizing maps and wavelet transforms for space–time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J. Hydrol. 2013, 476, 228–243. [Google Scholar] [CrossRef]
- Gholami, V.; Sahour, H. Simulation of rainfall-runoff process using an artificial neural network (ANN) and field plots data. Theor. Appl. Climatol. 2022, 147, 87–98. [Google Scholar] [CrossRef]
- Padiyedath Gopalan, S.; Hanasaki, N.; Champathong, A.; Tebakari, T. Impact assessment of reservoir operation in the context of climate change adaptation in the Chao Phraya River basin. Hydrol. Process. 2021, 35, e14005. [Google Scholar] [CrossRef]
- Hassanzadeh, E.; Elshorbagy, A.; Wheater, H.; Gober, P. Managing water in complex systems: An integrated water resources model for Saskatchewan, Canada. Environ. Model. Softw. 2014, 58, 12–26. [Google Scholar] [CrossRef]
- Madani, K.; Mariño, M.A. System dynamics analysis for managing Iran’s Zayandeh-Rud river basin. Water Resour. Manag. 2009, 23, 2163–2187. [Google Scholar] [CrossRef]
- Hassanzadeh, E.; Zarghami, M.; Hassanzadeh, Y. Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resour. Manag. 2012, 26, 129–145. [Google Scholar] [CrossRef]
- Sarindizaj, E.E.; Zarghami, M. Sustainability assessment of restoration plans under climate change by using system dynamics: Application on Urmia Lake, Iran. J. Water Clim. Chang. 2019, 10, 938–952. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Zarghami, M. Should water supply for megacities depend on outside resources? A Monte-Carlo system dynamics simulation for Shiraz, Iran. Sustain. Cities Soc. 2019, 44, 163–170. [Google Scholar] [CrossRef]
- Bakhshianlamouki, E.; Masia, S.; Karimi, P.; van der Zaag, P.; Sušnik, J. A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran. Sci. Total Environ. 2020, 708, 134874. [Google Scholar] [CrossRef] [PubMed]
- Barhagh, S.E.; Zarghami, M.; Ghale, Y.A.G.; Shahbazbegian, M.R. System dynamics to assess the effectiveness of restoration scenarios for the Urmia Lake: A prey-predator approach for the human-environment uncertain interactions. J. Hydrol. 2021, 593, 125891. [Google Scholar] [CrossRef]
- D’Oria, M.; Ferraresi, M.; Tanda, M.G. Quantifying the impacts of climate change on water resources in northern Tuscany, Italy, using high-resolution regional projections. Hydrol. Process. 2019, 33, 978–993. [Google Scholar] [CrossRef]
- Semenov, M.A.; Barrow, E.M. Use of a stochastic weather generator in the development of climate change scenarios. Clim. Chang. 1997, 35, 397–414. [Google Scholar] [CrossRef]
- Chen, H.; Guo, J.; Zhang, Z.; Xu, C.Y. Prediction of temperature and precipitation in Sudan and South Sudan by using LARS-WG in future. Theor. Appl. Climatol. 2013, 113, 363–375. [Google Scholar] [CrossRef]
- Haykin, S. A comprehensive foundation. In Neural Networks, 2nd ed.; Prentice Hall: Hoboken, NJ, USA, 2004; p. 41. [Google Scholar]
- Forrester, J.W. Urban dynamics. IMR. Ind. Manag. Rev. 1970, 11, 67. [Google Scholar]
- Ford, A. System dynamics models of environment, energy, and climate change. In System Dynamics: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 375–399. [Google Scholar]
- Sterman, J. System Dynamics: Systems Thinking and Modeling for a Complex World; McGraw-Hill Education: New York, NY, USA, 2002. [Google Scholar]
- DeFelice, T.P.; Golden, J.; Griffith, D.; Woodley, W.; Rosenfeld, D.; Breed, D.; Solak, M.; Boe, B. Extra area effects of cloud seeding—An updated assessment. Atmos. Res. 2014, 135, 193–203. [Google Scholar] [CrossRef]
- Urmia Lake Restoration Programs (ULRP). 2014. Available online: http://www.ulrp.ir/en/ (accessed on 11 February 2022).
Station Code | Station Name | Longitude (°N) | Latitude (°E) | Altitude (m) | Mean Temperature (°C) | Cumulative Precipitation (mm) |
---|---|---|---|---|---|---|
40706 | Tabriz | 46°17′ | 38°08′ | 1364 | 12.2 | 251.8 |
40704 | Sahand | 47°04′ | 38°26′ | 1391 | 10.8 | 288.2 |
40416 | Sarab | 37°93′ | 38°47′ | 1682 | 8.9 | 237.3 |
40435 | Bostan Abad | 46°51′ | 37°51′ | 1750 | 8.0 | 320.0 |
40571 | Heris | 47°06′ | 38°15′ | 1950 | 8.5 | 315.2 |
No | Centre | Global Climate Model | Centre Acronym | Country | Grid Size (Approximately) |
---|---|---|---|---|---|
1 | Numerical weather prediction | EC-EARTH | ESM | Europe | 1.1° × 1.1° |
2 | UK Met. Office | HadGEM2 | UKMO | UK | 1.4° × 1.9° |
3 | Met Research Institute, Japan | MIROC5 | NIES | Japan | 1.2° × 2.5° |
4 | Max-Planck Met Institute | MPI-ESM | MPI-M | Germany | 1.9° × 1.9° |
Data | Source(s) | Data Type |
---|---|---|
Groundwater (GW) Total supply | IWRMC a | Modeled |
Natural recharge | Surveying evidence | Modeled |
Recycled water | Surveying Evidence | Modeled |
GW withdrawal | IWRMC | Modeled |
Natural discharge | Surveying Evidence | Statistical |
GW volume change | Surveying evidence | Modeled |
Wastewater percolation SW | IWRMC | Statistical |
Precipitation volume | IMO b | Modeled |
Precipitation height | IMO | Statistical |
Horticultural demand average | NETWAT | Statistical |
Unmeasured surface inflow volume | Surveying evidence | Modeled |
Evaporation | IMO | Modeled |
Available water | IWRMC | Statistical |
Population | Iran’s Statistical Center | Statistical |
Domestic demand | IWRMC | Modeled |
Agricultural demand | IWRMC | Modeled |
Industrial demand | IWRMC | Modeled |
Horticultural demand | IWRMC | Modeled |
Crop demand | IWRMC | Modeled |
Green space demand | IWRMC | Modeled |
Environmental demand | IWRMC | Statistical |
Total demand | IWRMC | Modeled |
Inflow to basin | Surveying evidence | Modeled |
Inflow | Surveying evidence | Modeled |
Surface water percolation | IWRMC | Modeled |
Wastewater GW percolation | IWRMC | Statistical |
Irrigation percolation | IWRMC | Statistical |
Husbandry demand | Iran’s Ministry of Agriculture | Statistical |
Horticultural cultivated demand | Iran’s Ministry of Agriculture | Statistical |
Crop demand average | NETWAT | Statistical |
Total supply SW | IWRMC | Modeled |
Runoff | IWRMC | Modeled |
Downscaling Model | GCM Models | Evaluation Criteria | ||
---|---|---|---|---|
CC | DC | RMSE (mm) | ||
LARS-WG | PEC-EARTH | 0.91 | 0.76 | 4.60 |
PHADGEM2 | 0.61 | 0.22 | 8.99 | |
PMIROC5 | 0.91 | 0.82 | 4.07 | |
PMPI-ESM | 0.89 | 0.43 | 7.65 | |
PEnsembles of GCMs | 0.91 | 0.85 | 4.08 |
Endogenous | Exogenous | |
---|---|---|
Population | Natural recharge | Crop cultivated tonnage |
Agricultural demand | Groundwater withdraw | Horticultural cultivated tonnage |
Industrial demand | Natural discharge | Crop demand average |
Domestic demand | Groundwater level | Horticultural demand average |
Crop demand | Climate projections | Industrial factories Number |
Husbandry demand | Evaporation | Demographic changes |
Horticultural demand | Wastewater coverage | Water Balance |
Green spaces demand | Withdraw | Supply–Demand relation |
Total demand | Inflow | |
Infiltration |
Plan | Description | Impact Percentage of Each Scenario (%) |
---|---|---|
Plan 1 | Cloud seeding | 9 |
Plan 2 | Increasing irrigation efficiency and reducing agricultural production | 17 |
Plan 3 | Groundwater withdraws control policies and coupled with environmental awareness | 13 |
Plan 4 | Cultivation for reducing domestic consumption | 1 |
Plan 5 | Simultaneous implementation | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikhbabaei, A.; Hosseini Baghanam, A.; Zarghami, M.; Pouri, S.; Hassanzadeh, E. System Thinking Approach toward Reclamation of Regional Water Management under Changing Climate Conditions. Sustainability 2022, 14, 9411. https://doi.org/10.3390/su14159411
Sheikhbabaei A, Hosseini Baghanam A, Zarghami M, Pouri S, Hassanzadeh E. System Thinking Approach toward Reclamation of Regional Water Management under Changing Climate Conditions. Sustainability. 2022; 14(15):9411. https://doi.org/10.3390/su14159411
Chicago/Turabian StyleSheikhbabaei, Ali, Aida Hosseini Baghanam, Mahdi Zarghami, Sepideh Pouri, and Elmira Hassanzadeh. 2022. "System Thinking Approach toward Reclamation of Regional Water Management under Changing Climate Conditions" Sustainability 14, no. 15: 9411. https://doi.org/10.3390/su14159411
APA StyleSheikhbabaei, A., Hosseini Baghanam, A., Zarghami, M., Pouri, S., & Hassanzadeh, E. (2022). System Thinking Approach toward Reclamation of Regional Water Management under Changing Climate Conditions. Sustainability, 14(15), 9411. https://doi.org/10.3390/su14159411