Effects of Iron-Loaded Biochar on the Anaerobic Co-Digestion of Food Waste and Sewage Sludge and Elucidating the Mechanism Thereof
Abstract
:1. Introduction
2. Materials and Methods
2.1. Food Waste, Sludge and Fe-BC
2.2. Experimental Design and Procedure
2.3. Analytical Methods
2.3.1. Chemical Analysis
2.3.2. Kinetics Analysis
2.3.3. Data Analysis
3. Results
3.1. Effects of Fe-BC on Combined Anaerobic Digestion of Food Waste and Sludge
3.1.1. Effects of Fe-BC on the Rate of Hydrolysis and Acidification Stages
3.1.2. Effects of Fe-BC on Gas Production in the Anaerobic Co-Digestion Systems
3.2. Effect of Fe-BC on DIET Efficiency
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Q.; Yang, Y.; Wang, M.; Zhu, Y.; Sun, C.; Zhang, Y.; Zhao, Z. Enhancing anaerobic digestion of kitchen wastes via combining ethanol-type fermentation with magnetite: Potential for stimulating secretion of extracellular polymeric substances. Waste Manag. 2021, 127, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Yang, X.; You, X.; Wang, J.; Zhou, J.; Zhou, Y.; Yang, J. Explore the effect of Fe3O4 nanoparticles (NPs) on anaerobic digestion of sludge. Environ. Technol. 2019, 42, 1542–1551. [Google Scholar] [CrossRef]
- Hassan, G.; Alaneny, A.; Afify, A.; El-Liethy, M.A.; El-Gohary, F. Production of biofuels (H2&CH4) from food leftovers via dual-stage anaerobic digestion: Enhancement of bioenergy production and determination of metabolic fingerprinting of microbial communities. Egypt. J. Chem. 2021, 64, 4105–4115. [Google Scholar]
- Liu, C.; Li, H.; Zhang, Y.; Liu, C. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste. Bioresour. Technol. 2016, 219, 252–260. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, H.; Zhang, Y.; Cui, M.H.; Fu, B.; Liu, H.B. Insight into sludge anaerobic digestion with granular activated carbon addition: Methanogenic acceleration and methane reduction relief. Bioresour. Technol. 2021, 319, 124131. [Google Scholar] [CrossRef]
- Gao, S.; Lei, X.; Ruan, W.; Zhao, M. Synergetic enhancement of methane production and system resilience during anaerobic digestion of food waste in ammonia-tolerant anaerobic sludge system. Environ. Sci. Pollut. Res. 2021, 28, 21851–21861. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Janke, L.; Zheng, Z.; Wang, X.; Pröter, J.; Schäfer, F. Enhancing anaerobic digestion of chicken manure leachate: Effects of trace elements supplementation on methane production. Bioresour. Technol. Rep. 2021, 14, 100662. [Google Scholar] [CrossRef]
- Hassan, G.K.; Abdel-Karim, A.; Al-Shemy, M.T.; Rojas, P.; Sanz, J.L.; Ismail, S.H.; Mohamed, G.G.; El-gohary, F.A.; Al-sayed, A. Harnessing Cu@Fe3O4 core shell nanostructure for biogas production from sewage sludge: Experimental study and microbial community shift. Renew. Energy 2022, 188, 1059–1071. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Li, Y.; Quan, X.; Zhao, Z. Comparing the mechanisms of ZVI and Fe3O4 for promoting waste-activated sludge digestion. Water Res. 2018, 144, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Luo, L.; Li, D.; Varjani, S.; Xu, Y.; Wong, J.W. Promoting anaerobic co-digestion of sewage sludge and food waste with different types of conductive materials: Performance, stability, and underlying mechanism. Bioresour. Technol. 2021, 337, 125384. [Google Scholar] [CrossRef]
- Wang, G.; Li, Q.; Gao, X.; Wang, X.C. Sawdust-Derived Biochar Much Mitigates VFAs Accumulation and Improves Microbial Activities To Enhance Methane Production in Thermophilic Anaerobic Digestion. ACS Sustain. Chem. Eng. 2018, 7, 2141–2150. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, Q.; Jia, Z.; Wang, C.; Ye, X.; Du, J.; Kong, X.; Xi, Y. Relieving ammonia nitrogen inhibition in high concentration anaerobic digestion of rural organic household waste by Prussian blue analogue nanoparticles addition. Bioresour. Technol. 2021, 330, 124979. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Cheng, J.; Ding, L.; Murphy, J.D. Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges. Chem. Eng. J. 2018, 350, 681–691. [Google Scholar] [CrossRef]
- Capson-Tojo, G.; Moscoviz, R.; Ruiz, D.; Santa-Catalina, G.; Trably, E.; Rouez, M.; Crest, M.; Steyer, J.-P.; Bernet, N.; Delgenès, J.-P.; et al. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste. Bioresour. Technol. 2018, 260, 157–168. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Yu, S.; Zhu, R.; Zhong, C.; Zou, H.; Gu, L.; He, Q. Effects of citrus peel biochar on anaerobic co-digestion of food waste and sewage sludge and its direct interspecies electron transfer pathway study. Chem. Eng. J. 2020, 398, 125643. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Wang, Y. Impact of biochar-supported zerovalent iron nanocomposite on the anaerobic digestion of sewage sludge. Environ. Sci. Pollut. Res. Int. 2019, 26, 10292–10305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamurad, B.; Sallis, P.; Petropoulos, E.; Tabraiz, S.; Ospina, C.; Leary, P.; Dolfing, J.; Gray, N. Stable biogas production from single-stage anaerobic digestion of food waste. Appl. Energy 2020, 263, 114609. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kobayashi, T.; Li, Y.Y.; Xu, K.; Zhao, Y. Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: Performance assessment and kinetic analysis. Appl. Energy 2015, 148, 78–86. [Google Scholar] [CrossRef]
- Li, Y.; Jin, Y.; Borrion, A.; Li, J. Influence of feed/inoculum ratios and waste cooking oil content on the mesophilic anaerobic digestion of food waste. Waste Manag. 2018, 73, 156–164. [Google Scholar] [CrossRef]
- Cui, Y.; Mao, F.; Zhang, J.; He, Y.; Tong, Y.W.; Peng, Y. Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways. Chemosphere 2021, 272, 129863–129872. [Google Scholar] [CrossRef]
- Cavali, M.; Junior, N.L.; de Almeida Mohedano, R.; Belli Filho, P.; da Costa, R.H.; de Castilhos Junior, A.B. Biochar and hydrochar in the context of anaerobic digestion for a circular approach: An overview. Sci. Total Environ. 2022, 822, 153614. [Google Scholar] [CrossRef]
- Qi, Q.; Sun, C.; Cristhian, C.; Zhang, T.; Zhang, J.; Tian, H.; He, Y.; Tong, Y.W. Enhancement of methanogenic performance by gasification biochar on anaerobic digestion. Bioresour. Technol. 2021, 330, 124993–125002. [Google Scholar] [CrossRef]
- Hellal, M.S.; Abou-Taleb, E.M.; Rashad, A.M.; Hassan, G.K. Boosting biohydrogen production from dairy wastewater via sludge immobilized beads incorporated with polyaniline nanoparticles. Biomass Bioenergy 2022, 162, 106499–106508. [Google Scholar] [CrossRef]
- Wei, T.Y.; Wen, H.D.; Cheng, J.Y. The Effect of Adding Zero-valent Iron on Methane Production from Food waste by Anaerobic Digestion. Environ. Pollut. Control 2016, 38, 54–58+64. [Google Scholar]
- Yuan, T.; Shi, X.; Sun, R.; Ko, J.H.; Xu, Q. Simultaneous addition of biochar and zero-valent iron to improve food waste anaerobic digestion. J. Clean. Prod. 2021, 278, 123627–123635. [Google Scholar] [CrossRef]
- Yang, X.; Xue, Y.; Wang, W. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis. Bioresour. Technol. 2008, 100, 649–653. [Google Scholar] [CrossRef]
- Ye, W.; Lu, J.; Ye, J.; Zhou, Y. The effects and mechanisms of zero-valent iron on anaerobic digestion of solid waste: A mini-review. J. Clean. Prod. 2021, 278, 123567. [Google Scholar] [CrossRef]
- Qi, Q.; Sun, C.; Zhang, J.; He, Y.; Tong, Y.W. Internal enhancement mechanism of biochar with graphene structure in anaerobic digestion: The bioavailability of trace elements and potential direct interspecies electron transfer. Chem. Eng. J. 2021, 406, 126833. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Jia, H.; Yong, X.; Zhang, L.; Zhou, J.; Cao, Z.; Kruse, A.; Wei, P. Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresour. Technol. 2017, 244, 445–451. [Google Scholar] [CrossRef]
- Zhu, Y.; Jin, Z.; Yu, Q.; Zhao, Z.; Zhang, Y. Alleviating acid inhibition in anaerobic digestion of food waste: Coupling ethanol-type fermentation with biochar addition. Environ. Res. 2022, 212, 113355. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Z.; Liu, G.; Lv, M.; Feng, Y. Enhancing methane production of synthetic brewery water with granular activated carbon modified with nanoscale zero-valent iron (NZVI) in anaerobic system. Sci. Total Environ. 2021, 760, 143933. [Google Scholar] [CrossRef] [PubMed]
Metric | Food Waste | Sludge |
---|---|---|
pH | 6.32 | 7.54 |
TS (%) | 91.52 ± 2.24 | 20.70 ± 1.56 |
VS (%) | 85.42 ± 3.14 | 7.72 ± 0.60 |
VS/TS (%) | 92.79 ± 1.72 | 38.46 ± 1.61 |
Protein (g/L) | 190.24 ± 2.12 | - |
Polysaccharide (g/L) | 150.25 ± 3.24 | - |
TCOD (g/L) | 445.42 ± 3.21 | 15.53 ± 2.14 |
TAN (mg/L) | 2020.63 ± 3.2 | - |
Rm/mL·(g·d)−1 | λ/d | fd/mL·g-VS−1 | Bactual/mL·g-VS−1 | Deviation/% | R2 | |
---|---|---|---|---|---|---|
BC0 | 8.99 | 6.12 | 223.25 | 220.75 | 2.40 | 0.9909 |
BC4 | 11.40 | 5.07 | 264.60 | 255.30 | 3.28 | 0.9919 |
BC8 | 13.84 | 4.18 | 268.78 | 268.59 | 2.07 | 0.9944 |
BC16 | 19.62 | 3.55 | 333.01 | 329.42 | 0.47 | 0.9945 |
BC24 | 13.07 | 4.22 | 239.92 | 232.94 | 1.29 | 0.9965 |
Specific Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Size (nm) | Fe (%) | |
---|---|---|---|---|
BC | 3.5959 | 0.005511 | 6.1305 | 0.47 |
Fe-BC | 64.5216 | 0.079635 | 4.9369 | 5.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Deng, G.; Cheng, X.; Wang, W. Effects of Iron-Loaded Biochar on the Anaerobic Co-Digestion of Food Waste and Sewage Sludge and Elucidating the Mechanism Thereof. Sustainability 2022, 14, 9442. https://doi.org/10.3390/su14159442
Lu W, Deng G, Cheng X, Wang W. Effects of Iron-Loaded Biochar on the Anaerobic Co-Digestion of Food Waste and Sewage Sludge and Elucidating the Mechanism Thereof. Sustainability. 2022; 14(15):9442. https://doi.org/10.3390/su14159442
Chicago/Turabian StyleLu, Wenxu, Guanyong Deng, Xiaoge Cheng, and Wan Wang. 2022. "Effects of Iron-Loaded Biochar on the Anaerobic Co-Digestion of Food Waste and Sewage Sludge and Elucidating the Mechanism Thereof" Sustainability 14, no. 15: 9442. https://doi.org/10.3390/su14159442
APA StyleLu, W., Deng, G., Cheng, X., & Wang, W. (2022). Effects of Iron-Loaded Biochar on the Anaerobic Co-Digestion of Food Waste and Sewage Sludge and Elucidating the Mechanism Thereof. Sustainability, 14(15), 9442. https://doi.org/10.3390/su14159442